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Background: Malignant pleural mesothelioma (MPM) is a highly aggressive tumour that is first-line treated with a combination of
cisplatin and pemetrexed. Until now, predictive and prognostic biomarkers are lacking, making it a non-tailored therapy regimen
with unknown outcome. P53 is frequently inactivated in MPM, but mutations are extremely rare. MDM2 and P14/ARF are upstream
regulators of P53 that may contribute to P53 inactivation.

Methods: A total of 72 MPM patients were investigated. MDM2 immunoexpression was assessed in 65 patients. MDM2 and P14/
ARF mRNA expression was analysed in 48 patients of the overall collective. The expression results were correlated to overall
survival (OS) and progression-free survival (PFS).

Results: OS and PFS correlated highly significantly with MDM2 mRNA and protein expression, showing a dismal prognosis for
patients with elevated MDM2 expression (for OS: Score (logrank) test: Pp0.002, and for PFS: Score (logrank) test; Po0.007).
MDM2 was identified as robust prognostic and predictive biomarker for MPM on the mRNA and protein level. P14/ARF mRNA
expression reached no statistical significance, but Kaplan–Meier curves distinguished patients with low P14/ARF expression and
hence shorter survival from patients with higher expression and prolonged survival.

Conclusions: MDM2 is a prognostic and predictive marker for a platin–pemetrexed therapy of patients with MPMs.
Downregulation of P14/ARF expression seems to contribute to MDM2-overexpression-mediated P53 inactivation in MPM
patients.
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Malignant pleural mesothelioma (MPM) is a highly aggressive
tumour, which is linked to prior exposure to asbestos with a
latency period of 20–30 years in approximately 80% of all cases
(Weill et al, 2004; Hazarika et al, 2005; Goudar, 2008). Systemic
therapy represents the primary treatment option for most patients
(Treasure and Sedrakyan, 2004; Tsao et al, 2009), but standard
MPM therapy is still deficient and decisions for radiotherapy,
surgery or combined approaches are based on a case-by-case
decision leading to a palliative treatment approach for most
patients (Guyatt et al, 2006; Muers et al, 2008; Stahel et al, 2009;
Astoul et al, 2012). Gender, histological subtype and haematolo-
gical parameters have been identified as important prognostic
parameters (Flores et al, 2007; Rusch et al, 2012).

Combination of antifolates (e.g., pemetrexed) and platin
derivatives is considered as the most effective regimen for MPM
(Tomek and Manegold, 2004; Kindler, 2008). In that therapeutical
setting, patients show response rates of approximately 40% (stable
disease and partial response) with a progression-free survival (PFS)
of 5.7 months (Vogelzang et al, 2003). As reason for these low
response rates and short PFS, expression differences of members of
the folic acid pathway, folic acid transport and activation, which
are important for the uptake and metabolism of pemetrexed, were
discussed controversially in the past (Righi et al, 2010; Christoph
et al, 2012; Lustgarten et al, 2013; Mairinger et al, 2013a,b).

Additional investigations on the gene level showed that
inactivation of tumour-suppressor genes are frequent in MPM
(Frew et al, 2009). In contrast to other solid tumours, mutations of
the TP53 gene are extremely rare in MPM, so other mechanisms
such as deletion of the locus or methylation contribute to
inactivation of P53 (Papp et al, 2001a,b; Toyooka et al, 2008).
Numerous noxious stimuli activate the P53 protein by posttransla-
tional modifications resulting in cell cycle arrest, cellular
senescence or apoptosis (Harris and Levine, 2005).

Among other factors, P53 activity and stability is tightly
controlled by the E3 ubiquitin ligase (MDM2; also HDM2).
Overexpression of MDM2 in some tumour types can lead to a loss
of P53 regulatory function by increased proteasomal degradation
of P53 (Jones et al, 1995; Montes de Oca Luna et al, 1995; Parant
et al, 2001; Marine et al, 2006; Ringshausen et al, 2006). This
pathomechanism is considered to be of importance in a variety of
malignant tumours, including lung, breast, colon, stomach and
hepatocellular carcinomas (Toledo and Wahl, 2006). Approxi-
mately 20% of all MPM show strong nuclear MDM2 expression,
restricted to epitheloid MPM or the epitheloid components of
biphasic MPM, and these MDM2-positive MPM show significantly
decreased overall survival (OS) (Mairinger et al, 2014).

The physiological inhibitor of MDM2 is P14/ARF, and loss of P14/
ARF activity may have a similar effect as loss of P53 (Kanellou et al,
2009). P14/ARF is recognised as a tumour suppressor inducing cell
cycle arrest in a P53-dependent and P53-independent manner
(Huang et al, 2003; Chen et al, 2005; Miao et al, 2010). Thereby,
P14/ARF may control TP53 transcription, repress P53 degradation
that is not MDM2-mediated and stimulate P53 activity (Van Maerken
et al, 2011). Additionally, loss of P14/ARF activity seems to occur in a
reciprocal manner to P53 loss and seems to be typical for tumours
that are TP53 wild type (Huang et al, 2003).

In sum, reliable predictive biomarkers in MPM are lacking.
Additionally, a personalised therapeutic concept is eagerly needed.

In the present study, we sought to determine whether decreased
activity of the physiological MDM2 inhibitor P14/ARF contributes
to MDM2-mediated inactivation of P53 in MPM.

MATERIALS AND METHODS

Patient collective. From the MPM database of the Institute of
Pathology, University Hospital Essen, University of Duisburg-

Essen, Essen, Germany, 72 formalin-fixed, paraffin-embedded
(FFPE) specimens from patients harbouring a MPM were selected
for quantitative real-time PCR (qPCR) and IHC analysis. Samples
from 2004 to 2010 were investigated. Inclusion criteria for this
study were complete data with respect to follow-up, treatment and
sufficient FFPE tissue. The study design was approved by the
ethical committee of the University Hospital Essen (ID: 14-5775-
BO). The investigations conform to the principles of the
Declaration of Helsinki.

FFPE tissue preparation was performed according to the
institutional standards. The fresh tissue was fixed in 4% buffered
formalin for 24 h and subsequently embedded in paraffin. For
diagnostic classification, multiple 1–4-mm thick sections were used
for IHC and stained with haematoxylin and eosin. The most
representative part of the tumour was used for subsequent analysis.

Immunohistochemistry. Tissue microarrays were constructed
from FFPE blocks. Three cores with a diameter of 0.6mm were
taken from different areas of each tumour to take possible tumour
heterogeneity into account. When feasible, a core containing only
normal, non-malignant pleura was taken from every specimen,
which served as a negative control.

IHC for MDM2 was newly established. After validation on
reference tissues (liposarcoma as a malignant mesenchymal
tumour with a consistent strong expression of MDM2), the
immunohistochemical investigations were performed with an
antibody directed against MDM2 (clone IF2, Calbiochem,
Darmstadt, Germany; dilution: 1 : 80). Protein expression was
assessed using a four-stage semiquantitative IHC scoring system
based on the percentage of tumour cell nuclei with a positive
immunoreaction (Score 0: no immunohistochemical signal; Score 1
(weak expression): 1–25%; Score 2 (moderate expression): 26–50%;
Score 3 (strong expression): 450%). MPM were only considered
positive for MDM2 when a strong nuclear staining could be
observed comparable to the positive controls (liposarcoma).
Tumour cells with a weak immunohistochemical nuclear or only
cytoplasmic signal for MDM2 were not counted.

RNA isolation and qPCR. Expression levels of ACTB (actin, beta;
reference gene), MDM2 and P14/ARF were investigated by using
hydrolysis probes (also known as TaqMan probes) for qPCR.
Therefore, RNA was isolated from FFPE tissue. Only tumour tissue
was used for mRNA extraction. This was carried out by
macrodissection (cutting only the tumour region). Three-to-five
sections of 4 mm were cut from one FFPE block by using a
microtome (Leica, SM 2000 R, Wetzlar, Germany). Total RNA was
isolated by using the miRNeasy FFPE Kit (Qiagen, Hilden,
Germany) according to the manufacturer’s protocol, except for
two modifications (proteinase K digestion overnight; elution in a
final volume of 25ml in RNAse-free water). RNA concentrations
were measured using the Nanodrop UV/VIS spectrometry
(NanoDrop ND-1000, PEQLAB Biotechnologie GmbH, Erlangen,
Germany). RNA concentrations ranged from 73 ng ml� 1 to
3789 ng ml� 1. Until further use, RNA was stored at � 80 1C. For
cDNA synthesis, the iScript Select cDNA Synthesis Kit and
protocol from Bio-Rad (Bio-Rad Laboratories, Inc., Hercules, CA,
USA) was used. Approximately 1mg of the total RNA was used
with a final concentration of 100 ng ml� 1 per reaction. cDNA was
stored for short term (o1 week) at 4 1C and otherwise at � 20 1C.

For qPCR, the TaqMan Gene Expression Assays on Demand
(AoD) for ACTB (Hs03023943_g1),MDM2 (Hs01066942_m1) and
P14/ARF encoded by CDKN2A (Hs99999189_m1) were used
(Thermo Fisher Scientific, Waltham, MA, USA). The primer–
probe volumes were modified by using 50% of the total reaction
volumes that were recommended by the manufacturer. For each
reaction, 50 ng cDNA were applied. The AoD were chosen because
of their short amplicon size (ACTB: 93 nt, MDM2: 89 nt and P14/
ARF/CDKN2A: 72 nt) and, additionally, because they spanned

BRITISH JOURNAL OF CANCER MDM2 in MPM

884 www.bjcancer.com |DOI:10.1038/bjc.2015.27

http://www.bjcancer.com


exon–exon boundaries to circumvent simultaneous detection of
genomic DNA. Each target was measured in triplicates for each
patient. Non-template controls were processed for each AoD on
each reaction plate as negative control. Table 1A summarises the
applied chemicals and volumes for the qPCR and Table 1B shows
the qPCR conditions. ACTB is the standard reference gene for
investigation of MPM at our institution. That is based on previous
experiments testing several potential reference genes using the
geNorm and NormFinder algorithms. ACTB showed robust and
stable expression in MPM and hence was processed for normal-
isation purposes and as reference gene. Ct-values of MDM2 and
P14/ARF were normalised to the mean values of ACTB. Data
analysis and qPCR were performed on a Roche LightCycler 480 II
(Roche, Basel, Switzerland) and the corresponding software. All
qPCR experiments were performed in concordance with the
MIQE-guidelines (Bustin et al, 2009).

Statistical analysis. Statistical analysis was performed using the
statistical computer language R (r-project.org; version R i386
2.15.1).

Gene expression analysis. Analysis of OS and PFS were done by
using the proportional hazards model (also called Cox-regression
(COXPH-model)), and statistical significance was determined
using the likelihood ratio test, Wald test and Score (logrank) test.
With respect to functional scale-differences in biological systems,
proportional hazards model analysis was done in a linear and
logarithmic scale for MDM2 mRNA and protein expression and
for P14/ARF mRNA expression. For association between either
protein expression or mRNA expression with respect to gender,
patients’ age at time of diagnosis, age of the paraffin blocks and
histological subtype of MPM to OS and PFS, a proportional
hazards model was calculated.

OS and PFS were visualised by creating single-factorial and
combined Kaplan–Meier curves (also called product limit estima-
tor). Kaplan–Meier curves with a confidence interval of 95%
(CI: 95%) were calculated based on existing survival data.

The Spearman’s rank correlation coefficient (also called the
Spearman’s rho) was used to calculate correlations between the

expression levels of the tested genes. Additionally, this test was also
used to rule out a possible association between expression and age
of the patients, age of the FFPE tissue, gender and clinical data.

The Mann–Whitney U (also called the Wilcoxon rank-sum test)
was used, for example, to test associations between the mean
protein expression obtained from three cores after IHC or mRNA
expression and dichotomous variables (e.g., gender).

The level of statistical significance was defined as Pp0.05.

RESULTS

A collective of 72 patients was investigated. Sixty-five patients
(90%) gave evaluable IHC data with respect to MDM2 immu-
noexpression. Out of the overall collective, 48 specimens were
analysed via qPCR for the mRNA expression of MDM2 and
P14/ARF. The relationship of the expression of the tested markers
with OS and PFS was analysed. The investigated sub-collectives are
summarised in Table 2.

Clinicopathological and survival data of patients from Essen

Clinicopathological analysis. Seventy-two patients harbouring a
MPM were selected. Eleven female (15%) patients and 61 male
(85%) patients were investigated. The mean age of the patients was
63.8 years (median age 62.6 years, range 48–80 years). For 69 out of
the 72 patients, the histological MPM subtype was available. Fifty-
nine patients showed an epithelioid (82%), six biphasic (8%) and
four sarcomatoid (6%) MPM subtype. For three patients, the
histological subtype was not available (4%). Table 2 summarises
the characteristics of the investigated patient collective.

Analysis of OS. Survival data of 72 patients were available,
and 59 (81.9%) were reported dead and 13 (18.1%) were still
alive when survival data were assessed. Median survival was
18.5 months (mean without censored patients: 21.9 months; range:
8.8–29.9 months).

Table 1A. Summary of the applied chemicals and volumes for
qPCR experiments

Mastermix for hydrolysis probes (TaqMan probes)

Reagent Volume (ll)
Mastermix 2� 5

Assay on Demand (AoD) 20� 0.5

Aqua test 3.5

Sample cDNA 1

Total reaction volume 10

Abbreviation: qPCR¼quantitative PCR.

Table 1B. Summary of the cycler program for qPCR analysis
using a Roche Light Cycler 480II

Programme Temperature Duration (s)
Heating
rate

PCR
cycles

Activation 50 1C 00:02:00 4.8 1

Initial Incubation 95 1C 00:10:00 4.8 1

Amplification 95 1C 00:00:15 4.8 50
60 1C 00:01:00 2.5

Cooling 40 1C 00:00:10 2.5 1

Abbreviation: qPCR¼quantitative PCR.

Table 2. Clinical characterisation of the investigated sub-
collectives

Essen,
overall

collective

Essen,
IHC

results

Essen,
qPCR
results

Number of patients 72 65 48

Male patients 61 57 41

Female patients 11 8 7

Unknown gender 0 0 0

Mean age at diagnosis (months) 63.8 63.9 64.6

Median age at diagnosis (months) 62.6 63.2 64.5

MPM subtype
Epithelioid 59 54 38
Biphasic 6 5 5
Sarcomatoid 4 3 2

Overall survival
Deceased 59 51 43
Alive 13 13 5
Median OS (months) 18.5 19.3 17.1

Progression-free survival
Progression-free survival 53 47 35
Progression 16 14 11
Unknown PFS 3 3 2
Median PFS (months) 6.3 6.6 6.1

Abbreviations: IHC¼ immunohistochemistry; MPM¼malignant pleural mesothelioma;
OS¼overall survival; PFS¼progression-free survival; qPCR¼quantitative PCR.
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The histological subtype correlated significantly with OS (Score
(logrank) test; P¼ 0.021), with a better prognosis for patients with
an epithelioid subtype (Supplementary Figure S1).

Analysis of OS with respect to MDM2 immunoexpression. IHC
gave evaluable results for 65 out of the 72 investigated patients.
Fifty-four patients showed an epithelioid subtype (83.1%), five
biphasic (7.7%), three sarcomatoid (4.6%) and three remained
inconclusive (4.6%). Fifty-one (80%) patients were reported dead,
and 13 were still alive (20%). The median OS was 19.3 months
(Table 2).

OS analysis showed that gender was statistically significant
(Score (logrank) test; P¼ 0.016), with shorter survival for male
patients (HR: 3.35; 95% CI, range: 1.2–9.5; data not shown). Age of
the patients (Score (logrank) test; P¼ 0.15) and age of the FFPE
specimens (Score (logrank) test; P¼ 0.48) showed no statistical
correlation to OS.

According to the described scoring system, 48 patients showed
Score 0 (65%), 19 Score 1 (29%), 4 Score 2 (6%) and none of the
patients’ specimens had a Score 3. Of note, MDM2 expression was
present in epithelioid and the epithelioid component of biphasic
MPM only. All MDM2-positive MPM specimens, regardless of the
score, were calculated against all MDM2-negative MPM and
correlated with OS. Lacking MDM2 expression significantly
associated with longer OS with respect to the linear (Score
(logrank) test: Po0.0001, CI: 95%, range: 2.5–7.2, HR: 4.2 for
patients with MDM2 protein expression) and the logarithmic scale
(Score (logrank) test: Po0.0001, CI: 95%, range: 4.5–25.6, HR: 10.7
for patients with MDM2 protein expression) (Figure 1). MDM2-
negative MPM showed a 3-year survival of 29%; no patients with
MDM2-positive MPM were alive after 3 years.

Figure 1 shows a Kaplan–Meier plot for OS in correlation to the
MDM2 immunoexpression in the patient collective from Essen.
The x axis shows the survival time in months. On the y axis, the
survival rate in percentage is shown. MDM2-positive MPM
(regardless of the score) showed a significantly decreased survival
time compared with MDM2-negative MPM (Po0.0001).

Analysis of OS with respect to mRNA expression. Out of these
72 samples, 48 specimens were subjected to qPCR analysis. Thirty-
eight patients (79%) showed an epithelioid, five (10%) a biphasic
and two (4%) a sarcomatoid MPM subtype. For three (6%), the
histological subtype remained inconclusive. Five patients (10%)
were reported alive, and 43 (90%) had succumbed to the disease.
The median OS time was 17.1 months (Table 2).

Sufficient amounts of mRNA for subsequent cDNA synthesis
and qPCR analysis could be extracted from all samples. All tested
samples returned evaluable qPCR data and were subjected to

normalization, and all negative controls (non-template controls)
showed no detectable signal.

Neither MDM2 (P¼ 0.54) nor P14/ARF (P¼ 0.27) mRNA
expression showed a significant correlation with respect to the
patients’ age. P14/ARF mRNA expression showed no significant
correlation with respect to sample age (P¼ 0.089). MDM2 mRNA
expression showed a statistical trend with respect to sample age
(P¼ 0.0505), but the positive rho-value (rho¼ 0.28) indicated a
direct correlation between sample age and mRNA leading to the
assumption that with increasing age of the sample the mRNA
amount would increase. This result was considered as an irrelevant
contingency.

OS correlated significantly with MDM2 mRNA expression with
respect to the logarithmic scale (Score (logrank) test; P¼ 0.0014)
with a hazard ratio of 3.2 for elevated expression (CI: 95%, range:
1.5–6.9). With respect to the linear scale, a significant correlation
was found (Score (logrank) test; P¼ 0.0001) confirming the hazard
ratio for elevated expression. The results are summarised in
Figure 2A.

Statistical analysis of P14/ARF-mRNA expression showed no
significant correlation with respect to OS (linear scale: Score
(logrank) test; P¼ 0.38, logarithmic scale: Score (logrank) test;
P¼ 0.13), but Kaplan–Meier curves separated patients having a
low expression from patients with high expression as shown in
Figure 2B. Elevated P14/ARF expression correlated with prolonged
survival.

The age of the patients (Score (logrank) test; P¼ 0.048)
correlated significantly with OS with a hazard ratio of 1.04
(CI: 95%, range: 0.99–1.1) for older patients (data not shown).
Gender (Score (logrank) test; P¼ 0.066) showed no significant
correlation for OS (data not shown).

Figure 2 shows a Kaplan–Meier plot for OS in correlation to the
mRNA expression of (A) MDM2 and (B) P14/ARF. The x axis
shows the survival time in months. On the y axis, the survival rate
in percentage is shown. Elevated MDM2 expression was associated
with significantly decreased survival rates (Po0.0015). P14/ARF
expression showed no significant relationship to OS, but Kaplan–
Meier curves separated patients with elevated expression from
patients with low expression and higher expression correlated with
prolonged survival.

Analysis of PFS. All of the investigated patients received cisplatin
in combination with pemetrexed. During therapy, 53 (74%)
patients showed progression of the disease and 16 (22%) were
free of progression. For three patients (4%), no PFS data were
available. Median PFS was 6.4 months (mean without censored
patients: 9.4 months, range: 4.0–9.3 months) (Table 2). Histological
subtype showed a significant correlation with respect to PFS
(Po0.0001) with shorter PFS for patients with biphasic and
sarcomatoid subtypes (CI: 95%, range: 0.005–0.2, HR: 43.3 for
biphasic and sarcomatoid MPM; data not shown). Male patients
showed shorter PFS than female patients (P¼ 0.037, CI: 95%,
range: 1.0–5.8, HR: 2.4 for male patients; data not shown).

Analysis of PFS with respect to MDM2 immunoexpression. Out
of the 65 patients subjected to IHC analysis, 47 (72%) showed
progression of the disease, 14 (22%) showed no progression and
for 4 (6%) patients no PFS data were available. Median PFS was
6.6 months (Table 2).

Male patients showed a statistically significant shorter PFS than
female patients (Score (logrank) test; P¼ 0.037, CI: 95%, range:
1.0–5.8) with a hazard ratio of 2.4 (data not shown). The
histological subtype showed a statistically significant correlation
to PFS (Score (logrank) test; Po0.0001, CI: 95%, range: 0.2–4.2),
with faster progression in biphasic and sarcomatoid MPM (data
not shown).
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Figure 1. MDM2-immunoexpression-dependent overall survival of the
patients from Essen.
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Any MDM2 protein expression (Scores 1–3) correlated with
shorter PFS, whereas a lack of MDM2 expression (Score 0)
associated with prolonged PFS (linear scale Score (logrank) test;
P¼ 0.0004, CI: 95%, range: 1.4–3.7, HR: 2.3 for patients with
MDM2 expression and logarithmic scale Score (logrank) test;
P¼ 0.0002, CI: 95%, range: 1.99–10.4, HR: 4.5 for patients with
MDM2 expression). The results are summarised in Figure 3.

Age of the patients (Score (logrank) test; P¼ 0.75) and age of
the specimens (Score (logrank) test; P¼ 0.51) showed no statistical
correlation to PFS.

Figure 3 shows a Kaplan–Meier plot for PFS in correlation to
the protein expression of MDM2. On the x axis, the survival time
in months is shown. The y axis shows the survival rate in
percentage. Higher MDM2 expression (regardless of the score) was
significantly associated with shorter PFS (Po0.0005).

Analysis of PFS with respect to mRNA expression. Out of the
48 patients who were investigated by qPCR, 38 (73%) showed
progression of the disease, whereas 11 (23%) were free of
progression and for 3 (6%) no PFS data were available. Median
PFS was 6.1 months (Table 2). For PFS, a significant correlation for
MDM2-mRNA expression was found with respect to the
logarithmic scale (Score (logrank) test; P¼ 0.0072, CI: 95%, range
1.3–5.4) and also with respect to the linear scale (Score (logrank)
test; P¼ 0.0049) as shown in Figure 4A. Elevated expression
showed a hazard ratio of 2.6 with shorter PFS in patients with
elevated MDM2 expression.

Statistical analysis of P14/ARF mRNA expression showed a
statistical trend with elevated expression in patients with prolonged
PFS (logarithmic scale: Score (logrank) test; P¼ 0.057 and linear
scale: Score (logrank) test; P¼ 0.62). Figure 4B shows the Kaplan–
Meier curves for P14/ARF expression with respect to PFS.

The patients’ age (Score (logrank) test; P¼ 0.63) and age of the
specimens (Score (logrank) test; P¼ 0.15) did not show any impact
on PFS (data not shown).

Figure 4 shows a Kaplan–Meier plot for PFS in correlation to
the mRNA expression of (A) MDM2 and (B) P14/ARF. On the
x axis, the survival time in months is shown. The y axis shows the
survival rate in percentage. Higher MDM2 expression was
significantly associated with shorter PFS (Po0.0015). P14/ARF
expression showed a statistical trend correlating prolonged PFS
with elevated expression (P¼ 0.057).

DISCUSSION

The standard first-line therapy for MPM is a combination of
cisplatin or carboplatin with pemetrexed (Ramalingam and Belani,
2008; Ray and Kindler, 2009), and this treatment results in a
median OS of 11–12 months (Papa et al, 2013). Our investigated

patients showed a comparable median OS of 18.5 months. The
investigated patients showed a median PFS of 6.4 months that is
comparable to previously reported PFS of 5.7 months
(Ramalingam and Belani, 2008; Ray and Kindler, 2009). The
efficacy of platin-based therapies depends on several DNA-repair
enzymes, which determine the potential of a neoplasia to respond
to platin-induced damage (Ting et al, 2013). These rather short OS
and PFS rates imply that the standard MPM therapy can be
considered deficient (Tomek and Manegold, 2004; Guyatt et al,
2006; Muers et al, 2008; Stahel et al, 2009; Astoul et al, 2012), and
predictive biomarkers for cisplatin–pemetrexed-based therapy
concepts are lacking or discussed controversially (Tomek and
Manegold, 2004; Stahel et al, 2009; Astoul et al, 2012; Mairinger
et al, 2013a). Additionally, no approved second-line therapy exists
(Papa et al, 2013). Therefore, a recent guideline emphasises the
need of an innovative and novel therapy strategy (Astoul et al,
2012) that should be based on reliable, predictive and prognostic
biomarkers.

The tumour-suppressor TP53 gene locus is mutated in
approximately 50% of all human cancers. In the remaining 50%
of all malignant tumours, TP53 is wild type but inactivated. TP53
mutations are extremely rare events in MPM, but the P53 protein
can be inactivated by several other molecular mechanisms (Papp
et al, 2001a,b; Toyooka et al, 2008). One of these putative
mechanisms is an amplification and/or overexpression of MDM2,
which exerts an E3 ubiquitin protein ligase function and thus is a
physiological repressor of the P53 functional protein (Jones et al,
1995; Montes de Oca Luna et al, 1995; Parant et al, 2001; Marine
et al, 2006; Ringshausen et al, 2006). Furthermore, MDM2
expression is regulated by transcriptionally active P53 showing
that both MDM2 and P53 control each other in a (negative)
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Figure 2. (A) MDM2-dependent overall survival and (B) P14/ARF-dependent overall survival of the patients from Essen.
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Figure 3. MDM2-immunoexpression-dependent progression-free
survival of the patients from Essen.
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feedback loop manner (Wang et al, 2011; Rao et al, 2013). This is
an important physiological interplay, keeping P53 levels low under
non-cancerous, physiological cell conditions and inducing P53
activity in the presence of cellular stress (Hopkins-Donaldson et al,
2006; Herce et al, 2013). Overexpression of MDM2 can lead to a
loss of P53 regulatory function in cancer cells (Jones et al, 1995;
Montes de Oca Luna et al, 1995; Parant et al, 2001; Marine et al,
2006; Ringshausen et al, 2006). Of note, enzymes involved in
DNA repair, such as P53, are associated with patients’ response
and outcome to platinum-based therapy regimens (Barckhausen
et al, 2014; Sun et al, 2014), and P53’s activity and stability is
negatively regulated by overexpression of MDM2 in approxi-
mately 20% of epithelioid mesotheliomas and the epithelioid
component of biphasic MPM (Mairinger et al, 2014). In the
recent manuscript, we confirmed this previous finding and
additionally found that MDM2 has prognostic value on the
mRNA and protein level. Prolonged survival and PFS in MPM
patients was associated with lower expression of MDM2 on the
mRNA level and absent MDM2 immunoexpression. Further-
more, MDM2-negative MPM showed a 3-year survival of 29%;
no patients with MDM2-positive MPM were alive after 3 years.
This is in line with previous findings (Mairinger et al, 2014).
Expression analysis on the protein and mRNA level showed that
the statistical results were highly consistent between both
methods indicating that IHC and qPCR could be used
interchangeably to test MPM patients for the expression of
MDM2. FFPE tissue is a challenging source for molecular
biological analysis, but if the assay design takes potential FFPE-
specific pitfalls into account, reliable and reproducible results can
be achieved (Walter et al, 2013).

Another important tumour suppressor in this setting is P14/ARF
that stabilises P53 (Rao et al, 2013). P14/ARF is the physiological
inhibitor of MDM2 and, when bound to MDM2, prevents P53
degradation (Rao et al, 2013). Additionally, P14/ARF can increase
P53 synthesis, inhibit other negative regulators of P53 than MDM2,
regulate P53 influencing pathways, increase the transcriptional
activity of P53 and has a critical role as tumour suppressor (Huang
et al, 2003; Chen et al, 2005; Rocha et al, 2005; Miao et al, 2010). Loss
of P14/ARF is expected to have a similar impact on cancer
development and maintenance as inactivation of TP53 (Kanellou
et al, 2009). P14/ARF is encoded from the CDKN2A gene locus that
also encodes P16/INK2A (Chen et al, 2005). P16/INK2A and P14/
ARF are controlled by distinct promoters and differ in one exon
leading to two unique proteins that are structurally different
(Kanellou et al, 2009). Deletion of the whole CDKN2A locus, on
chromosome 9p21, is present in 79–90% of all malignant
mesotheliomas; in the sarcomatoid subtype, the prevalence is up to
100% (Frew et al, 2009; Krasinskas et al, 2010; Altomare et al, 2011;
Monaco et al, 2011; Bahnassy et al, 2012; Matsumoto et al, 2013;
Tochigi et al, 2013). The inactivation of the CDKN2A locus occurs
also without deletion. Epigenetic inactivation including DNA
methylation (Kanellou et al, 2009; Fujii et al, 2012) and miRNA

regulation were reported (Guled et al, 2009; Ivanov et al, 2010). In
this study, P14/ARF expression reached no statistical significance, but
Kaplan–Meier curves separated patients with low expression and
poor prognosis from patients with high expression and favourable
prognosis. Furthermore, P14/ARF showed a statistical trend with
respect to PFS, and low expression was associated with faster
progression of the disease. In an in vitro experiment, P14/ARF was
identified as a marker for response to Nutlin-3A treatment, which is
a potent and selective MDM2 inhibitor (Van Maerken et al, 2011).
This substantiates the notion that MDM2-mediated P53 inactivation
may benefit from inactivation of P14/ARF.

Nutlin-3A (a cis-imidazoline analogue) is a newly developed,
potent and selective MDM2 inhibitor with an IC50 value in the 90–
300nM range (Vassilev et al, 2004; Shangary and Wang, 2009) that
prevents MDM2–P53 interaction by binding to the hydrophobic P53-
binding pocket of MDM2 (Vassilev et al, 2004; Gamble et al, 2012). It
is a non-genotoxic drug that can restore P53 activity leading to
subsequent senescence or apoptosis in a cell-type-dependent manner
(Vassilev et al, 2004; Gamble et al, 2012; Voltan et al, 2013).
Additionally, Nutlin-3A shows a low risk of inducing therapy
resistance and is currently being tested in a phase I clinical trial
(protocol ID: NCT00623870 as substance RO5045337) (Voltan et al,
2013). In summary, MDM2 overexpression seems to mediate an
inactivation of P53 leading to more aggressive MPM that are less
sensitive to current therapies resulting in poor outcome, and
additional downregulation of its physiological inhibitor P14/ARF
may intensify this effect. In a previous study, P53 failed as prognostic
factor in MPM patients (Mairinger et al, 2014), but the assessment of
MDM2 may be a helpful tool in a subset of MPM patients to identify
patients who would have the largest benefit from a platin–pemetrexed
therapy and to predict the outcome.

CONCLUSION

Despite being wild type with respect to TP53, P53-mediated cell
cycle control or apoptosis are lacking in MPM, which might be
explained by inactivation of functional P53 protein by different
mechanisms, such as proteasomal degradation via overexpression
of MDM2. Overall survival and PFS showed a significant
correlation between increased MDM2 expression and decreased
survival, making MDM2 a reliable and robust prognostic and
predictive biomarker in MPM.

P14/ARF mRNA expression is significantly decreased in many
MPM, which might further contribute to deregulation and
hyperfunction of MDM2. Kaplan–Meier curves were able to
separate patients with low P14/ARF expression with poor outcome
from patients with higher expression and favourable outcome.

In summary, a substantial proportion of MPM show a MDM2-
mediated inactivation of P53 and concomitant downregulation of
P14/ARF that can predict the response to pemetrexed and
platinum-based chemotherapy regimens.
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Figure 4. (A) MDM2-dependent and (B) P14/ARF-dependent progression-free survival of the patients from Essen.
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