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The nuclear enzyme poly (ADP-ribose) polymerase (PARP) represents an important novel target in the treatment of ovarian cancer.
This article charts over 50 years of research from the discovery of the first PARP enzyme in 1963, to the approval and licensing in
2015 of the first PARP inhibitor, olaparib (Lynparza), in the treatment of BRCA-mutated ovarian cancer.

Ovarian cancer is the fifth most common cancer in women in
developed countries, accounting for 140 000 deaths per year
worldwide (World Health Organization, 2008; Siegel et al, 2012).
The majority of women present with advanced-stage (3 or 4)
disease, where 5-year survival rates are poor at around 27% (Siegel
et al, 2012). Despite initial high responses to platinum-based
chemotherapy and cytoreductive surgery, more than 70% of these
patients will relapse with limited subsequent treatment options
(Hanker et al, 2012). There is a pressing need for improved
treatments that can extend survival, delay disease progression and
maintain quality of life for patients with ovarian cancer.

A better understanding of cancer is leading to the identification
of distinct cancer molecular sub-types, new anticancer targets, and
more individualised patient treatment approaches. The develop-
ment of poly(ADP-ribose) polymerase (PARP) inhibitors for the
treatment of BRCA-mutated (BRCAm) ovarian cancer is an
example of this approach in action. This review summarises the
research behind this development; charting the discovery of the
first PARP enzyme (Chambon et al, 1963) and the development of
PARP inhibitors as a class; highlighting why cancers defective in
DNA repair could be selectively sensitive to these agents, and why
the approval of the PARP inhibitor olaparib (Lynparza) has
changed the management of BRCAm ovarian cancer.

DNA DAMAGE RESPONSE, REPAIR PATHWAYS AND
BRCA

The accurate and efficient repair of DNA damage is essential for
cells to function and maintain genomic stability (Hoeijmakers,
2001). In humans, acquired or inherited defects in DNA damage
response and repair pathways can result in an increased lifetime

risk of cancer (Hoeijmakers, 2009). DNA double-strand breaks
(DSBs) are regarded as the most lethal of the DNA insults and, if
left unrepaired, result in genomic instability, carcinogenesis and
ultimately cell death (Hoeijmakers, 2001). DNA DSBs can arise as
a result of direct damage to both strands of DNA from exogenous
agents, such as ionising radiation or chemotherapy (Helleday et al,
2008), or as part of normal cell physiology, for example, to permit
genetic recombination during meiosis (Neale and Keeney, 2006)
and the rearrangements needed for the development of immu-
noglobulin genes during V(D)J (variable, diversity and joining)
recombination (Leavy, 2010).

The two primary DSB repair pathways in humans are non-
homologous end joining (NHEJ) and homologous recombination
repair (HRR). These two pathways operate independently but do
share some common proteins (Figure 1). The pathway that is used
to repair the DNA damage depends principally on the origin of the
DSB and the stage in the cell cycle in which the DSB occurs
(Takata et al, 1998). The preferred pathway is HRR, as it is an
error-free pathway; however, it is dependent on the availability of
sister chromatids and can only take place in late S and the G2

phases of the cell cycle (O’Driscoll and Jeggo, 2006). A significant
number of DSBs can also arise during DNA replication when a
replication fork encounters an unrepaired, single-strand break
(SSB); the HRR pathway and the nuclear enzyme PARP-1 have a
vital role in repairing these DSBs (Bryant et al, 2009; Helleday et al,
2007). Homologous recombination repair involves a variety of
proteins, including BRCA1 and BRCA2. BRCA1 has a role in
signalling of the DNA DSB damage response and subsequent
repair via HRR, but also in transcriptional regulation and cell-cycle
checkpoint control; whereas BRCA2 has a more direct repair role
in HRR through its regulation of Rad51 (Gudmundsdottir and
Ashworth, 2006). It is proposed that the BRCA2–Rad51 complex
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binds to the exposed DNA, and this binding then enables the
loading of Rad51 onto the break and the formation of the
presynaptic filament (Yang et al, 2002). Given the functions of
BRCA1 and 2, it would be logical to hypothesise that deficiencies
within either gene will result in defective HRR and subsequent loss
of efficient and effective DNA DSB repair.

BRCA MUTATIONS AND OVARIAN CANCER

The BRCA1 gene was identified in 1990 by Mary King’s group
working at Berkeley, CA, USA. The name BRCA was originally
chosen to stand for Berkeley California, but was later changed to
represent breast cancer susceptibility (Hall et al, 1990). The gene
was subsequently cloned in 1994 by Myriad Genetics (Miki et al,
1994). Around the same time, the BRCA2 gene was discovered by
Stratton and Wooster working at the Institute of Cancer Research,
London, UK (Wooster et al, 1994). The identification of these
genes represented a significant breakthrough in the management of
breast and ovarian cancer families, enabling the introduction of
risk assessment, genetic counselling and BRCA mutational analysis.
Subsequently, over 2000 distinct mutations and sequence varia-
tions in the BRCA genes have been identified (Audeh, 2014), with
BRCA1 mutations more common, occurring approximately twice
as frequently as BRCA2 (Chen and Parmigiani, 2007).

Women who inherit a deleterious BRCA1 or BRCA2 mutation
have up to a 40% and 20% lifetime risk, respectively, of developing
ovarian cancer, and higher risks of developing breast cancer
(Chen and Parmigiani, 2007). The prevalence of germline
(g) BRCA mutations in ovarian cancer has historically been
estimated to be around 10–15% (Risch et al, 2001). However,
recent reports suggest that this may be a gross underestimate,
especially in women with high-grade serous ovarian cancer
(HGSOC) (Risch et al, 2006; Cancer Genome Atlas Research
Network, 2011; Alsop et al, 2012). In addition, in one series where

17% of patients with HGSOC were found to carry a BRCA
mutation, almost half (44%) of these women had no family history
of cancer (Alsop et al, 2012). Such data support the use of BRCA
mutation testing in all patients with HGSOC, regardless of family
history. This expansion in BRCA testing will require changes to the
traditional genetic service pathways in which patients are screened
and referred based on family history, moving to a more
streamlined oncology-based genetic testing service.

Over the past two decades the main focus in the treatment of
women identified as BRCA mutation carriers has been ovarian and
breast cancer prevention through prophylactic surgery, and early
cancer detection through screening (Domchek et al, 2006).
However, surveillance and surgery will not prevent all carriers
developing cancer and many already have cancer at the time their
mutation status is diagnosed. The current management of
BRCAm-associated ovarian cancer is not different to the treatment
of the non-BRCA stage-matched cases. However, recent data
suggest that these BRCAm cancers should be treated as a distinct
disease entity and that BRCA mutation status has a major influence
on ovarian cancer patient outcomes. In vitro studies have
demonstrated that BRCA1- and 2-deficient cells are more sensitive
than their wild-type controls to platinum analogues and less
sensitive to anti-microtubule agents, such as the taxanes
(Bhattacharyya et al, 2000; Tassone et al, 2003; Tan et al, 2008).
Data from 26 observational clinical studies of 3879 women with
ovarian cancer reported that those with BRCAm cancers have a
better outcome following cytoreductive surgery and platinum-
based chemotherapy than their non-BRCAm counterparts, with
prolonged progression-free and greater 5-year overall survival
(Bolton et al, 2012). A recent meta-analysis of 14 ovarian cancer
studies has confirmed this, showing that BRCA status in ovarian
cancer is an independent predictor of outcome (Zhong et al, 2015).
In the relapsed setting, BRCAm carriers have also been shown to
respond better to both platinum- and non-platinum-containing
regimens (Alsop et al, 2012).
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Figure 1. Mechanisms of DNA double-strand break (DSB) repair. Double-stranded breaks in DNA are typically repaired through one of two
pathways: (A) non-homologous end joining (NHEJ); (A, B) homologous recombination (HR). Proteins involved in NHEJ include KU70/80, DNA-
PKcs, XRCC4 and DNA ligase IV. Proteins involved in HR include MRE11, RAD50 and NBS1 (which form the MRN complex); CtIP; RNF20; RPA;
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ssDNA, single-stranded DNA. Note: (A) Reproduced with permission from Pioneer Bioscience Publishing Company (r Saito et al, 2013).
(B) Reprinted with permission from Nature America, Inc. (r Buisson et al, 2010).
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Knowing the BRCA mutation status of a patient with ovarian
cancer is important in terms of managing individual risk and
identifying other family members at risk. In addition, a
patient’s BRCA1 and 2 mutation status can now inform the
physician and patient regarding treatment outcomes, and, with
the development of PARP inhibitors, offers patients the
potential for personalised anticancer treatment.

POLY (ADP-RIBOSE) POLYMERASE AND THE
DEVELOPMENT OF PARP INHIBITORS

The discovery of the first PARP was made over 50 years ago
when researchers in Paul Mandel’s laboratory observed the
synthesis of a new polyadenylic acid after adding nicotinamide
mononucleotide to rat liver extracts (Chambon et al, 1963). By
1980 it was known that this nuclear enzyme, PARP-1,
was activated by DNA damage and played a pivotal role in the
repair of DNA SSBs via the base-excision repair/single-strand
break repair (BER/SSBR) pathway (Figure 2) (Benjamin and
Gill, 1980). Seminal work by Sydney Shall’s group subsequently
demonstrated that PARP-1 was not only involved in the
repair of SSBs, but inhibiting it could enhance the cytotoxic
effects of methylating agents in leukaemic mice cells (Durkacz
et al, 1980), suggesting that PARP inhibitors could act as

chemosensitisers. There are now 17 members of the PARP
nuclear superfamily and it is PARP-1 and 2 that are involved in
DNA repair (Rouleau et al, 2010).

The first inhibitor of PARP, 3-aminobenzamide (3-AB), was
identified over 30 years ago following the observation that
nicotinamide and 5-methylnicotinamide competed with NADþ
as a PARP substrate (Purnell and Whish, 1980). Poly (ADP-ribose)
polymerase inhibitor development pipelines initially investigated
the potential for PARP inhibition to act as potentiators of
chemotherapy and radiotherapy (Ferraris, 2010). More recently,
they have pursued their therapeutic application as single agents,
selectively killing cells with defects in DNA repair pathways, such
as those with BRCA1/2 mutations. There are currently four PARP
inhibitors in Phase III development for ovarian cancer (Table 1).
The most developed in the class is olaparib, a potent, oral inhibitor
of PARP-1 and 2 that induces lethality in tumours with HRD, such
as BRCA1/2 mutations (Evers et al, 2008; Rottenberg et al, 2008).
Olaparib is associated with significant clinical benefit in high-grade
ovarian cancers with germline and/or somatic mutations within the
BRCA1/2 genes (Fong et al, 2009; Audeh et al, 2010; Tutt et al,
2010; Gelmon et al, 2011; Ledermann et al, 2014; Kaufman et al,
2015; Oza et al, 2015). This topic is reviewed within this
Supplement (Ledermann, 2015). Why single-agent PARP inhibi-
tors are active in BRCAm cancers is explained below through the
concept of ‘synthetic lethality’.
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POLY (ADP-RIBOSE) POLYMERASE INHIBITORS AS SINGLE
AGENTS IN BRCAm CANCERS—THE CONCEPT OF
SYNTHETIC LETHALITY

In 2005, two articles published in Nature reported that cells deficient
in BRCA1 and 2 were 100- to 1000-fold more sensitive to PARP
inhibitors than BRCA1/2 heterozygote or wild-type cell lines
(Bryant et al, 2005; Farmer et al, 2005). Bryant et al used the PARP
inhibitors NU1025 and AG14361, both forerunners to rucaparib
(Clovis Oncology, Boulder, CO, USA). In mice xenografts, three out
of five V-C8 tumours responded to a 5-day dosing of AG14361, with
one mouse showing complete remission and no sign of tumour at
autopsy. In addition, the articles reported an induction in gH2AX foci
formation (representing DNA DSBs) and Rad51 foci formation
(indicating functional HR repair) in the XRCC1-deficient EM9
(Chinese hamster ovary) cell lines. In the V-C8 cells, an increase in
gH2AX foci formation, but not Rad51, was observed following
exposure to NU1025.

In the Nature sister article, Farmer et al (2005) demonstrated
the sensitivity of both BRCA1- and BRCA2-deficient cell lines to
the specific inhibition of PARP-1 by two small-molecule
inhibitors KU0058684 and KU0058948, forerunners to olaparib.
They demonstrated that 24-h exposure to the PARP inhibitor
resulted in permanent G2/M cell-cycle arrest or apoptosis.
They also reported a three-fold increase in sensitivity over the
DNA-damaging agent cisplatin for BRCA1/2-deficient cells. Both
research groups independently concluded that BRCA-deficient
cells were selectively sensitive to PARP inhibition by a mechanism
of ‘synthetic lethality’.

‘Synthetic lethality’ is the concept by which cancer cells
are selectively sensitive to the inactivation of two genes or
pathways when inactivation of either gene or pathway alone is
non-lethal (Kaelin, 2005). This proposed mechanism of synthetic
lethality of PARP inhibitors in BRCA-deficient cells is outlined in
Figure 3. Poly (ADP-ribose) polymerase inhibition leads to the
accumulation of DNA SSBs that result in unrepaired stalled
replication forks and ultimately DSBs. These DNA DSBs are
normally repaired by the HRR pathway (Hoeijmakers, 2001).
In HRR-defective cells, that is, those with BRCA1/2 mutations,

these DSBs are left unrepaired or are repaired in an error-prone
way by alternative non-homologous end-joining DNA repair;
both outcomes can result in genomic instability and ultimately
cell death. Whereas, in cells with functional HRR, that is, those
with heterozygous mutations or wild-type BRCA, DSBs will be
accurately and efficiently repaired, and inhibiting PARP will not
result in cell death. Clinical trials are now confirming these
preclinical data demonstrating that, as a class, PARP inhibitors
are active in BRCAm cancers.

Table 1. PARP inhibitors in Phase III clinical trial development for ovarian cancer, 2015

Agent Company IC50 Ongoing clinical trials Patient population Indication
Olaparib
(AZD2281)

AstraZeneca 5 nM (PARP1)
1 nM (PARP2)
(Menear et al, 2008)

SOLO1 (NCT01844986) BRCA-mutated, advanced (FIGO Stage III–IV), high-
grade serous/endometrioid; response (CR or PR) to initial
platinum-based chemotherapy

First line

SOLO2 (NCT01874353) BRCA-mutated, high-grade serous/endometrioid;
response (CR or PR) following X2 lines of platinum-based
chemotherapy

Relapsed

SOLO3 (NCT02282020) Germline BRCA-mutated, platinum-sensitive relapsed,
high-grade serous/endometrioid

Relapsed

SOLOiST (NCT02392676) Platinum-sensitive relapsed, high-grade epithelial;
deficient DNA damage repair (must not be caused by
a germline BRCA mutation)

Relapsed

Niraparib
(MK4827)

Merck (licensed
to Tesaro)

3.8 nM (PARP1)
2.1 nM (PARP2)
(Jones et al, 2009)

NOVA (NCT01847274) BRCA-mutated or high-grade serous; sensitive to
penultimate platinum-based regimen; response
(CR or PR) to current platinum-based chemotherapy

Relapsed

Rucaparib
(AG014699)

Clovis Oncology 1.4 nM (Ki; PARP1)
0.5 nM (Ki; PARP2)
(Thomas et al, 2007)

ARIEL3 (NCT01968213) High-grade serous/endometrioid; sensitive to
penultimate platinum-based regimen; response
(CR or PR) to current platinum-based chemotherapy

Relapsed

Talazoparib
(BMN-673)

Medivation 0.58 nM (PARP1)
(Shen et al, 2013)

None — —

Veliparib (ABT-
888)

AbbVie and BMS 5.2 nM (PARP1)
2.9 nM (PARP2)
(Donawho et al, 2007)

NCT02470585 Advanced (FIGO Stage III or IV), high-grade serous First line

Abbreviations: CR¼ complete response; FIGO¼ Féderation Internationale de Gynécologie et d’Obstétrique; IC50¼ the concentration of a drug required for 50% inhibition; PR¼partial response.
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Figure 3. Synthetic lethality of PARP inhibitors in BRCA-deficient cells.
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FUTURE DIRECTIONS FOR PARP INHIBITORS

The majority of ovarian cancers are not attributed to hereditary
germline mutations in the BRCA1 and 2 genes (Venkitaraman, 2002),
so a key question is whether single-agent PARP inhibitors can be
used to treat patients within the larger ovarian cancer population.
It is known that HRD is not exclusive to germline BRCAm cancers,
for example; molecular analysis of HGSOC as part of The Cancer
Genome Atlas revealed that approximately 50% were shown to
harbour HRD (Cancer Genome Atlas Research Network, 2011).
This HRD included somatic BRCA mutations (6–8%) and
epigenetic silencing in non-BRCA genes, such as ATM and
RAD51. In addition, by using a functional assay of HRR,
Mukhopadhyay et al (2010) demonstrated that 50% of primary
cultures generated from ascites in unselected HGSOC patients had
HRD and were sensitive to PARP inhibitors. Developing a
diagnostic signature of HRD in cancers is the focus of the ongoing
rucaparib studies (www.clinicaltrials.org). Preliminary results from
the rucaparib ARIEL 2 study (NCT 01891344) indicate efficacy in
patients who have BRCAm ovarian cancer, but also in those who
are BRCA wild-type with high tumour genomic loss of hetero-
zygosity (McNeish et al, 2014). The study hopes to develop a
companion diagnostic to use within the ongoing Phase III trial
(ARIEL 3; NCT01968213) of rucaparib in platinum-sensitive
ovarian, fallopian tube or primary peritoneal high-grade cancer
patients.

Another therapeutic approach is to induce HRD in otherwise
HRR-competent cancers by altering the tumour microenvironment
through hypoxia, or to combine PARP inhibitors with agents that
can downregulate HRR, such as vascular endothelial growth factor
(VEGF) inhibitors. This concept, known as ‘contextual’ synthetic
lethality, could further broaden the application of this class of
drugs and is the rationale behind many ongoing clinical trials.
Preliminary data from a Phase II trial combining olaparib with the
potent, oral VEGF tyrosine kinase inhibitor, cediranib, was shown
to significantly improve progression-free survival over olaparib
alone (9.0 months vs 17.7 months) (Liu et al, 2014); a confirmatory
study is awaited.

Based on a wealth of preclinical data showing that
PARP inhibitors potentiate the effects of DNA-damaging che-
motherapy agents, such as the platinums, temozolomide and
topoisomerase inhibitors (Delaney et al, 2000; Calabrese et al, 2004;
Donawho et al, 2007), the original therapeutic intention of
these agents was as chemopotentiators. Furthermore, inhibition
of PARP has been shown to augment the antitumour activity of
other agents that impair HRR, such as the DNA-synthesis
inhibitor, gemcitabine (Virag and Szabo, 2002; Jacob et al, 2007).
However, early clinical trials investigating multiple chemotherapy
and PARP inhibitor combinations have reported enhanced
myelosuppression as the main dose-limiting toxicity, and this
may limit the future use of PARP inhibitors with chemotherapy
(Chen, 2011).

Radiotherapy induces DNA damage by multiple mechanisms
including base damage and single- and double-strand DNA breaks;
damage that is dependent on PARP activity for its repair.
Numerous in vitro and in vivo studies (Powell et al, 2010) using
different classes of PARP inhibitors have reported enhancement of
the cytotoxicity of radiation in a number of tumour types,
including colorectal cancers (Calabrese et al, 2004) and gliomas
(Dungey et al, 2009; Russo et al, 2009). More recently, work by
Anthony Chalmers’ group has shown that this radio-potentiation
is enhanced in rapidly proliferating cells and cells defective in DNA
DSB repair compared with normal tissue (Loser et al, 2010). These
data support a role for combining radiotherapy and PARP
inhibitors in patients with cancer, and clinical trials are finally
underway (www.clinicaltrials.gov) with results eagerly awaited.

SUMMARY

Poly (ADP-ribose) polymerase inhibitors are an exciting new
development in the treatment of cancer, with clinical trials of single
agents showing significant benefits in patients with BRCAm
ovarian cancer. The mechanism underlying this benefit is the
HRD of BRCAm cancers. Historically, germline BRCA1/2 muta-
tions were thought to be associated with approximately 10% of all
ovarian cancers, but this is now known to be an underestimate. In
addition, HRD is reported to be present in approximately 50% of
all HGSOC cases. This suggests that the use of PARP inhibitors
may have a much broader role in the treatment of ovarian cancer
and the development of a validated HRD signature would facilitate
this.

Finally, the recent licensing of olaparib in BRCAm ovarian
cancer brings together over 50 years of research and is the first
targeted treatment option for this patient population, taking
another step further towards personalised medicine in ovarian
cancer.
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