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A high incidence of WT1 abnormality in
bilateral Wilms tumours in Japan, and the
penetrance rates in children with WT1
germline mutation
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Background: Bilateral Wilms tumours (BWTs) occur by germline mutation of various predisposing genes; one of which is WT1
whose abnormality was reported in 17-38% of BWTs in Caucasians, whereas no such studies have been conducted in East-Asians.
Carriers with WT1 mutations are increasing because of improved survival.

Methods: Statuses of WT1 and IGF2 were examined in 45 BWTs from 31 patients with WT1 sequencing and SNP array-based
genomic analyses. The penetrance rates were estimated in WT71-mutant familial Wilms tumours collected from the present and
previous studies.

Results: We detected WTT abnormalities in 25 (81%) of 31 patients and two families, which were included in the penetrance rate
analysis of familial Wilms tumour. Of 35 BWTs from the 25 patients, 31 had small homozygous WT1 mutations and uniparental
disomy of IGF2, while 4 had large 11p13 deletions with the retention of 11p heterozygosity. The penetrance rate was 100% if
children inherited small WT1 mutations from their fathers, and 67% if inherited the mutations from their mothers, or inherited or
had de novo 11p13 deletions irrespective of parental origin (P=0.057).

Conclusions: The high incidence of WT1 abnormalities in Japanese BWTs sharply contrasts with the lower incidence in Caucasian
counterparts, and the penetrance rates should be clarified for genetic counselling of survivors with WT1 mutations.

Wilms tumour (WT; OMIM 194070) arises from the develop-
mental kidney (Rivera and Haber, 2005). Wilms tumour and
retinoblastoma are typical embryonal tumours. The WT1 gene was
altered in <25% of sporadic WTs (Haruta et al, 2012), whereas the
RBI gene was shown to be altered in >90% of hereditary and
non-hereditary retinoblastoma (Leiderman et al, 2007), indicating
genetic heterogeneity and homogeneity of WT and retinoblastoma,
respectively. Bilateral WT is thought to be hereditary, and the
germinal mutation of WT1I located in 11p13 and alterations of

11p15 were reported in 17-38% and 55%, respectively, of bilateral
WTs in the series reported from USA, UK and Australia (Huff,
1998; Scott et al, 2012; Hu et al, 2013). Carriers with WTI
mutations are now increasing because multidisciplinary therapies
have improved the survival rates of patients with bilateral WTs and
those with a unilateral WT (UWT) with a WT1 germline mutation
(Royer-Pokora et al, 2008; Hu et al, 2013). The penetrance rates of
WTI1-mutant familial WT (FWT) are needed for genetic counsel-
ling of WT survivors. However, investigators have never examined
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the incidence of WTI and 11p15 abnormalities in bilateral WTs of
East Asian children, and have not yet tried to estimate the
penetrance rates of WT1-mutant FWT.

WTT1 is a multifunctional protein that acts as a transcriptional
activator or repressor, is predominantly expressed in the
embryonic kidney, and plays a pivotal role in its development
(Huff, 2011). Insulin-like growth factor II (IGF2; OMIM 147470) is
an imprinted gene expressed by the paternal allele, and encodes
a foetal polypeptide growth factor (Foulstone et al, 2005).
In contrast, WT1 is biallelically expressed in normal foetal tissues
and WTs (Little et al, 1992). The loss of heterozygosity (LOH) and
loss of imprinting (LOI) of IGF2 have been reported in 30-40%
and 30-70% of sporadic WTs, respectively, and these alterations
cause the overexpression of IGF2, which is involved in Wilms
tumorigenesis (Schroeder et al, 1987; Ravenel et al, 2001; Haruta
et al, 2008).

Both WTI and IGF2 genes are located on the short arm of
chromosome 11 (11p) and uniparental disomy (UPD) on 1lp,
involving either the region limited to 11p15 or that including both
11p15 and 11pl13, is regularly accompanied by maternal allele loss
and paternal allele duplication (Schroeder et al, 1987). We
previously reported that small homozygous WTI mutations and
paternal UPD (pUPD) of 11p occurred in one-third of unilateral
and bilateral WTs with various WT1 abnormalities (Haruta et al,
2008). Based on these genetic findings of human WT, Hu et al
(2011) showed that the combined occurrence of the upregulation
of Igf2 and ablation of WtI resulted in WT in transgenic WtI-Igf2
mice; however, the upregulation of Igf2 or ablation of WtI by
themselves did not lead to malignant tumours .

The inheritance of WT1 mutations have been poorly studied in
FWTs, and only 13 hereditary WT families with WTI abnor-
malities have been described in the literature (Yunis and Ramsay,
1980; Kousseff and Agatucci, 1981; Nakagome et al, 1984; Lavedan
et al, 1989; Pelletier et al, 1991; Kaplinsky et al, 1996; Jeanpierre
et al, 1998; Pritchard-Jones et al, 2000; Shibata et al, 2002;
Zirn et al, 2005; Regev et al, 2008; Fencl et al, 2012; Melchionda
et al, 2013). In addition, the parental origins of de novo small WT1
mutations and large 11p13 deletions encompassing WTI were
reported previously in two and eight individuals, respectively
(Huff et al, 1990; Nordenskjold et al, 1994). The aim of the present
study was to determine the incidence rates of WTI and IGF2
abnormalities in bilateral WTs in Japanese children, and was to
compare the results with those reported in bilateral WTs of
Caucasian children. In addition, we summarised the present and
previous findings on the penetrance rate for children who inherited
various types of WTI abnormalities from their fathers or mothers,
or had de novo WT1 (DNWT1I) abnormalities that occurred in the
paternal or maternal germ cell, and tried to clarify whether
parental inheritance and WTI abnormality types may affect the
penetrance rate of hereditary WT.

MATERIALS AND METHODS

Patients and samples. Forty-five tumour samples were available
from 31 Japanese infants or children with bilateral WT, ranging in
age between 2 and 26 months, who underwent surgery or biopsy
between August 1996 and 2011 (Table 1); 11 of the 45 tumours and
7 of the 31 patients were described in a previous series of patients
with WTI-mutant WT (Shibata et al, 2002; Haruta et al, 2008). In
one of the seven patients, data on the 11p15 status was added and
shown as Bilateral Wilms tumour 23 (BWT23) (Table 1; Shibata
et al, 2002). In addition, five patients, including one with UWT of a
DNWTI mutation (UWTG1), one with familial and UWTG2, one
with Wilms tumour-aniridia-genitourinary malformation-mental
retardation (WAGR) syndrome-associated UWTGS8 and two with

sporadic and UWTSI and 5 were incorporated into our previous
study for a comparison of the data with those of WTI-mutant
bilateral WTs (Table 2). Normal tissue samples were obtained from
either peripheral blood (PB) or normal renal tissue adjacent to the
tumour from the same patients. Tumours were staged according to
the National Wilms Tumor Study Group (NWTS) staging system
and most patients were treated according to the NWTS protocols
(D’Angio et al, 1989; Oue et al, 2009). Malformations found in
patients with bilateral WT are listed in Table 1. None of the
patients in the present study showed hemihypertrophy or
malformations associated with Beckwith-Wiedemann syndrome
(BWS; OMIM#130650). One (BWT9) died of the disease, another
(BWT27) with premature chromatid separation (PCS) syndrome
died of infection (Matsuura et al, 2006) and 29 were alive at the last
follow-up.

This study was approved by the Ethics Committee at Saitama
Cancer Center, and written informed consent was obtained from
parents for samples from the Japan Wilms Tumor Study Group
(JWITS; Oue et al, 2009). Since written informed consent was not
obtained in a subset of patients collected before 2001, identifying
information was removed prior to their analysis, in accordance
with the Ethical Guidelines for Clinical Research enacted by the
Japanese Government. The Ethics Committee approved the waiver
of written informed consent for the latter samples.

Histological examination. The diagnosis of WT was made in all
45 tumours, with routine haematoxylin and eosin-stained patho-
logy slides by pathologists at each institution or the JWiTS
pathology panel according to the classification proposed by the
Japanese Society of Pathology (The committee on histological
classification of childhood tumors, 2008). In addition, a patholo-
gical review of 29 tissue specimens was performed by the JWiTS
pathology panel.

Analysis of WT1 and allelic loss on 11p and 11q. Copy number
and LOH analysis using single-nucleotide polymorphisms (SNP)
arrays, Affymetrix Mapping 50K-Xba and 250K-Nsp arrays
(Affymetrix, Santa Clara, CA, USA) was conducted as described
previously (Haruta et al, 2008). Copy numbers and LOH were
calculated using CNAG and AsCNAR programmes with paired or
anonymous references as controls (Nannya et al, 2005; Yamamoto
et al, 2007). Gross WTI deletions were analysed by Southern
blotting using a WT1 ¢cDNA probe and BCLI in chromosome band
11q13, or by SNP arrays or the multiplex ligation-dependent probe
amplification (MLPA) method (Salsa MLPA kit, MRC-Holland,
Amsterdam, the Netherlands). To detect small WTI mutations,
defined as missense, nonsense, frame-shift or splice-site mutations,
all coding exons including flanking intronic sequences of WTI
were amplified from genomic DNA by PCR, and PCR products
were directly sequenced with the BigDye Terminator v3.1 Cycle
Sequencing Kit (Applied Biosystems, Foster City, CA, USA).

COBRA of the CTCF6 site at H19-DMR or MS-MLPA of the
IC1 (H19-DMR) and IC2 (KvDMR) regions. We determined the
methylation status of 11p15 region in tumour and PB samples by
combined bisulfite restriction assay (COBRA; Watanabe et al,
2006) and/or methylation specific (MS)-MLPA (Salsa MS-MLPA
kit, ME0O30BWS/SRS) assay. Combined bisulfite restriction assay of
CTCF6 at HI9-differentially methylated region (HI9-DMR)
showed that the mean methylation percentage *2 s.d. of five
normal kidney and two PB samples was 53.6 £ 5.6%, and we
defined more than the mean percentage +2 s.d. as the hyper-
methylated state. Methylation specific-MLPA analysis was used to
detect the methylation status of the IC1 (HI9-DMR) and IC2
(KvDMR) regions. The methylation statuses were defined accord-
ing to the manufacturer’s instructions.

Statistical analysis. Differences in the incidence of clinical and
genetic characteristics between any two genetic subtypes of
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WTT1 abnormality in bilateral Wilms tumour in Japan

tumours were examined by the 3> or Fisher’s exact test. P<0.05
(two-sided) was considered statistically significant. The Student’s
t-test or Mann-Whitney test was used to compare mean ages
between patients with WTI-mutant bilateral WT and those with
WTI-mutant sporadic and UWT, between patients with sporadic
and UWT with a small WT1 mutation and those with sporadic and
UWT with a large WT1 deletion, or between patients with paternal
inheritance of a small WTI mutation and those with maternal
inheritance of a small WT1 mutation.

RESULTS

Bilateral WTI-mutant WTs with or without pUPD on 11p. Of
45 bilateral tumours from 31 patients, 35 tumours from 25 (81%)
patients had WTI abnormalities; 30 tumours from 21 patients
showed small mutations in 1 WTI allele and the same small
mutation in the other WT1 allele, caused by UPD on 11p (Table 1).
One tumour (BWT3R) with deletion flanking exons 1-5 also had
UPD on 11p, and was added to the above 30 tumours because of
the small deletion. Combined bisulfite restriction assay and/or MS-
MLPA identified hypermethylation of HI19-DMR, which indicated
the paternal origin of IGF2 UPD in all 31 tumours except 1 whose
tumour DNA was not available (BWT21R). The remaining four
tumours from three patients had large deletions encompassing
WTI in one WTI allele and a frame-shift or splice-site mutation
(three tumours; BWT2R, 9L and 22R) or a small deletion spanning
exons 4-9 (one tumour; BWT2L) in the other WTI allele. All four
tumours had the retention of heterozygosity (ROH) on 11p, and
had normally methylated CTCF6 at HI9-DMR, indicating
retention of IGF2 imprinting (ROI). The methylation status of
CTCF6 at H19-DMR in PB was examined in 13 of the 25 patients.
All 13 patients showed the normal methylation in PB, indicating
somatic origin of UPD on 11p15.

WTI-mutant UWTs with or without pUPD on 11p. To compare
WTI and IGF2 statuses between 35 WTI-mutant bilateral WTs
and 10 WTI-mutant syndromic or familial UWTs or 20 WTI-
mutant sporadic and UWTs, we combined our published and
unpublished data on WTI-mutant WTs and presented them in
Table 2. One (BWT21R) of the 35 WTs and one (UWTGI1) of the
10 WTs, in which 11p UPD was identified by SNP array but
methylation status of H19-DMR was not examined, were included
in each group of tumours with small WT1 mutation and pUPD of
IGF2 because all 30 WTI-mutant bilateral WTs with 11p UPD
examined in the present study showed the hypermethylation
indicating paternal 11p UPD, and the previous study indicated loss
of maternal 11p allele in WTs with 11p LOH (Schroeder et al,
1987). Of the 10 patients, 5 (UWTG1-5) had small homozygous
WTI1 mutations and pUPD on 1lp, whereas 5 (UWTG6-10)
associated with WAGR syndrome had large deletions in 1 WTI
allele and small mutations in the other WTT1 allele with IGF2 ROH/
ROI in the tumours (Table 2). Of the 20 patients, 5 (UWTS1-5)
had small homozygous WT1 mutations and pUPD on whole 11p
in the tumours, whereas none of the remaining 15 (UWTS6-15)
had the small WT1 mutations and pUPD on 11p; 12 had IGF2
ROIL 2 had pUPD limited to the 11pl5 region and 1 had
monosomy 11 of paternal origin in the tumours (Table 2). Thus, a
homozygous WT1 mutation with pUPD on 11p was more frequent
in 35 WTI-mutant bilateral WTs than in 10 WTI-mutant
syndromic or familial UWTs (P=0.017) or 20 WTI-mutant
sporadic and UWTs (P =3.0E — 06).

When we analysed the 3 groups of patients with WT1-mutant
WTs, the mean age of 25 patients with bilateral WT was 12.4
months, that of 10 patients with syndromic or familial and UWT
was 14.3 months and that of 20 patients with sporadic UWT was
25.6 months. The 25 and 10 patients were younger than the

20 patients, respectively (P=0.001 and P=0.006), whereas no
difference in age was found between the 25 and 10 patients
(P=0.286). When we selected the 20 patients with sporadic and
UWTs, the mean age of 5 patients with homozygous WTI
mutations and paternal 11p UPD was 13.2 months and that of
15 patients with large deletions encompassing WTI with or
without pUPD limited to the 11pl5 region in the tumours was
29.7 months. The 5 patients with homozygous WT1 mutations and
pUPD on 11p were younger than the 15 patients with large 11p13
deletions (P=0.002).

WTI-wild-type bilateral WT's and the IGF2 status. Ten bilateral
tumours from six patients had wild-type WTI; six tumours had
+12,and 2 had 1q+, +6, + 8. or pUPD of whole chromosome
11 and one had pUPD of 11p (Table 1). None of the six patients
showed characteristics of BWS. Single-nucleotide polymorphisms
analysis and COBRA of CTCF6 at H19-DMR and/or MS-MLPA
revealed pUPD on 11p or whole chromosome 11 in three tumours,
ROI of IGF2 in four and LOI of IGF2 in three (Table 1). Of three
tumours with pUPD on 1lp or whole chromosome 11, the
corresponding PB showed normal methylation at HI9-DMR in
one (BWT30L) and was not available in two; in one of the two, the
contralateral tumour had ROH/ROI (BWT31R), denying the
constitutional 11p15 UPD (BWT31L). Of three tumours with LOI
of IGF2, the corresponding PB showed normal methylation at H19-
DMR in one (BWT29) and was not available in two bilateral WTs
(BWT28L, 28R) from one patient, not denying the possibility of
constitutional hypermethylation of maternal H19-DMR (Table 1).

Of 27 tumours, whose methylation status at IC2 was examined
by MS-MLPA, 26 and 1 showed hypomethylation and normal
methylation, respectively; the results were consistent with pUPD
and LOI of 11p15, respectively.

Histology of bilateral and FWTs. Of 29 WTI-mutant bilateral
WTs, which were available for pathological review, 25 and 4 tissue
specimens were obtained before and after chemotherapy, respec-
tively. Of the 25 tumours, 12 were classified as the mesenchymal
type; 4 and 2 of the 12 also had intra-lobar nephrogenic rests
(ILNR) and foetal rhabdomyomatous nephroblastoma, respec-
tively, 11 were classified as the mixed type; 1 also had ILNR, 1 was
classified as nephroblastoma with ILNR and 1 was classified as
ILNR only. Of 4 specimens obtained after chemotherapy, 3 were
classified as the mesenchymal type; one also had ILNR, and one as
nephroblastoma with ILNR.

Of seven WTI-wild-type bilateral WTs from six patients, which
were available for pathological review, five and two specimens were
obtained before and after chemotherapy, respectively. Of the five
tumours, two (BWT28, and 29) were classified as the epithelial
type, two (BWT26 and 30) as the mixed type and one (BWT27) as
the mesenchymal type. While the mesenchymal and mixed types
were found in both WTI-mutant and WTI-wild-type bilateral
WTs, the epithelial type was only found in WT1-wild-type bilateral
WTs. Two specimens obtained after chemotherapy showed either
the mixed or mesenchymal type. None of the tumour specimens
from 31 patients exhibited features of focal or diffuse anaplasia.

The penetrance rates of WTs with inherited or DNWTI
abnormalities, classified according to parental inheritance and
WTI1 abnormality types. We summarised 22 children from
14 families who inherited WTI mutation/deletion from their
mothers or fathers, and 8 children who had de novo large deletion
encompassing WT1 of known parental germ cell origin from the
present study and literatures listed in PubMed. The 22 individuals
included 3 patients with WTs (FWT4-1, 4-3 and FWTI12-1;
Figure 1, Table 3); although molecular analyses have not been done
in their PB and tumour samples, the pedigrees showed that the
3 patients who developed WT were thought to inherit WTI
mutations/deletions from their father or mother.
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Figure 1. Pedigrees of patients with WTs with small WT1 germline mutations inherited from fathers (FWT1-6) and mothers (FWT7-10), and those
of patients with large 11p13 deletions encompassing WT1 inherited from fathers (FWT11) or mothers (FWT12-14). DNWT1-8 indicates eight
families having the de novo deletion of paternal or maternal germ cell origin. Open boxes and circles containing a small circle indicate males and
females, respectively, with germinal WT1 mutations who did not develop WT. Filled boxes and circles indicate males and females, respectively,
who developed WT. WT6-2 was excluded from the penetrance analysis because of the reason described in the text (Fencl et al, 2012). Open boxes
and circles with an upright triangle indicate males and females, respectively, with a balanced chromosomal insertion involving the 11p13 band.
Open boxes with an inverted triangle indicate males with the deletion who did not develop WT. Oblongs and ovals indicate paternal and maternal
germ cells, respectively. Filled and open diamonds indicate males and females, who developed and did not develop WT, respectively.
Abbreviations: AN = aniridia; CNS = congenital nephrotic syndrome; FGS = focal glomerular sclerosis; GU = genitourinary malformation;

MR = mental retardation; NE =not examined; renal F=renal failure; SM =small mutation; SHM = small homozygous mutation; wt=wild type.

Identical twins (DNWT9-1, 2) in this study shared the same
nonsense mutation in PB and tumour samples (Table 3). Because
their parents had no WT1 mutation in PB, SNP array analysis was
performed on 10 polymorphic markers around WT1I to identify the
parental origin of the DNWTI mutation using PB from the parents
and twins as well as tumour samples. Because the maternally
derived loci identified by SNP markers (SNP A 1946935, 2241668,
4231943 and seven others) were lost in the tumour with UPD on
11p, the paternal germ cell origin of the mutation was determined
(Table 3). In addition, two patients (DNWT10, 11) were reported
to have small homozygous WTI1 mutations of paternal germ cell
origin in tumours (Nordenskjold et al, 1994). These four patients
with small DNWTI mutations of paternal germ cell origin
(DNWT9-1, 9-2, 10 and 11) were excluded from the penetrance
analysis, because unaffected carriers with small DNWTI mutations
could not be evaluated. In contrast, eight children with large de
novo 11p13 deletions (DNWT1-8) were included in the analysis as
carriers without development of WT could be evaluated (Figure 1;
Hulff et al, 1990).

All nine patients who inherited a small WT1 mutation from
their fathers developed WT; a girl (FWT6-2) was excluded from
the penetrance analysis because she died of renal failure at the age
of 23 weeks before the possible development of WT (Pelletier et al,
1991; Kaplinsky et al, 1996; Jeanpierre et al, 1998; Shibata et al,
2002; Fendl et al, 2012). Of nine WTs with the paternal inheritance
of WT1 mutation, four tumours [FWT1 (BWT23L, 23R), 2-1, 2-2]
in this study showed homozygous WT1I mutations and pUPD on
11p, and two (FWT3, 4-2) showed homozygous WTI mutations,
suggesting that the six tumours may have had the same WTI and
IGF2 abnormalities (Figure 1 and Table 3).

Of 6 individuals who inherited small WTI mutations from their
mothers, 4 developed WT; in addition to the small germline
mutation in 1 allele 1 had a 26 base-pair deletion that differed from
the first mutation (FWT7-1), 1 had a large 11p13 deletion (FWT7-2),
1 had a wild-type WT1 (FWT10) in the other allele in their
tumours and the WTTI status in the tumour was not examined in
the last patient (FWT8-1; Pritchard-Jones et al, 2000; Zirn et al,
2005; Regev et al, 2008; Melchionda et al, 2013). Thus, all three
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patients who inherited the WT'1 mutation from their mothers and
whose WTI status in tumours were examined were not likely to
have UPD on 11p in their tumours (Figure 1 and Table 3). The
mean ages at diagnosis were 14.2 months for the nine patients with
the paternal inheritance and 55.3 months for the four patients with
the maternal inheritance; the mean age of the nine patients who
inherited the mutations from their fathers was younger than that of
the four patients who inherited the mutations from their mothers
(P=0.011 by Mann-Whitney test).

Fifteen individuals from 12 families were shown to have
inherited (FWT11-14) or de novo large 11p13 deletions (DNWT1-8)
of paternal or maternal origin (Figure 1 and Table 3; Yunis and
Ramsay, 1980; Kousseff and Agatucci, 1981; Nakagome et al, 1984;
Lavedan et al, 1989; Huff et al, 1990; Nordenskjold et al, 1994). All
four parents who transmitted large 11p13 deletions had balanced
chromosomal insertions involving the 11p13 band. Ten patients
developed WTs, on which sequencing analysis of WT1 was not
conducted to identify the status of the other WT1I allele in the
tumours. Thus, the penetrance rate was 100% (9/9) for individuals
who inherited small WT1 mutations from their fathers, and was
67% (14/21) for individuals who inherited small WTI mutations
from their mothers or large 11p13 deletions or had de novo large
11p13 deletions irrespective of the parental origin. Thus, the
9 individuals were more likely to develop WT than the 21 individuals
(P=0.057).

DISCUSSION

The incidence of WTI abnormalities in the bilateral WTs of
Japanese children was 81%, and this incidence was markedly
higher than those reported in American, UK and Australian
children (the mean percentage of three series, 32%; P =9.4E — 05;
Table 4; Huff, 1998; Scott et al, 2012; Hu et al, 2013). The present
series included 31 patients and 45 bilateral WTs, and the UK series
included 11 patients and 11 bilateral WTs; the statuses of WT'1 and
11p15 were precisely examined in 44 of the 45 and all 11 tumours
(Table 4; Scott et al, 2012). The incidence of WT1 abnormality is
more frequent in Japanese tumours than in British tumours;
however, if we consider that the incidence of WT among Japanese
is half of that in Caucasians, the population-based rate of bilateral
WT with WTI1 abnormality may be similar between the two
populations (Figure 2). Diller et al (1998) found constitutional
WTI abnormalities in 8 of 157 (5%) American children with a
history of WT. Likewise, Little et al (2004) found constitutional
WTI1 abnormalities in 6 (2%) of 282 British children with non-
syndromic WT. Unfortunately, no studies on constitutional WT1
abnormalities have been performed in Japanese children with WT
that precluded the comparison of the incidence of constitutional
WTI abnormalities between the two ethnic populations.

In contrast to the equivocal findings in the incidence of WTI
abnormality, that of IGF2 LOI was clearly higher in British
children with WT1-wild-type or WT1-wild-type plus WTI-mutant
bilateral WT than Japanese counterparts (Table 4 and Figure 2;
Scott et al, 2012). Thus, it is clear that the incidence of IGF2 LOI in
Caucasian bilateral WTs is higher than that in Japanese counter-
parts, and that the incidence of WT1 wild-type was low in Japanese
bilateral WTs.

The incidence rates of WT are known to vary, being markedly
lower in East Asian children than in their Caucasian counterparts
(Parkin et al, 1988). We previously reported that if only sporadic
WTs were included, the frequencies of WT with WT1 abnormality
were similar between East-Asian and Caucasian populations
(Haruta et al, 2012). Furthermore, we reported a lower incidence
of WT with IGF2 LOI in Japanese children than in American
children (P=0.041), and we and others proposed that the lower
incidence of IGF2 LOI may be one of the reasons for the lower
incidence of WT in Japan (Fukuzawa et al, 2004; Haruta et al,
2012). Contrary to the equivocal findings in the incidences of WT1
abnormality in sporadic or bilateral WTs between the two
populations, the difference in the incidence of IGF2 LOI in
bilateral WTs is clear (P=0.036); the relationship is comparative
to that of IGF2 LOI in sporadic WT's between the two populations.
Beckwith-Wiedemann syndrome is an imprinting-related growth
disorder. Five to 10% of patients with BWS have methylation of
HI9-DMR on both parental chromosomes, resulting in IGF2 LOI
(Cerrato et al, 2008). Interestingly, Japanese patients with BWS
were shown to have a significantly lower frequency of HI9-DMR
hypermethylation than North American and European patients,
whereas the incidences of pUPD on 11pl5 were comparable,
suggesting that susceptibility to epigenetic alterations differs
between the two populations (Sasaki et al, 2007). The constitu-
tional 11pl5 abnormalities in patients with WT were reported
from UK and Netherlands. The UK series included 437 patients
with non-syndromic WT and found 11pl5 abnormalities in
13 (3%) patients; of the 13 patients 4 had bilateral WT and 6
had hypermethylation of HI9-DMR (Scott et al, 2008).
The Netherlands series included 109 patients with syndromic or
non-syndromic WTs and found 8 (7.3%) children with 11p15
abnormalities; of the 8 patients 3 had bilateral WT, 4 had BWS and
3 had hypermethylation of HI9-DMR (Segers et al, 2012). Of 13
patients whose methylation status of HI9-DMR in PB was
examined in the present series, all including 1 (BWT29) with
IGF2 LOI in the tumour showed the normal methylation pattern.
Thus, the involvement of the constitutional IGF2 LOI in Japanese
bilateral WTs could not be identified. The same decreased
susceptibility to the epigenetic change reported in BWS may have
also caused the decreased incidence of bilateral WTs with IGF2
LOI (Sasaki et al, 2007). The study for constitutional 11pl5
abnormalities in Japanese WTs is needed to prove the hypothesis.

Table 4. Incidence rates of WT1 and IGF2 abnormalities in Japanese and British, American or Australian series of bilateral Wilms

tumour
WT1 abn+wt | pUPD | ROl | LOI | WT1 abn | pUPD | ROl | LOI | WTTwt | pUPD | ROI |LOI
A. Japan (the present study) 452 (31) 34 8 3 352 (25) 31° 4 0 10 (6) 3 4 3
B. UK (Scott et al, 2012) 11 5 0 6 4 4 0 0 7 1 0 6
Constitutional defect-associated 5 5 0 0 4 4 0 0 1 1 0 0
Sporadic 6 0 0 6 0 0 0 0 6 0 0 6
C. USA (Huff, 1998) 15 NE NE NE 4 NE NE NE " NE NE NE
D. Australia (Hu et al, 2013) 8 NE NE NE 3 NE NE NE 5 NE NE NE

type): A versus B P=0.036.

Abbreviations: abn = abnormality; LOI=loss of IGF2 imprinting; NE=not examined; pUPD = paternal uniparental disomy; ROl =retention of IGF2 imprinting; SNP =single-nucleotide
polymorphisms; wt = wild type. Numbers indicate numbers of tumours, and those in parentheses indicate numbers of patients in the Japanese series. Numbers in other series indicate both
patient and tumour numbers. WT1 abnormality and WTT wild type (patients): A versus B P=0.011; A versus B+ C+ D P=9.4E — 05. WT1 abnormality and WT1 wild type (tumours): A versus B
P=0.012; Aversus B4+ C+D P=5.1E — 05. LOl and UPD + ROI (tumours with WT1 abnormality and those with WTT wild type): A versus B P=0.001. LOIl and UPD + ROI (tumours with WT1 wild

®Include one tumour (BWT21R) in which UPD was detected by SNP array analysis but methylation status at H19-DMR was not examined.
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The present study included six patients having bilateral WTs
with wild-type WT1, and one of them had PCS syndrome, which
was caused by a BUBIB mutation and known to be associated with

WT1, wild-type
British (n=7)

IGF2-LOI (86%) | IGF2-no LOI |

(14%)

Japanese (n:10)| IGF2-LOI | IGF2-n0 LOI (70%) |
(30%)

WT1, mutant + wild-type
British (n=11) | WT1mutant (36%)

| WT1 wild-type, IGF2-LOI (55%) | |

_ WT1 wild-type WT1 wild-type
Japanese (n=45) | WT1 mutant (78%) ‘ | <= IGF2no LOI (15%) IGF2-no LOI (9%)
| wrt1 wild-type,I IGF2-LOI (7%) |
50% 100%

| | |
50% 100%

Figure 2. Abnormalities of the WT1 and IGF2-LOI in bilateral WTs in
Japanese (the present series) and British children (Scott et al, 2012).
The bar length for Japanese is half of that for Caucasians because the
incidence rate for Japanese is half of that for Caucasians.
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a predisposition to WT (Matsuura et al, 2006). The FWT genes,
FWTI and FWT2, were located at 17q21 and 19q13, respectively,
and the lack of a linkage to these loci in some WT families was
reported previously and indicated the existence of additional FWT
genes (Ruteshouser and Huff, 2004). Very recently, Hanks et al
(2014) identified germline mutation of the CTR9 gene in 3 of
35 WT families using an exome and sequencing analysis and
proposed it as a new WT predisposing gene . These genes may be
candidates for germline mutations in the other five patients with
WT1-wild-type bilateral WTs in the present series.

A previous study showed that the WT1 mutations observed in
bilateral WT were of germline origin (Huff, 1998). Another study
reviewed WTI germline mutations in 117 patients with WTs
(Royer-Pokora et al, 2004). Of the 117 patients, 44 had bilateral
WT, indicating that a large proportion of germline WT1 mutations
are associated with bilateral WT, although the inheritance is not
known in all patients. The present study included 25 patients with
WTI-mutant bilateral WTs, and the status of WT1 in PB was only
examined in 3 patients and 6 parents from 3 families; 2 were shown
to have inherited the mutation from their father with or without a
past history of WT and 1 was identified to have a DNWTI
mutation of paternal germ cell origin. Thus, mutation analyses of
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Figure 3. Parental inheritance of small WT1 mutations and large 11p13 deletion and a model of Wilms tumorigenesis. Black and white circles in
terminal 11p represent methylated and unmethylated statuses, respectively, at CTCFé in the IGF2-H19 region. Blue arrows indicate the expression
of IGF2. x and star in the 11p13 region indicate the first and second WT1 mutations, respectively. Solid and broken arrows in the 11p13 region
indicate normal and abnormal WT1 expression, respectively. Parents had balanced insertions involving the 11p13 band (H). A gap in the 11p

chromatid (I and L) indicates a large deletion encompassing WT1, and x in the 11p13 region indicates the second WTT mutations (K and N).

Explanation for panels A-G, J, and M is described in the discussion.
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WTI in the PB of patients and their parents are needed to
determine whether the mutation is inherited from the parents or
occurred de novo.

A previous study examined the parental origin of de novo RBI
mutations, and found the paternal origin of the mutation in all
patients (Dryja et al, 1989). Regarding DNWT1 alterations, we
and other researchers found the paternal germ cell origin of the
small mutation in four patients and that of the large deletion in
seven patients and the maternal germ cell origin of the large
deletion in one patient (Huff et al, 1990; Nordenskjold et al,
1994). No studies have reported the maternal germ cell origin of
de novo small WT1 mutations. In a review on human germinal
mutations, Crow (2000) described that one marked difference
between the human male and female was that there are many
more germline cell divisions in the life history of a sperm than
that of an egg. In WTs with homozygous WTI mutations and
paternal IGF2 UPD, the IGF2 alteration is thought to be the
second genetic event subsequent to the WTI alteration that has
been shown to occur in the paternal WT1I allele. The result that
pUPD on 11p was found in the great majority of bilateral WTs in
the present study further supports the paternal germ cell origin of
de novo small WT'1 mutations.

We summarised the data of all 30 children from 22 families with
hereditary WT, whose inheritance of the WTI alteration was
described in the present and previous studies (Table 3; Yunis and
Ramsay, 1980; Kousseff and Agatucci, 1981; Nakagome et al, 1984;
Lavedan et al, 1989; Pelletier et al, 1991; Kaplinsky et al, 1996;
Jeanpierre et al, 1998; Pritchard-Jones et al, 2000; Shibata et al, 2002;
Zirn et al, 2005; Regev et al, 2008; Fencl et al, 2012; Melchionda et al,
2013). We classified 30 children into 3 groups based on parental
inheritance of the germline mutation and types of WT1 abnormality,
and found that children who inherited small WTI mutations from
their father were more likely to have the higher penetrance rate than
those who inherited small WT1 mutations from their mothers or
inherited the large deletions or had the de novo large deletions
irrespective of parental origin (P = 0.057; Figure 1). Why do parental
inheritance and WT1 abnormality types affect the penetrance rate?
Most parents had DNWTI mutations of paternal germ cell origin, as
shown in (Figure 3A). Children who had a small WT1 mutation of
paternal germ cell origin easily developed WT because pUPD on 11p
resulted in homozygous WTI mutations and simultaneous over-
expression of IGF2 (Figure 3B and C). Children less frequently
developed WT by the second mutation in the maternally derived
WTI1 allele because this tumorigenic pathway needs additional
genetic and/or epigenetic events (Figure 3D). In contrast, WTs
developed in children who inherited the small mutation from their
mothers could not take advantage of simultaneous alterations in
WTI and IGF2 because maternally derived IGF2 is imprinted and
repressed (Figure 3E and F). Children who inherited the small
mutations from their mothers could develop WT if an independent
WTI mutation occurred in the paternally derived WT1 allele, which
resides on the same 11p expressing IGF2; expression even from one
IGF2 allele may be important for the development of embryonic
tumours (Figure 3G).

Regarding the large 11p13 deletion, children who inherited the
large deletions or had the de novo large deletions could develop
WT if an independent WTI mutation occurred in the paternally or
maternally derived WT1 allele (Figure 3K and N). However, large
homozygous deletions in the 11p13 chromosomal region caused by
UPD on 11p were unlikely to occur in a nephroblast, because of
disadvantage for survival with the loss of a large number of genes
(Figure 3] and M). In fact, seven tumours developed in patients
with WAGR syndrome, in which both WT1 and IGF2 statuses
were examined, showed large 11p13 deletions in one WTI allele
and small mutations in the other allele and ROH on 11pter-11p13
(BWT2L, BWT2R and UWTG6-10; Tables 1 and 2). Furthermore,
the patients inherited the small mutations from their fathers were

younger than those who inherited the small mutations from their
mothers, and the patients with a sporadic and UWT with small
homozygous WTI mutations and pUPD of IGF2 were younger
than those with a sporadic and UWT with the large deletion. These
findings indicate that a small WT1 mutation with pUPD on 11p is
the most efficient mechanism for WT development.

The present result on the WTI and IGF2 statuses in bilateral
and FWT led to the hypothesis that individuals who inherited
small WTI mutations from their fathers may be more likely to
develop WT than those who inherited the small mutations from
their mothers or inherited large 11p13 deletions or had the de novo
large deletions irrespective of parental origin. It is obvious that
genetic and epigenetic studies in a large number of WT families
with WTI mutations are needed to confirm the hypothesis. We
believe that if confirmed the present findings are useful for the
genetic counselling of individuals, including WT survivors, who
may inherit WT'1 mutations.
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