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Background: Pancreatic cancer is highly malignant and characterised by rapid and uncontrolled growth. While some of the
important regulatory networks involved in pancreatic cancer have been determined, the cancer relevant genes have not been fully
identified.

Methods: We screened genes that may control proliferation in pancreatic cancer in seven pairs of matched pancreatic cancer and
normal pancreatic tissue samples. We examined KIF15 expression in pancreatic cancer tissues and the effect of KIF15 on cell
proliferation in vitro and in vivo. The mechanisms underlying KIF15 promotion of cell proliferation were investigated.

Results: mRNA microarray and functional analysis identified 22 genes that potentially play an important role in the proliferation of
pancreatic cancer. High-content siRNA screening evaluated whether silencing these 22 genes affected proliferation of pancreatic
cancer. Notably, silencing KIF15 exhibited the most potent inhibition of proliferation compared with the rest of the 22 genes.
KIF15 was upregulated in human pancreatic cancer tissues, and higher KIF15 expression levels correlated with shorter patient
survival times. Upregulation KIF15 promoted pancreatic cancer growth. KIF15 upregulated cyclin D1, CDK2, and phospho-RB and
also promoted G1/S transition in pancreatic cancer cells. KIF15 upregulation activated MEK–ERK signalling by increasing p-MEK
and p-ERK levels. MEK–ERK inhibitors successfully inhibited cell cycle progression, and PD98059 blocked KIF15-mediated
pancreatic cancer proliferation in vivo and in vitro.

Conclusions: This study identified KIF15 as a critical regulator that promotes pancreatic cancer proliferation, broadening our
understanding of KIF15 function in tumorigenesis.

Pancreatic cancer (PC) is generally acknowledged as being difficult
to diagnose and treat. Despite improvements in treatment, the low
patient survival rate is partly attributed to early, extensive local
tumour invasion and distant metastasis, as well as multiple
chemoresistance (Rombouts et al, 2015). The development of PC
is a multistep process based on the accumulation of genetic and

epigenetic alterations. Therefore, obtaining a better understanding
of the molecular mechanisms responsible for the rapid growth,
distant metastasis and tumorigenic properties of PC is likely to lead
to novel therapeutic strategies for this disease.

We screened for genes with abnormal overexpression in PC
using seven matched pairs of PC and adjacent, normal pancreatic
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tissues with a gene expression profile microarray. We verified the
function of the identified genes by high-content siRNA screening.
Using this approach, we found that KIF15, a gene encoding a
member of the kinesin family of proteins, may play a vital role in
PC proliferation.

The kinesin superfamily comprises a group of proteins that
share a highly conserved motor domain (Minakawa et al, 2013;
Goulet et al, 2014). Most KIF proteins have ATP-dependent
activity and can drive microtubule-dependent plus-end motion
(Florian and Mayer, 2011). Kinesins participate in several essential
cellular processes including mitosis, meiosis, and the transport of
macromolecules (Liu et al, 2010). Increasing evidence indicates
that kinesin proteins play critical roles in the genesis and
development of human cancers (Yokota et al, 2012; Minakawa
et al, 2013). Some kinesin proteins are associated with malignancy
as well as with drug resistance in solid tumours (Buster et al, 2003).
Thus, targeting KIF may be a promising anticancer strategy. KIF
inhibitors such as kinesin spindle protein have been investigated as
a monotherapy or in combination with other drugs in clinical
trials. Other kinesins with potential anticancer characteristics are
still being discovered (Song, 2015).

In this study, we demonstrate that KIF15 promotes PC
proliferation via the MEK–ERK signalling pathway. This result
provides insight into the molecular mechanisms of pancreatic
carcinogenesis and suggests a novel therapeutic strategy for PC.

MATERIALS AND METHODS

Ethical statement. This study was approved by the Human
Research Ethics Committees at the Tongji Hospital, Tongji Medical
College, Huazhong University of Science and Technology (HUST),
and was carried out in accordance with the principles embodied in
the Declaration of Helsinki (more details can be found in the
Supplementary Materials and Methods).

All in vivo animal experiments were approved by the Committee
on the Ethics of Animal Experimentation of HUST (Permit no.
2015-S207). All treatments were carried out according to the US
Public Health Service Policy on the Humane Care and Use of
Laboratory Animals. All surgical procedures were conducted under
sodium pentobarbital anaesthesia and every effort was made to
minimise animal suffering.

Cell culture. MIA-PaCa-2 and PANC-1 cell lines were purchased
from ATCC (Manassas, USA). The two cell lines were previously
authenticated by ATCC via STR typing. MIA-PaCa-2 and PANC-1
cells were grown in DMEM medium (Gibco, Waltham, USA)
supplemented with 10% fetal bovine serum (Gibco), 100Uml� 1

penicillin G, and 100 mgml� 1 streptomycin (Sigma, Shanghai,
China) at 37 1C in a humidified atmosphere containing 5% CO2.

Human tissue samples. A PC tissue microarray (HPan-Ade180-
Sur-01) was obtained from Shanghai Outdo Biotech (Shanghai,
China).

Surgical specimens of PCs and adjacent normal pancreatic tissue
were obtained from 27 PC patients who underwent surgical
resection from January 2013 to December 2015. The 27 PC
patients comprised 12 men and 15 women with a mean age of 60.4
years (range, 45–79 years). All 27 cancer specimens were
histologically classified as adenocarcinomas. This study was
approved by the Human Research Ethics Committees at the
Tongji Hospital, Tongji Medical College, HUST.

RNA microarrays. Total RNA extracted from seven PC tissue
samples and matching normal pancreatic tissues were screened for
differentially expressed genes using an Agilent RNA 6000 Nano Kit
(Agilent, Santa Clara, CA, USA). In another experiment, total RNA
was extracted from three KIF15 knocked-down (KIF15D) samples

and three negative control (NC) samples using an Agilent RNA
6000 Nano Kit and a PrimeView Human GeneChip (Agilent) was
used for microarray analysis. RNA labelling and hybridisation to
Agilent miRNA microarray chips were performed with a GeneChip
Hybridization Wash and Stain Kit (Agilent). Microarray data were
deposited in the NCBI Gene Expression Omnibus public database
(http://www.ncbi.nlm.nih.gov/geo/).

High-content screening and cell growth curve analysis. PANC-1
cells were transfected with a KIF15-KD or NC lentivirus
(Supplementary Material) and seeded into 48-well plates. GFP
expression was observed using a fluorescence microscope. When
cells reached 80% confluency, they were collected for further
experiments. A total of 2000 cells per well were analysed once a day
using a Cellomics ArrayScan System. By adjusting the input
parameters, cells could be quantified by measuring the green
fluorescence signal in each well. Data were collected for statistical
analysis using 5-day cell proliferation curves. Cells on the scanned
image were counted using image analysis software. The number of
cells at each time point was compared with the cell count on day 1
to obtain a cell proliferation ratio for each time point for each
experimental group, and the fold change in proliferation was used
to produce a cell growth curve. The cell proliferation ratio was
calculated as follows: fold change (NC vs experimental group)¼
proliferation ratio on day 5 for the NC group/proliferation ratio on
day 5 for the experimental group. A fold change in the
proliferation ratio of two or more indicated that cell proliferation
had slowed down sufficiently to allow the effect of RNAi lentivirus
infection on cell proliferation to be measured.

Animals. Female 6-week-old Balb/c nude mice were purchased
from HFK Bioscience (Beijing, China). All mice were maintained
under specific pathogen-free conditions in the Central Animal
Laboratory, HUST.

Orthotopic transplantation of mouse PC cells in Balb/c nude
mice. Female 8-week-old wild-type Balb/c nude mice were used in
all experiments. For orthotopic implantation, hair was removed
from the abdomen under pentobarbital sodium anesthesia. An
abdominal longitudinal incision was then made to expose the
pancreas, and a 20 ml cell suspension (approximate 2� 106 cells)
was injected directly into the pancreas. The incision was then
closed with sutures. PD98059 was diluted in dimethyl sulfoxide
(DMSO) solution to a concentration of 1.0mgml� 1, and from day
1 onward, mice were subcutaneously injected with 40 mg kg� 1 � per
day (Chen et al, 2015). All mice were routinely weighed and
checked for signs of distress. Abdominal palpation was used to
monitor tumour size. Mice were killed using CO2 narcosis followed
by cervical dislocation at the end of the study period, or earlier if
they appeared moribund or exhibited 415% weight loss. Tumours
were evaluated both macroscopically and microscopically.

Subcutaneous transplantation of human PC cells in Balb/c nude
mice. Female 6-week-old Balb/c nude mice were used in all
experiments. A total of 2� 106 transfected cells were subcuta-
neously injected into the right armpit of Balb/c nude mice. The
weight of each mouse and the tumour diameter were measured
every week. All mice were killed 9 weeks after initiation of
treatment. Tumours were evaluated macroscopically and
microscopically.

Statistical analyses. Results for continuous variables are presented
as means±s.d. unless otherwise stated. Treatment groups were
compared using independent sample t-tests. Pairwise multiple
comparisons used one-way ANOVA (two-sided). A P value
ofo0.05 was considered statistically significant. All analyses were
performed using IBM SPSS Statistics software version 17.0
(Chicago, IL, USA).
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RESULTS

Identification of KIF15 as a critical gene that promotes PC
proliferation. To identify genes with an essential role in PC
tumorigenesis, we used mRNA microarray analysis to compare the
mRNA expression profiles of seven pairs of matched PC and
normal pancreatic tissue samples. The results identified 892
upregulated mRNAs and 568 downregulated mRNAs in the PC
group compared with the control group (Figure 1A). On the basis

of a functional analysis (Supplementary Table 1), 22 genes were
found to potentially play an important role in the proliferation of
PC. A literature review found that VEGFA and BIRC5, proteins
encoded by two of the identified genes, were previously shown to
promote PC cell proliferation (Lang et al, 2008; Glienke et al,
2010). All 22 candidate genes were then silenced in PANC-1 cells
to examine the potential effect on the proliferation of PC cells
in vitro (Figure 1B). Knockdown of four candidate genes, FAM54A,
GMFB, KIF15, and ZWINT, in PANC-1 cells reduced the cell
proliferation rate to a greater extent than VEGFA or BIRC5
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Figure 1. Agilent mRNA microarray and high-content siRNA screening identified KIF15 as a critical gene in promoting PC proliferation. (A) Heat
map showing gene expression profiles. Each row represents a gene and each column represents a sample. Red indicates high expression, whereas
green indicates low expression. (B) A total of 22 genes were selected for validation by high-content screening. NC: negative control siRNA, PC:
positive control siRNA targeting b-actin. (C) Representative fluorescence images of high-content siRNA screening for FAM54A, GMFB, KIF15, and
ZWINT.
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knockdown (Figure 1B and C). KIF15 knockdown showed the
greatest effect on reducing the proliferation rate and thus we
focused on KIF15 in subsequent studies.

KIF15 upregulation in PC tissues is associated with poor patient
prognosis. Immunohistochemical (IHC) staining of tissue micro-
arrays shows that KIF15 was mainly localised to the cytoplasm of
human PC cells (Figure 2A), whereas no KIF15 staining was
present on adjacent, normal pancreatic tissue. Quantitative analysis
indicated KIF15 was upregulated in human PC tissues compared
with adjacent, normal pancreas tissues (Figure 2B). However,
KIF15 expression levels did not vary significantly among different
grades of human PC (Supplementary Table 2). Higher KIF15
expression (Supplementary Figure S1) was associated with poorer
tumour differentiation (according to NCCN staging (Tempero
et al, 2012), Supplementary Table 2) and shorter overall patient
survival time (Figure 2C). Real-time PCR analysis of 27 pairs of
matched PC and adjacent normal pancreatic tissue samples verified
that the KIF15 mRNA expression was upregulated in PC tissues
(Figure 2D). We have sequenced 20 cases of pancreatic cancer
tissues and found no activating mutations in KIF15. According to
the exon sequencing result, the observations in this study are not
due to epiphenomenon. KIF15 in pancreatic cancer is not an
epiphenomenon and is directly involved in pathogenesis of
pancreatic cancer (Supplementary Figure S2).

KIF15 promotes PC cell proliferation in vitro and in vivo. Stable
KIF15 knockdown in the PANC-1 cell line was established using a
lentiviral delivery system, and we confirmed downregulation of
both KIF15 protein and mRNA in this cell line (Supplementary

Figure S3). KIF15 knockdown suppressed PC cell proliferation, as
measured by the CCK-8 assay and cell growth curve analysis using
a fluorescence imaging system (Figure 3A–C). To further explore
whether KIF plays a role in PC proliferation in vivo, a
subcutaneous xenograft model of human PC cells in Balb/c nude
mice was established. The KIF15 knockdown group showed a
slower increase in tumour diameter and volume and less weight
loss compared with controls (Figure 3D–F). In addition, Ki-67
staining was reduced in the KIF15 knockdown group compared
with the control group (Supplementary Figure S4).

KIF15 promotes G1/S phase transition. Flow cytometry was used
to explore whether KIF15 promotes PC proliferation through
regulating the cell cycle and/or apoptosis. KIF15 overexpression
induced a dramatic alteration in cell cycle distribution in both
PANC-1 and MIA-PaCa-2 cells: the fraction of cells in G1 phase
decreased, while the fraction of cells in both S phase and G2/M
phase increased compared with controls (Figure 4A and B). In both
cell lines with KIF15 knockdown, the number of cells arrested in
G1 phase increased compared with controls. However, changes in
KIF15 levels had no effect on the apoptotic ratio (Figure 4C).
Western blot analysis showed that KIF15 overexpression upregu-
lated cyclin D1, CDK2 and p-RB, which promote cell cycle
progression, while KIF15 knockdown had the opposite effect
(Figure 4D and E).

KIF15 activates the MEK–ERK pathway. To further elucidate the
mechanisms underlying KIF15 promotion of PC proliferation,
KIF15 knockdown cells and negative control cells were analysed by
mRNA microarray. Surprisingly, many key genes in the MEK–ERK
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signalling pathway were downregulated in the KIF15 knockdown
group compared with control cells. Pathway analysis confirmed
that the MEK–ERK pathway was most closely connected with
KIF15 (Figure 5A; Supplementary Figure S5A). We thus next
investigated whether changes in KIF15 expression could affect
activation of the MEK–ERK signalling pathway. Western blot and
IHC analysis showed that KIF15 overexpression increased p-ERK
expression, whereas KIF15 knockdown inhibited p-ERK expression
in PC cells (Figure 5B; Supplementary Figure S6). Furthermore,
KIF15 co-localised with p-c-Raf and p-MEK in PANC-1
(Figure 5C and D) and MIA-PaCa-2 cells (Supplementary Figure
S5C and D). Moreover, KIF15 coimmunoprecipitated with both
MEK and Raf (Figure 5E). KIF15 knockdown in PANC-1 and
MIA-PaCa-2 cells suppressed p-ERK translocation from the
plasma membrane to the nucleus (Figure 5F, Supplementary
Figure S5B). MEK–ERK signalling pathway inhibitors U0126,
AZD6244 and PD98059 inhibited KIF15 activation of the MEK–
ERK signalling pathway (Figure 5G).

MEK–ERK pathway inhibitors block KIF15-dependent G1/S
phase transition. We have shown that KIF15 promotes G1/S
phase transition in PC cells. To investigate whether this effect is
mediated by the MEK–ERK pathway, KIF15-overexpressing cell

lines were treated with the MEK–ERK pathway inhibitors U0126,
AZD6244, and PD98059 and effects on the cell cycle were
examined. All the inhibitors blocked KIF15-dependent cell cycle
transition (Figure 6A and B), indicating that KIF15-mediated
inhibition of the G1/S phase transition occurs via the MEK–ERK
pathway. Furthermore, KIF15-dependent increases in cyclin-D1,
CDK2, and p-RB expression were blocked by treatment with
U0126, AZD6244 and PD98059 (Figure 6C).

MEK–ERK inhibitors block KIF15-dependent PC proliferation
in vivo and in vitro. We next examined whether the effect of
KIF15 on promoting PC cell proliferation was mediated by the
MEK–ERK pathway. We found that the enhancement of cell
proliferation was counteracted to different extents by treatment
with U0126, AZD6244 or PD98059 in CCK-8 assays (Figure 7A
and B). Among the three inhibitors, PD98059 completely blocked
KIF15-mediated PC cell proliferation.

To examine the relationship between KIF15 function and the
MEK–ERK pathway in vivo, we established a Balb/c nude mice
orthotopic transplantation model and examined three groups of
mice: (1) a negative control (NC) group; (2) a group injected with
KIF15-overexpressing cells (KIF15U); and (3) a group injected
with KIF15-overexpressing cells plus a MEK–ERK pathway

Day1A

B

D

C

E

F

N
C

K
IF

15
-K

D

Day2 Day3 Day4 Day5

KIF15-KD

Blank control

KIF15KD

KIF15-KD
NC

KIF15-KD
NC

KIF15U
Negative control

Blank control

KIF15KD
KIF15U
Negative control

543
Day

21

0 24 48 72
Time (h)

Week

MIA PaCa-2PANC-2

96

1098654320 1 7

Week
1098654321 7

1200 24 48 72
Time (h)

96 120

*

**
*

**
*

*

**
***

*

* * * * *
*

*

*

*

NC

20

15

10

C
el

l c
ou

nt
 p

er
 fo

ld

5

0

3

2

A
bs

or
ba

nc
e 

(4
50

 n
m

)
W

ei
gh

t g
ro

w
th

cu
rv

e

N
C

K
IF

15
-K

D

D
ia

m
et

er
 g

ro
w

th
cu

rv
e

1

0

24

22

20

18

16

15

10

5

–5

0

3

2

A
bs

or
ba

nc
e 

(4
50

 n
m

)

1

0
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inhibitor (KIF15UþPD98059). Survival analyses revealed the mice
in the KIF15UþPD98059 group had the longest survival time,
whereas the KIF15U group had the shortest survival time
(Figure 7C). The KIF15 overexpressing group showed a more
rapid weight loss compared with the KIF15UþPD98059 group
and NC group (Figure 7D). Together, these results suggest that
MEK–ERK pathway inhibitors block KIF15-mediated PC prolif-
eration both in vivo and in vitro.

DISCUSSION

Although the structure and function of KIF15 have been studied
for 10 years, the role of KIF15 in regulating the behavior of cancer
cells has not yet been elucidated.

Kinesins are a superfamily of proteins with important roles in
eukaryotic intracellular trafficking and cell division (Klejnot et al,
2014). The genomes of higher vertebrates contain as many as 45
genes encoding different kinesins (Florian and Mayer, 2011). Most
of these molecular machines are implicated in intracellular
transport, and one third of kinesin superfamily members play
key roles at different stages of mitosis and cytokinesis (Messin and
Millar, 2014). For example, the mitotic kinesin KIF11 drives
glioblastoma invasion, proliferation and self-renewal (Venere et al,
2015). KIF1B promotes glioma migration and invasion via

inducing the cell surface localisation of MT1-MMP (Chen et al,
2016). Silencing of KIF2A inhibits the proliferation and migration
of breast cancer cells and correlates with an unfavourable prognosis
for breast cancer patients (Wang et al, 2014). High levels of
KIF18A expression are related to metastasis and significantly affect
cancer progression (Shichijo et al, 2005; Nagahara et al, 2011;
Rucksaken et al, 2012; Kasahara et al, 2016). KIF23 expression
levels provide additional prognostic information for patients
undergoing lung cancer surgery. KIF23 may also be a novel
therapeutic target in this cancer type (Sun et al, 2015; Iltzsche et al,
2017; Kato et al, 2016; Sun et al, 2016). Therefore, several kinesin
superfamily members have important effects on tumour behaviour.

Drechsler et al reported that KIF15 is a second tetrameric
spindle motor (in addition to kinesin-5, Eg5) and reported the
mechanisms by which hKIF15 and its inhibitor hTpx2 modulate
spindle microtubule architecture (Tanenbaum et al, 2009;
Drechsler et al, 2014; Eskova et al, 2014). The motor domain
structure of KIF15 was captured in the ‘ATP-like’ configuration,
with the neck linker docked onto the catalytic core. The interaction
of KIF15 with microtubules was also investigated and structural
differences between these two motors indicate profound differ-
ences in their modes of action, consistent with current models of
microtubule crosslinking and sliding (Klejnot et al, 2014). KIF15
mediates plasma membrane localisation of the alternative clathrin
adaptor Dab2, thus impinging on pathways that regulate
a2-integrin internalisation. KIF15 can also drive centrosome
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separation during bipolar spindle assembly (Eskova et al, 2014).
This activity requires both the KIF15 motor domain and
interaction with TPX2 (Sturgill et al, 2014). KIF15 and TPX2
can crosslink and slide through two antiparallel microtubules,
thereby driving centrosome separation. Studies on rodent brain
development showed a pronounced enrichment of KIF15 in
migratory neurons compared with other neurons. KIF15 opposes
the capacity of other motors to generate independent microtubule
movements within key regions of developing neurons (Buster et al,
2003; Drechsler et al, 2014). KIF15 also plays an important role in
several tumours. KIF15 is required for maintenance of spindle
bipolarity and is the breast cancer tumour antigen (Scanlan et al,
2001). KIF15 is essential for K5I resistance in HeLa cells, even in
cases that necessitate additional factors such as the Eg5 rigor
mutant (Sturgill et al, 2016). KIF15 is overexpressed in breast
cancer cells and can have important values as both a prognostic
factor and new therapeutic target for endocrine therapy-resistant
breast cancer (Zou et al, 2014). KIF15 is also overexpressed in lung
adenocarcinoma and may play a vital role in regulating the cell
cycle (Bidkhori et al, 2013). In this study, we report for the first
time that KIF15 promotes PC cell proliferation via the MEK–ERK
pathway.

The MEK–ERK pathway plays pivotal role in cell proliferation
(Park, 2014) and its deregulation is a signature of many epithelial
cancers. The MEK–ERK signalling pathway is involved in
controlling diverse cellular processes such as proliferation, survival,
differentiation and motility (Giordano et al, 2015; Vajravelu et al,
2015). This pathway is often upregulated in human tumours and is
thus an attractive target for the development of anticancer drugs
(Hayashido et al, 2014). The mitogen-activated protein kinase 1/2
(MAP2K1/2) inhibitor PD98059 effectively inhibits ERK1/2

phosphorylation and enhances the radiosensitivity of rhabdomyo-
sarcoma cells (Asati et al, 2016; Ding et al, 2016). Currently, dozens
of MEK inhibitors targeting the MEK–ERK pathway have been
included in clinical trials for cancer therapy (Johnson et al, 2014).
The key step for quiescent cells to enter the cell cycle is the
formation of an active cyclin D–CDK4/6 complex. ERK regulates
cyclin D1 transcriptional induction via Fos family members and
myc (Daksis et al, 1994). Furthermore, formation of the cyclin
E/CDK2 complex seems to be indirectly regulated by ERK at two
levels. First, ERK activity is required for nuclear translocation of
CDK2. CDK2 is translocated to a nuclear compartment in which
ERK is activated by threonine-160 phosphorylation via the CDK-
activating kinase (CAK) and threonine-14 and tyrosine-16 depho-
sphorylation via the CDC25 phosphatase. However, blocking ERK
activation does not modify the levels of cyclin E–CDK2 complexes:
ERK activation is solely necessary for the nuclear localisation of
CDK2. Second, ERK activity has been shown to regulate
phosphorylation of CDK2 at threonine-160, an activating site.
The pathways linking ERK activation to ERK-dependent CDK2
nuclear translocation and activating threonine-160 phosphoryla-
tion are not yet known. Further studies are necessary to resolve
these questions. ERK activation plays a fundamental role in G1/S
phase transition because it is required for the induction of cyclin
D1 protein via several mechanisms; sustained activity of ERK is
also required for the downregulation of many antiproliferative
genes throughout the G1 phase of the cell cycle (Chambard et al,
2007).

This study thus reports a novel role for KIF15 in promoting
cancer cell proliferation. Previous research efforts have focused on
KIF15 functions related to microtubules and mitosis. This study
reveals that KIF15 also promotes cancer proliferation and identifies
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a potential link between its cancer-promoting effects and the
MEK–ERK signalling pathway (Supplementary Figure S7).

In conclusion, our study provides evidence that supports KIF15
as a key regulator that promotes the proliferation of PC. This is
accomplished by promoting G1/S phase transition via regulating
the MEK–ERK signalling pathway. Thus, MEK–ERK signalling
pathway inhibitors may form the basis of novel therapies to block
cancer promotion by KIF15.
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