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Background: The cyclin-dependent kinase inhibitor 3 (CDKN3) has been perceived as a tumour suppressor. Paradoxically, CDKN3
is often overexpressed in human cancer. It was unclear if CDKN3 overexpression is linked to alternative splicing variants or
mutations that produce dominant-negative CDKN3.

Methods: We analysed CDKN3 expression and its association with patient survival in three cohorts of lung adenocarcinoma. We
also examined CDKN3 mutations in the Cancer Genome Atlas (TCGA) and the Moffitt Cancer Center’s Total Cancer Care (TCC)
projects. CDKN3 transcripts were further analysed in a panel of cell lines and lung adenocarcinoma tissues. CDKN3 mRNA and
protein levels in different cell cycle phases were examined.

Results: CDKN3 is overexpressed in non small cell lung cancer. High CDKN3 expression is associated with poor overall survival in lung
adenocarcinoma. Two CDKN3 transcripts were detected in all samples. These CDKN3 transcripts represent the full length CDKN3
mRNA and a normal transcript lacking exon 2, which encodes an out of frame 23-amino acid peptide with little homology to CDKN3.
CDKN3 mutations were found to be very rare. CDKN3 mRNA and protein were elevated during the mitosis phase of cell cycle.

Conclusions: CDKN3 overexpression is prognostic of poor overall survival in lung adenocarcinoma. CDKN3 overexpression in
lung adenocarcinoma is not attributed to alternative splicing or mutation but is likely due to increased mitotic activity, arguing
against CDKN3 as a tumour suppressor.

The human CDKN3 gene encodes the cyclin-dependent kinase
inhibitor 3, which is a dual specificity protein tyrosine phosphatase
of the CDC14 group. CDKN3 binds cyclin-dependent kinases
CDK1 and CDK2 (Hannon et al, 1994) and dephosphorylates their
activating loop Thr residues (Poon and Hunter, 1995; Brown et al,
1999; Song et al, 2001). Dephosphoryation of the activating Thr
site reduces substrate and ATP binding activities of the CDKs

(Brown et al, 1999). Thus, CDKN3 is a negative regulator of CDK1
and CDK2.

Since CDK-driven cell cycle is essential for proliferation of
cancer cells and CDKN3 inhibits CDK activities, CDKN3 has
been perceived as a tumour suppressor (Yeh et al, 2000; Yu
et al, 2007; Nalepa et al, 2013). Paradoxically, CDKN3 is often
overexpressed in various human cancer tissues and cancer cell lines
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(Lee et al, 2000; Yu et al, 2007; Espinosa et al, 2013). Lee et al
(2000) found overexpression of CDKN3 mRNA and protein in
breast and prostate cancer. Inhibition of CDKN3 expression by
antisense CDKN3 suppressed anchorage-independent colony
formation in vitro and tumour xenograft growth in vivo (Lee
et al, 2000), suggesting that increased CDKN3 expression in cancer
cells plays a positive role in the transformed phenotypes. Yu et al
(2007) found CDKN3 mRNA overexpression in astrocytoma and
that elevated CDKN3 mRNA level was significantly associated with
shorter patient survival. More recently, Espinosa et al (2013)
identified CDKN3 as one of the six most upregulated mitosis
pathway genes in cervical cancer. Moreover, CDKN3 overexpres-
sion is linked to the poor survival of these cervical cancer patients
(Espinosa et al, 2013).

However, based on the perception that CDKN3 is a potential
tumour suppressor, a possible explanation of CDKN3 mRNA
overexpression in cancer is the presence of dominant-negative
CDKN3 mutations, which could not be distinguished from the
normal CDKN3-encoding mRNA in the gene expression data.
Hence, CDKN3 overexpression may actually result in overexpres-
sion of dominant-negative CDKN3 mutants. It was reported that
aberrant CDKN3 transcripts from alternated splicing, insertion/
deletion and nonsense mutations were found in hepatocellular
carcinoma (Yeh et al, 2000; Yeh et al, 2003). In another study (Yu
et al, 2007), two CDKN3 transcripts (variant a and c) were
identified in all brain samples and two additional transcripts
(variants b and d) were found in some glioblastoma samples.
Variant a encodes the full length 212-amino acid CDKN3. Variants
b–c resulted from alternative splicing around exons 2–3. Variant c
is an exon 2 skip transcript that results in a short 23-amino acid
peptide with little sequence homology to CDKN3. Variant b results
in a short 8-amino acid peptide. Variant d lacks a part of exon 2
and the entire exon 3, resulting in a 179-amino acid protein. None
of variant b–c products has been documented to have any
biological activity. Thus, whether CDKN3 gene overexpression in
cancer is linked to alternative splicing or mutations that generate
dominant-negative CDKN3 remains to be further assessed.

Alternatively, the concept that CDKN3 is a tumour suppressor
may be inaccurate. While CDKs drive cell cycle, CDK activities
oscillate along the cell cycle. This involves not only CDK activation
but also CDK deactivation. Indeed, constitutive CDK2 activation by
preventing Thr14/Tyr15 phosphorylation causes problems in DNA
replication and genome integrity (Hughes et al, 2013). A decrease in
CDK1-cyclin B activity is required for mitotic exit (Wurzenberger
and Gerlich, 2011; Nalepa et al, 2013). Thus, decreasing CDK
activity may be just as important as increasing CDK activity in
coordinated regulation of cell cycle. Consistent with this notion,
knockdown of CDKN3 leads to mitotic failure (Nalepa et al, 2013).
Therefore, an alternative explanation of CDKN3 overexpression in
human cancer is that CDKN3 is important for the safe passage
through cell cycle and the elevated CDKN3 level is attributed to the
higher mitotic activity in cancer cells.

In this study, we present evidence that CDKN3 is overexpressed
in human NSCLC and higher CDKN3 expression level is associated
with poor survival of lung adenocarcinoma patients. We detected
the full length and the exon 2 skip CDKN3 transcripts in all cell
lines and lung tumour tissues and found no evidence of change in
alternative splicing. Furthermore, CDKN3 mutations are rare in
TCGA tumours and in the TCC data set of 3383 tumours.
Interestingly, we found that CDKN3 expression is upregulated
during the mitosis (M)-phase of cell cycle in cultured cells.

MATERIALS AND METHODS

Reagents, cells and tissue samples. Monoclonal anti-CDKN3
antibody 2H10 was purchased from Abcam (Cambridge, MA,

USA). Monoclonal antibody No. 61033410 was from BD
Biosciences (San Jose, CA, USA). Rabbit monoclonal antibody
(D2C8) to phospho-histone H3 Ser10 (pHH3) was from Cell
Signaling Technology (Danvers, MA, USA). Anti-actin antibody
was obtained from Santa Cruz Biotechnology (Dallas, TX, USA).
Thymidine and nocodazole were from Sigma (St Louis, MO, USA).

Lung cancer cell line and hTBE/v cells have been maintained in
a central repository at the Moffitt Cancer Center since 2008. All
cell lines in the Moffitt repository had been authenticated by STR
analysis (ACTG Inc, Wheling, IL, USA) as of September 2010, and
all cells had been routinely tested and were negative for
mycoplasma (PlasmoTest, InvivoGen, San Diego, CA, USA).
BEAS2B cells were from American Type Culture Collection and
cultured according to the supplier’s instruction. The primary
human endothelium (HUVEC) cells were obtained from Sarah
Yuan at the University of South Florida. Other cell lines were
from the laboratories of Jin Cheng or Kenji Fukasawa at the
Moffitt Cancer Center or have been reported (Ren et al, 2010; Ren
et al, 2013).

Patient data and samples. All work was approved by the
University of South Florida Institutional Review Board. Gene
expression and survival data from a cohort of 398 lung cancer
patients diagnosed with adenocarcinoma recruited from Moffitt
Cancer Center’s TCC (Fenstermacher et al, 2011) between April
2006 and August 2010 were included in this study. This large lung
adenocarcinoma cohort has been extensively characterised by
Moffitt’s Lung Cancer Center for Excellence will be described in
detail elsewhere. Briefly, RNA isolated from fresh frozen lung
tumours were profiled using a custom Affymetrix GeneChip
(Affymetrix, Santa Clara, CA, USA) that measured the expression
of B60 000 distinct transcripts. CEL files were normalised against
their median sample using IRON (Welsh et al, 2013). An RNA-
quality-related batch effect was identified in the resulting normal-
ised data, which was removed by training a partial least squares
(PLS) model (Wold et al, 1984) to the BioAnalyzer BA_RIN RNA
quality metric (Agilent Technologies, Santa Clara, CA, USA), then
subtracting the first PLS component. Survival analyses were
performed to determine if CDKN3 expression levels were
associated with overall survival using Kaplan–Meier survival
curves and the log-rank test. Overall survival was right-censored
at 5 years and was calculated from the date of diagnosis until the
date of last follow-up or death.

RNA was isolated from six de-identified RNA samples from this
cohort RNA from freshly frozen tumour tissue macrodissected to
contain 470% tumour tissue and RNA was extracted using the
manufacturer’s instructions for the Qiagen RNAeasy Kit (Valencia,
CA, USA) by Moffitt’s Tissue Core. The isolated RNA was
quantified using Nanodrop (Thermo Scientific, Wilmington, DE,
USA) and Qubit instrument (ThermoFisher Scientific, Waltham,
MA, USA).

Plasmids. A CDKN3 lentiviral expression vector was constructed
by cloning the CDKN3 coding sequence (identical to CDKN3
coding sequence of Genebank entry NM005192) from HCC827
cells into Pme I site of the pWPI lentiviral vector obtained from
Addgene (Cambridge, MA, USA). pLKO.1-based CDKN3 shRNA
lentiviral vectors TRCN0000002525 and TRCN0000002527, and a
non-target shRNA were obtained from Sigma. Lentiviruses were
prepared similar to that described previously (Ren et al, 2010).

RT–PCR and RT–qPCR. Total RNA from cells were extracted
using Trizol reagent (Life Technologies, Benicia, CA, USA).
RT–PCR was performed using SuperScript One-Step RT–PCR
Platinum Taq system (Life Technologies) with 50 ng RNA and one
of the following primer pairs CK1/CK1R, CK2/CK2R, CK3/CK3R
or CK1/CK3R (See Supplementary Information). RT–PCR pro-
ducts were separated on agarose gel, purified and re-amplified by
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PCR. PCR products were cleaned with ExoSAP-IT PCR product
cleanup reagent (Affymetrix) and sequenced in both strains using
BigDye Terminator 3.1 cycle sequencing kit (Life Technologies) as
described (Ren et al, 2013). Quantitative RT–PCR (RT–qPCR) was
performed using CK2/CK2R or CK-T/CK-R primer pairs
(Supplementary Information). RT–qPCR was performed using
Power SYBR Green reagents (Applied Biosystems, Foster City,
CA, USA). Samples were assayed in triplicates as described
(Schneeberger et al, 2014).

Cell culture, synchronization and immunoblotting. Lung cell
lines A549, H2172, H3122, H2228, H1975, HCC827, H3255 and
BEAS2B were cultured in RPMI 1640/10% foetal bovine serum
(FBS). HeLa, PC-3, PANC-1, U2OS, HCA2, SW480, MCF7 and
HepG2 cell lines were cultured in Dulbecco’s modified Eagle’s
medium/10% FBS. HUVEC cells were cultured in endothelial cell
growth medium (Lonza, Allendale, NJ, USA). hTBE/v cells were
cultured in BEBM with additives (Lonza). Cells were maintained in
5% CO2 humidified atmosphere at 37 1C.

To enrich cells in G0/early G1 phase, cells were serum starved
for 48 h. For double thymidine block to enrich cells in later G1/S
phase, cells (30% confluent) were treated with 2mM thymidine for
18 h. The cells were washed with PBS, incubated with normal cell
culture medium for 9 h and then treated with 2mM thymidine for
another 16 h. For nocodazole blockage to enrich M phase cells, cells
(80–90% confluent) were treated with 100 ngml� 1 nocodazole for
12 h. After removing medium, round and loosely attached mitotic
cells were dislodged by shaking, suspended in medium and
collected by low speed centrifugation.

Cell lysates were prepared similar to that described (Ren et al,
2013; Schneeberger et al, 2014; Schneeberger et al, 2015) by lysis in
cold lysis buffer A (50mM Tris-HCl, pH 7.5, 150mM NaCl, 1mM
EDTA, 1mM EGTA, 25mM NaF, 5mM sodium pyrophosphate,
1mM Na3VO4, 2 mgml� 1 aprotinin, 2mgml� 1 leupeptin,
100 mgml� 1 phenylmethylsulfonyl fluoride, 1mM dithiothreitol,
20mM p-nitrophenyl phosphate, 1% Triton X-100). Cell lysate
supernatants were obtained by microcentrifugation (16 000 r.p.m.,
10min at 4 1C). Equal amounts of proteins were separated on 12 or
15% SDS-polyacrylamide gels, transferred to nitrocellulose filters
and analysed by immunoblotting with indicated antibodies.

CDKN3 knockdown and cell proliferation assay. Lentiviruses
were prepared as described (Ren et al, 2010) and used to infect
A549 and HeLa cells. Infected cells were selected by puromycin.
Puromycin-resistant cells were pooled and analysed. Cell pro-
liferation was assayed as described (Ren et al, 2010) in 96-well plate
in triplicates. Relative viable cells were measured using Cell
TiterGlo reagent (Promega, Madison, WI, USA). Statistical analysis
was performed using the nonparametric Mann–Whitney test.
Po0.05 was considered significantly different.

RESULTS

CDKN3 is overexpressed in NSCLC. By examination of public
databases, we noticed that CDKN3 is often overexpressed in
various tumours (Supplementary Figure 1), including lung cancer.
To explore the expression of CDKN3 mRNA in NSCLC, we first
compared CDKN3 expression in NSCLC tumours and matched
normal tissues using data from GSE19188 (Hou et al, 2010) as
previously described (Engel et al, 2013). The Affymetrix U133 plus
2.0 microarrays (Affymetrix) data in GSE19188 contain 87 tumour
samples and 58 adjacent normal tissue samples (Figure 1A). The
log2 CDKN3 expression level was 4.345±0.534 (normal tissues,
mean±s.d.), 7.048±1.104 (adenocarcinoma), 7.617±1.461 (large
cell carcinoma) and 8.000±0.683 (squamous cell carcinoma).
Thus, CDKN3 expression was significantly elevated in all three
histological subtypes of NSCLC (Po0.0001). We then expanded

the analysis to a larger cohort of TCGA RNA-seq expression data
that contain 490 lung adenocarcinoma, 491 lung squamous cell
carcinoma and 108 of their matched normal tissues (Figure 1B).
Again, CDKN3 expression in both adenocarcinoma and squamous
cell carcinoma was statistically (Po0.0001) higher than in the
matched normal tissues.

It was reported that CDKN3 mRNA and protein were
overexpressed in breast and prostate cancer cell lines (Lee et al,
2000). To determine if CDKN3 expression is also elevated in lung
cancer cell lines, we performed RT–qPCR analysis of CDKN3
mRNA in the immortalised human lung epithelial cell line (hTBE/v)
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and six lung adenocarcinoma cell lines. Compared with hTBE/v
cells, higher levels of CDKN3 mRNA were detected in these lung
cancer cell lines (Figure 2A).

The identity of CDKN3 protein on immunoblots has been
questioned (Yu et al, 2007). To correctly identify CDKN3 protein,
we cloned the CDKN3 protein coding sequence from HCC827 cells
and expressed the non-tagged, 212-amino acid CDKN3 protein
coding cDNA (identical to NM_005192.3) in HEK293 cells. Cell
lysates from non-transfected cells, empty vector-transfected cells
and CDKN3 expression vector-transfected cells were analysed with
an anti-CDKN3 mouse monoclonal antibody 2H10 (Figure 2B) or
another mouse monoclonal antibody (BD cat. No. 610334,
Supplementary Figure 2). Antibody 2H10 correctly detected
CDKN3 at 27 kDa and also reacted with a non-specific bands at
23 kDa. Antibody No. 610334 reacted with a 34-kDa band in all
three cell lysates (Supplementary Figure 2). Thus, the 27-kDa band
reacting with antibody 2H10 is CDKN3. Additional evidence to
support the identification of the 27-kDa band as CDKN3 was
obtained by knocking down endogenous CDKN3 in cell lines with
shRNAs (see below). After establishing the identity of CDKN3 in
immunoblots, we probed lung cell lysates for CDKN3 protein.
Figure 2C shows that higher levels of CDKN3 protein were present
in lung cancer cell lines.

CDKN3 overexpression is associated with poor overall survival
in lung adenocarcinoma. We first analysed two public lung
adenocarcinoma databases to determine the relationship
between CDKN3 expression in tumours and patients outcome in
terms of overall survival. The microarray-based Molecular
Classification of Lung Adenocarcinoma (MCLA) from the
Director’s Challenge Consortium contains 478 patients (Shedden
et al, 2008) (Figure 3A). The RNA-seq-based lung adenocarcinoma
cohort from TCGA contains 381 patients (Figure 3B). In both
cohorts, CDKN3 expression was prognostic. The overall survival
rates for patients with high CDKN3 levels (above the median) were
significantly lower than those with low CDKN3 levels (below the
median (P-values of 0.0046 and 0.0059, respectively)). We also
examined the 390 patient lung squamous cell carcinoma cohort
from TCGA. Unlike the lung adenocarcinoma cohorts, CDKN3
expression was not significantly prognostic in the TCGA lung
squamous cell carcinoma cohort (Figure 3C). However, comparing
with lung adenocarcinoma, lung squamous cell carcinoma has an
overall significantly (Po0.0001) higher CDKN3 transcript level
(Figure 1). Thus, the ‘low CDKN3’ expression levels in lung
squamous cell carcinoma are very high already.

Next, we examined CDKN3 expression in a cohort of 398 lung
adenocarcinomas developed at the Moffitt Cancer Center.
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Figure 3D shows that the Lung SPORE422 patients with high
CDKN3 levels had significantly shorter overall survival than those
with lower CDKN3 levels (Po0.0006). No significant differences in
CDKN3 mRNA levels were found among different stages of lung
adenocarcinoma (Supplementary Figure 3A and B). Because more
of stage I patient survival and CDKN3 mRNA data were available
than other stages of lung adenocarcinoma, we next analysed those
stage I patients whose survival data are available (n¼ 254). Again,
among stage I patients, those with high CDKN3 levels had a shorter
survival probability (Supplementary Fig. 3C). Taken together, these

data indicate that high CDKN3 levels are associated with poor
overall survival in lung adenocarcinoma patients.

Two CDKN3 transcripts are present in normal and tumour cells
and lung tumour tissues. We designed RT–PCR primer pairs
CK1/CK1R located in exons 1 and 5 (Figure 4) that allowed us to
detect both the full length CDKN3 transcript and splicing variants
between exons 2–5 reported previously by other investigators
(Yeh et al, 2000; Yu et al, 2007). RNA from primary HUVEC cells,
3 non-transformed, immortalised cell lines and 14 cancer cell lines
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Figure 4. Schematic presentation of CDKN3 transcripts, exon boundaries and PCR primers. The CDKN3 mRNA (Genebank NM_005192.3) is
shown. Heavy box indicates the protein coding sequence. Exons 1–8 are according to the notation of Genebank NM_005192.3. The amino acid
sequence encoded by the short (exon 2 skip) splicing variant is shown and aligned with the long, CDKN3-encoding transcript. fs, frame shift. Also
shown are locations of three pairs of PCR primers.

Table 1. List of cells and tissues analysed for CDKN3 transcripts

PCR primer pairs

CK1/CK1R (long) CK1/CK1R (short) CK2/CK2R CK3/CK3R

Sample Description Sequence data relatedness to NM_005192

Non-cancer cellsa

HUVEC Primary endothelium Identical Exon 2 skipb Identical Identical
HCA2 Forskin fibroblasts Identical Exon 2 skip Identical Identical
hTBE Tracheobronchial epithelium Identical Exon 2 skip Identical Identical
BEAS2B Bronchial epithelium Identical Exon 2 skip Identical Identical

Cancer cellsa

A549 Lung adenocarcinoma Identical Exon 2 skip Identical Identical
H2172 Lung adenocarcinoma Identical Exon 2 skip Identical Identical
HCC827 Lung adenocarcinoma Identical Exon 2 skip Identical Identical
H1975 Lung adenocarcinoma Identical Exon 2 skip Identical Identical
H3255 Lung adenocarcinoma Identical Exon 2 skip Identical Identical
H3122 Lung adenocarcinoma Identical Exon 2 skip Identical Identical
H2228 Lung adenocarcinoma Identical Exon 2 skip Identical Identical
MCF7 Breast adenocarcinoma Identical Exon 2 skip Identical Identical
HeLa Cervical adenocarcinoma Identical Exon 2 skip Identical Identical
SW480 Colorectal adenocarcinoma Identical Exon 2 skip Identical Identical
HepG2 Hepatocellular carcinoma Identical Exon 2 skip Identical Identical
PANC-1 Pancreatic carcinoma Identical Exon 2 skip Identical Identical
PC-3 Prostate adenocarcinoma Identical Exon 2 skip Identical Identical
U-2 OS Osteosarcoma Identical Exon 2 skip Identical Identical

Lung tumour tissues
#10 Primary lung cancer Identical Exon 2 skip Identical Identical
#42 Primary lung cancer Identical Exon 2 skip Identical Identical
#3 Primary lung cancer Identical Exon 2 skip Identical Identical
#16 Primary lung cancer Identical Exon 2 skip Identical Identical
#20 Primary lung cancer Identical Exon 2 skip Identical Identical
#41 Primary lung cancer Identical Exon 2 skip Identical Identical

Abbreviations: CDKN3¼ cyclin-dependent kinase inhibitor 3; HUVEC¼ human endothelium.
aExcept HUVEC, other cells are established cell lines.
bThis transcript has been deposited in Genebank (accession number: KP966095).
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were prepared (Table 1). The CDKN3 transcripts were amplified by
RT–PCR. Two RT–PCR products were detected in all samples
(Figure 4 and Supplementary Figure 4). These two PCR products
were isolated from gels, re-amplified by PCR using the same
primers and then sequenced. cDNA sequencing data showed that
both the long and the short PCR fragments from all samples were
identical (Figure 4, Table 1, and Supplementary Figure 5). The long
form is the CDKN3-encoding mRNA identical to NM_005192.3.
The short RT–PCR product from the CK1/CK1R primer pairs
yields a 284-bp fragment resulting from exon 2 skip (equivalent to
variant c reported in the study by Yu et al (2007), Figure 4). This
Exon 2 skip variant results in a frameshift that is predicted to
encode a 23-amino acid peptide with little sequence homology to
CDKN3 (Figure 4 and Supplementary Figure 5). No alternative
splicing variant in the boundary of exon 2 was detected by cDNA
sequencing. No other smaller RT–PCR product, as would be
predicted from a longer excision of the mRNA by alternative
splicing, was detected. Also, no point mutation was detected. To
further evaluate the possibility of the existence of other alternative
splicing variants, we used primer pairs CK1/CK3 that cover the
entire coding sequence to do RT–PCR. Again, we detected only
two PCR products that correspond to the CDKN3 and the exon 2
skip form. To explore the possibility of point mutation in regions
not covered by CK1/CK3 primers, we performed RT–PCR using
primer pairs CK2/CK2R and CK3/CK3R (Figure 4), both of them
yield a single, predicted PCR product in all samples. No mutation
was found in the sequencing data of these PCR products. Next, we
obtained mRNAs from six lung adenocarcinoma tissues. The
mRNAs from these tissue samples were analysed as above. Data
from these lung tumour samples were identical to those obtained
from cell lines (Table 1). Taken together, these results show that
two CDKN3 transcripts are present in cells and tissues that we have
analysed. No mutation or alternative splicing is found in our
cohort of cancer cells and tissues.

CDKN3 gene mutations are rare in human cancer. To further
assess the possibility of CDKN3 mutations in human cancer, we
examined the massively parallel sequencing data set of 3383
tumour tissues from 48 tumour types in the TCC project
(Fenstermacher et al, 2011; Ren et al, 2013). Twenty-three CDKN3
mutation cases were found in 11 tumour types (Table 2). No
disruptive changes (frameshift insertion/deletion, nonsense muta-
tion, splice site mutation) were found. Of these 23 mutations, 13
mutations at 3 unique positions of Q8R, I108V and T127I were
observed in either 1000 Genomes (Genomes Project C et al, 2012)
or Exome Sequencing Project (Exome Variant Server, http://
evs.gs.washington.edu/EVS/, accessed February 2015) of healthy
people, and are likely inherited variants. They are all rare, and none
were observed in the homozygous state. Therefore, few mutations
are observed in this gene: at most 10 in 3383 individual across
many tumour types. In addition, there are low levels (1–2%) of
CDKN3 gene amplification in TCGA lung adenocarcinoma.

We next extend the examination to lung adenocarcinoma in the
TCGA research network (Cancer Genome Atlas Research N, 2014)
and the Cancer Cell Line Encyclopedia (CCLE) (Barretina et al,
2012) data sets (www.cbioportal.org (Cerami et al, 2012; Gao et al,
2013)). No CDKN3mutation was detected in lung adenocarcinoma
tumour tissues in the TCGA cohort or in lung cancer cell lines in
the CCLE cohort. Also, no CDKN3 mutation in lung cancer is
found in the Broad Institute’s tumorportal database (www.tumor-
portal.org) (Lawrence et al, 2014). Thus, the frequent over-
expression of CDKN3 in lung cancer is not associated with gene
mutation.

Cells in the mitotic phase have high levels of CDKN3. To
determine if CDKN3 expression fluctuates during the cell cycle, we
synchronized HeLa and A549 cells in later G1/S phase by double
thymidine blockage. Cells at various time points following release

from the second thymidine block were collected. Cell lysates were
analysed by immunoblotting with antibodies to CDKN3 and the
mitotic-specific histone H3 Ser10 phosphorylation (pHH3)
(Hendzel et al, 1997). As shown in Figure 5A and B, low levels
of CDKN3 protein were present in double thymidine-blocked
HeLa and A549 cells. The increase in CDKN3 protein precedes the
appearance of pHH3 and peaked at the same time point as pHH3
did. We next extended the analysis to additional lung cancer cell
lines as well as HeLa cells by blocking cells in G0/early G1 phase
with serum deprivation, in later G1/S phase with double thymidine
block and in M phase with nocodazole. Cell lysates were prepared
from these cells and analysed by immunoblotting. As shown in
Figure 5A–C, cells in the M phase consistently showed the highest
CDKN3 protein level.

To assess if the difference in CDKN3 protein level was
related to the mRNA level, RT–qPCR was performed. Consistent
with the results from protein analysis, serum-starved cells have

Table 2. CDKN3 mutations in the TCC project

Type Case CDKN3 mutationa

Adrenal 1
Ampulla of vater 1
Bladder 6
Bone 2
Brain 79
Breast 427 D115N; T127I
Cervix 49
Endometrium 200 N91K, S177P
Oesophagus 44 T9A
Gallbladder 2
Gynaecologic 1
Haem-aml 36
Haem-cll 94 T127I
Kidney 243 200_201del; Q8R(2); T127I
Large bowel 460 C129Y; R36Q
Larynx 24 T127I
Liver 30
Lung 603 T127I(2)
Lymph nodes 2
Mandible 3
Maxilla 2
Mesnteric 3
Nose 2
Oral cavity 30
Ovary 235 I108V; K62Q; Q8R; R58I
Pancreas 161
Penis-scrotum 1
Peritoneum 9
Pharynx 3
Pleura 3
Prostate 52
Rectum-anus 72
Renal pelvis 5
Retroperitoneum 3
Salivary gland 7
Skin 209
Small intestine 7
Soft tissue 45 Q8R
Spleen 2
Stomach 55
Testes 1
Thoracic 1
Thyroid 12
Tongue 5
Tonsils 1
Uterus 148 A109T; I108V; T127I
Vagina 1
Vulva 1
Total case 3383 23

Abbreviations: CDKN3¼ cyclin-dependent kinase inhibitor 3; TCC¼ total cancer care. T127I
and I108V are seen in 1000 Genomes Project and Exome Sequencing Project (ESP). Q8R is
seen in the ESP
aMutations are single case unless indicated in the parentheses.
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the lowest level of CDKN3 mRNA, whereas cells in the M phase
have high levels of CDKN3 although high level of CDKN3 mRNA
was also detected in some cells blocked in the S phase
(Figure 5D). Overall, the relative amount of CDKN3 protein
during the three phases of cell cycles correlates with the
mRNA level.

If CDKN3 expression is increased in the mitotic phase, it is
predicted that CDKN3 expression would correlate with the
expression of mitotic-related genes. Consistently, gene expression
correlation data of lung adenocarcinoma from TCGA shows that
genes with the highest expression correlation with CDKN3 are
mitotic-related genes (Supplementary Table 1).

Knockdown of CDKN3 reduces cell proliferation. If CDKN3
plays a positive role in regulating mitotic cell cycle, reducing
CDKN3 would be predicted to attenuate cell proliferation.
Supplementary Figure 6 shows that we were able to knockdown
CDKN3 in A549 and HeLa cells. CDKN3 knockdown in A549 and
HeLa cells resulted in significantly reduced cell proliferation of
these cells (Supplementary Figure 6).

DISCUSSION

Following the initial observation of CDKN3 overexpression in
various types of human cancer, we performed more detailed

characterisation of CDKN3 expression in NSCLC. We found
CDKN3 expression is elevated in NSCLC. Three cohorts of
lung adenocarcinoma consisted of 1328 patients and used either
mRNA microarray or RNA-seq method to measure CDKN3
expression; high CDKN3 expression is consistently associated with
significantly shorter overall survival of these patients. No such
association is found in lung squamous cell carcinoma. A possible
explanation is that lung squamous cell carcinoma has an overall
high level of CDKN3 expression. The overall high level of CDKN3
expression within lung squamous cell carcinoma may render
indifference between ‘low’ and ‘high’ levels in the prognosis
of CDKN3 for the overall survival in this histological type of lung
cancer.

When this paper is under peer review, Zang et al (2015)
reported a mega-analysis of data sets in Lung Cancer Explorer
(http://qbrc.swmed.edu/lce/) database using different analytic
methods. They also found that CDKN3 is upregulated in lung
adenocarcinoma and lung squamous cell carcinoma and that lung
squamous cell carcinoma has an overall higher level of CDKN3.
Furthermore, the high CDKN3 levels are associated with poor
survival in lung adenocarcinoma but not in lung squamous cell
carcinoma. These findings are in agreement with the data that we
presented here.

Based on the perception of CDKN3 as a potential tumour
suppressor, a possible mechanistic explanation of CDKN3 over-
expression in the tumours is alternative splicing or mutations that
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Figure 5. CDKN3 expression is elevated in M phase. (A and B, left panels) HeLa and A549 cells were subjected to double thymidine blockage. At
the indicated time after release from the second thymidine block, cell lysates were collected and analysed by immunoblotting with indicated
antibodies. (A and B, right panels, and C) Cell lysates from unsynchronized (U), serum-deprived (G0/1), double thymidine-blocked (S) and
nocodazole block (M) cells were analysed by immunoblotting with indicated antibodies. (D) Cells were treated as in C. RNA was isolated and
analysed by RT–qPCR using CK-T/CK-R primers. The data were averages from two experiments. The relative amount of CDKN3 mRNA in the
serum-deprived cells from each cell line was set as 1.
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produce dominant-negative products of CDKN3. However, in our
cohort of 24 samples, we found that all cells and tumours express
the same 2 transcripts. We detected no aberrant splice variant or
point mutation in the CDKN3 transcripts. A difference in our
analysis and the previous reports in hepatocellular carcinoma and
glioma is that previous studies performed sequencing analyses after
cloning the cDNA (Yeh et al, 2000; Yu et al, 2007), whereas we
sequenced the RT–PCR products directly. Sequencing analysis of
cDNA clones is more sensitive to detect minute changes, although
the origins of these changes are unknown. While less sensitive, data
of our direct sequencing analyses of RT–PCR products are better
representative of what is present as the whole in the cells and thus
the overall functionality of CDKN3 overexpression in the cells.
Similar to the results of Lee et al (2000), our experiments showed
that knockdown of CDKN3 inhibited cell proliferation, suggesting
that CDKN3 has a positive role in cell proliferation.

CDKN3 mutation data from TCC, TCGA, CCLE and tumor-
portal indicate that CDKN3 mutations are rare in human cancer.
Importantly, no disruptive mutation is found. Recurrent missense
Q8R, I108V and T127I mutations were found in TCC tumours.
These changes were also present in healthy people and thus may
represent polymorphic variants. It remains to be determined if
these variants have any functional consequence. Nevertheless, the
only two cases of T127I change found in lung tumours cannot
account for the poor survival of high CDKN3 expression patients
in approximately one-half of 1328 lung adenocarcinoma cases.
Taken together, our analyses indicate that the functional CDKN3,
not dominant-negative CDKN3 mutants, is overexpressed in lung
adenocarcinoma.

Significantly, we found high level of CDKN3 expression in
mitotic cells, whereas cell enriched in the G0/G1 phase by serum-
starvation had the lowest level of CDKN3. Consistently, TCGA
data show that CDKN3 has the highest expression correlation with
genes involving in mitosis. The study by Espinosa et al (2013) also
identified CDKN3 as a mitosis pathway gene in cervical cancer.
Our finding of elevated CDKN3 in mitotic cells is in agreement
with the notion that CDKN3 has an important role in mitosis
(Nalepa et al, 2013) and suggest that CDKN3 should be added to
the list of phosphatases important for cell cycle through mitosis
(Wurzenberger and Gerlich, 2011). It also suggests that the high
level of CDKN3 expression in human cancer is likely to reflect the
increased fraction of mitotic cells in the tumours.
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