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In recent years, melanoma has become a poster-child for the development of oncogene-directed targeted therapies. This
approach, which has been exemplified by the development of small-molecule BRAF inhibitors and the BRAF/MEK inhibitor
combination for BRAF-mutant melanoma, has brought new hope to patients. Despite these successes, treatment failure seems
near inevitable in the majority of cases—even in individuals treated with the BRAF/MEK inhibitor doublet. In the current
review, we discuss the future of combination strategies for patients with BRAF-mutant melanoma as well as the emerging
therapeutic options for patients with NRAS-mutant and BRAF/NRAS-wild-type melanoma. We also outline some of the newest
developments in the in-depth personalisation of therapy that should allow melanoma treatment to continue shaping the field
precision cancer medicine.

BEYOND BRAF: DEVELOPING COMBINATION
STRATEGIES THAT ABROGATE RESISTANCE

The era of targeted therapy in melanoma began with the
identification of driver mutations in the serine threonine kinase
BRAF (Davies et al, 2002). It is now known that 40–60% of all
cutaneous melanoma patients harbour position 600 mutations in
BRAF, with the majority of these (B80%) being V600E mutations
(Dhomen and Marais, 2009). The next most frequent BRAF
mutation is V600K, which occurs in B20% of BRAF-mutant
patients (Long et al, 2011) and is associated with advancing
age—with chronic sun damage being a risk factor (El-Osta et al,
2011). It has also been suggested that BRAF V600K-mutant
melanoma shows an increased propensity to metastasise to the
brain and lungs (El-Osta et al, 2011). The BRAF V600R mutation is
the third most prevalent position 600 BRAF mutation and occurs
in 5–7% of patients (Lovly et al, 2012).

In the clinical setting, the BRAF inhibitors vemurafenib
and dabrafenib lead to significant levels of tumour shrinkage
(according to RECIST criteria) in the majority of patients whose
melanomas harbour position 600 BRAF mutations (Table 1)
(Chapman et al, 2011; Hauschild et al, 2012). The three most
common BRAF mutations (V600E/K/R) all exhibit BRAF inhibitor

sensitivity, with response rates in the BRAF V600E group being
B50% (Chapman et al, 2011; Klein et al, 2013). Regardless of these
encouraging results, most patients have responses that are
relatively short-lived (progression-free survival (PFS) for vemur-
afenib and dabrafenib was 5.3 and 5.1 months, respectively in
phase III trials) with resistance eventually occurring in most cases
(Chapman et al, 2011; Hauschild et al, 2012). Despite this and
preclinical data suggesting that some resistant melanoma patient
xenografts as well as cell lines with BRAF splice mutants may
depend upon continuous BRAF inhibition for their fitness, there
seems to be benefit to keeping patients on therapy beyond disease
progression (Das Thakur et al, 2013; Azer et al, 2014; Hartsough
et al, 2014). A recent study of 114 patients treated with either
dabrafenib or vemurafenib showed an increase in OS when
patients were kept on therapy despite progressing, compared with
those who stopped drug (17.8 vs 7.0 months, Po0.001) (Azer et al,
2014). Studies are currently ongoing to determine whether
resistance is better forestalled through continuous or discontinuous
dosing schedules.

The efficacy of these inhibitors is not restricted to extra-cranial
sites, with vemurafenib and dabrafenib found to cross the
blood–brain barrier and to have efficacy against melanoma
brain metastases (Long et al, 2012). At the same time, a subset

*Correspondence: Professor KSM Smalley; E-mail: keiran.smalley@moffitt.org

Received 22 April 2014; revised 23 July 2014; accepted 4 August 2014;
published online 2 September 2014

& 2015 Cancer Research UK. All rights reserved 0007 – 0920/15

MINIREVIEW

Keywords: melanoma; targeted therapy; beyond BRAF

British Journal of Cancer (2015) 112, 217–226 | doi: 10.1038/bjc.2014.476

www.bjcancer.com |DOI:10.1038/bjc.2014.476 217

mailto:keiran.smalley@moffitt.org
http://www.bjcancer.com


Table 1. Clinical trials for BRAF-mutant only patients

NCT ID Genotype Drug Target Phase Status Results Reference
NCT01006980 BRAF Dacarbazine

Vemurafenib
Chemotherapy
BRAF

3 Active Vemurafenib group: OS at 6 months
84% (95% CI), 48% response rate
Dacarbazine group: OS at 6 months
64% (95% CI, 56–73), 5% response
rate

Chapman et al (2011)

NCT01227889 BRAF Dacarbazine
Dabrafenib

Chemotherapy
BRAF

3 Active Dabrafenib: mPFS 5.1 months
Dacarbazine: mPFS 2.7 months With
hazard ratio (HR) of 0.30 (95% CI 0.18–
0.51; Po0.0001)

Hauschild et al (2012)

NCT01245062 BRAF Dacarbazine
or Paclitaxel
Trametinib

Chemotherapy

MEK

3 Active Trametinib: mPFS 4.8 months, OS at 6
months 81% Chemotherapy: mPFS 1.5
months, OS at 6 months 67% Hazard
ratio for disease progression or death
in the trametinib group, 0.45; 95% CI,
0.33 to 0.63; Po0.001. Hazard ratio
for death, 0.54; 95% CI, 0.32–0.92;
P¼0.01

Flaherty et al (2012b)

NCT01072175 BRAF Dabrafenib
Trametinib

BRAF
MEK

2 Active Combination group: mPFS 9.4
months, 76% complete or partial
response Dabrafenib group: mPFS 5.8
months, 54% complete or partial
response Hazard ratio for progression
or death, 0.39; 95% confidence
interval, 0.25–0.62; Po0.001

Flaherty et al (2012a)

NCT00304525 BRAF RAF265 Pan-RAF 2 Completed a

NCT01657591 BRAF Vemurafenib
XL888

BRAF
HSP90

1 Recruiting a

NCT02068079 BRAF Vemurafenib
Trientine

BRAF
Copper chelator

1 Recruiting a

NCT01902173 BRAF Dabrafenib
GSK2141795

BRAF
AKT

1/2 Recruiting a

NCT01820364 BRAF LGX818 and:
MEK162
LEE011
BGJ398
BKM120
INC280

BRAF
MEK
CDK4/6
FGFR
PI3K
c-MET

2 Recruiting a

NCT00936221 BRAF Dacarbazine
Selumetinib

Chemotherapy
MEK

2 Active OS did not differ significantly between
groups, PFS improved with
selumetinib.
Selubetinibþdacarbazine group:
mOS 13.9 months (80% CI 10.2–15.6),
mPFS 5.6 months Dacarbazine group:
mOS 10.5 months (80% CI 9.6–14.7),
mPFS 3.0 months

Robert et al (2013)

NCT01495988 BRAF Vemurafenib
Bevacizumab

BRAF
angiogenesis

2 Recruiting a

NCT01826448 BRAF Vemurafenib
PLX3397

BRAF
CSF1R, KIT, FLT3

1 Recruiting a

NCT01841463 BRAF Vemurafenib
P1446A

BRAF
CDK4

1 Recruiting a

NCT01616199 BRAF Vemurafenib
PX-866

BRAF
PI3K

1/2 Recruiting a

NCT02097225 BRAF AT13387
Dabrafenib
Trametinib

HSP-90
BRAF
MEK

1 Recruiting a

NCT01519427 BRAF, failed
BRAFi

Selumetinib
MK2206

MEK
AKT

2 Terminated Study terminated due to slow accrual,
total of 2 patients. OS 153 days, PFS
105 days, SD in 1 patient and PD in 1
patient

a

Abbreviations: CI¼ confidence interval; CR¼ complete response; mOS¼median overall survival; mPFS¼median progression-free survival; OS¼overall survival; ORR¼objective response
rate; PD¼progressive disease; PFS¼progression-free survival; PR¼partial response; SD¼ stable disease.
aClinicaltrials.org.
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of BRAF-mutant melanoma patients—B10%—have been identi-
fied who did not meet the RECIST criteria for a response to
vemurafenib or dabrafenib, suggesting the existence of complex
genetic profiles that may convey intrinsic (or pre-existing)
resistance (Salama and Flaherty, 2013).

Resistance to BRAF inhibitors in melanoma is complex and
mediated through multiple mechanisms with heterogeneous
patterns of progression observed (for extensive reviews, see Solit
and Rosen, 2011 and Holderfield et al, 2014). A recent analysis of a
small cohort of patients showed the majority to progress at new
metastatic sites (50%), with a slightly small percentage showing
disease progression at existing sites (Menzies et al, 2014). In the
majority of cases (470%), acquired BRAF inhibitor resistance
(here defined as the diminishment of drug response that that
occurs following chronic BRAF inhibitor treatment) is charac-
terised by the reactivation of MAPK signalling that can be
mediated through multiple mechanisms including NRAS (Q61K)
mutations, BRAF amplification, activating MEK1 (C121S and
P124L) mutations, MEK2 (Q60P) mutations concurrent with
BRAF amplification and BRAF splice-form mutants (Emery et al,
2009; Wagle et al, 2011; Villanueva et al, 2013; Shi et al, 2014).
In vitro, MAPK signalling recovers rapidly following BRAF
inhibition, in part through the relief of feedback inhibition in the
pathway and an increased sensitivity to growth factors such as
epidermal growth factor (EGF), neuregulin (NRG-1), hepatocyte
growth factor (HGF) and fibroblasts growth factor (FGF) (Lito
et al, 2012). In this context, reactivation of MAPK signalling
following BRAF inhibition is important for therapeutic escape with
increased levels of cell death and tumour regression being seen
when BRAF and MEK are co-targeted (Paraiso et al, 2010; Lito
et al, 2012). Clinical trials have confirmed these preclinical
observations with the BRAF/MEK inhibitor combination (dabra-
fenib plus trametinib) showing an increased PFS compared with
BRAF inhibitor alone (Table 1). A later trial—the phase III
COMBI-D regimen—further showed an increase in the overall
response rate to the combination compared with monotherapy and
an improvement in a range of clinical end points. Another BRAF/
MEK inhibitor combination—vemurafenibþ cobimetinib—also
appears promising, with newly released data from the BRIM-7
trial demonstrating an 87% confirmed response rate by RECIST
and a median PFS of 13.7 months (Ribas et al, 2014).

Despite hopes that vertical MAPK pathway targeting would
limit resistance, treatment failure still occurs with the resistance
mechanisms observed to the BRAF/MEK inhibitor combination
being analogous to those seen in patients on BRAF inhibitor
monotherapy. A preliminary genetic analysis of five patients failing
dabrafenibþ trametinib revealed similar mechanisms of resistance
to those seen in patients on BRAF inhibitor monotherapy and
highlighted the role of MEK2 Q60P mutations, BRAF-splice
mutants and BRAF amplification (Wagle et al, 2014). It is therefore
perhaps not surprising that failure on BRAF inhibitor therapy also
confers resistance to MEK inhibition, with minimal clinical activity
being seen to trametinib in patients failing dabrafenib and a 15%
response rate (median PFS 2.8 months) observed in patients
failing BRAF inhibitor following treatment with vemurafenibþ
cobimetinib (Ribas et al, 2014).

Attention is now being turned to further targeted agents that
can be added to the BRAF/MEK inhibitor backbone. There is
already preclinical evidence that ERK inhibitors, such as
SCH772984, can overcome acquired resistance to single agent
BRAF and MEK inhibition (Morris et al, 2013). Although clinical
trials of ERK inhibitors in the monotherapy setting have been
initiated, little information has been yet presented on their efficacy
or toxicity. Another surprise recent finding was the dependency of
the MAPK signalling pathway upon copper ions, with the copper-
MEK1 interaction being required for efficient ERK phosphoryla-
tion (Brady et al, 2014). Chelation of copper or the knockdown of

the copper transporter CRT1 had anti-proliferative activity against
BRAF-mutant melanoma cells and could overcome vemurafenib
resistance mediated through the C121S MEK1 mutations (Brady
et al, 2014).

Many components of the MAPK pathway, including mutant
BRAF, CRAF and COT proteins, are clients of the chaperone
protein HSP90 (da Rocha Dias et al, 2005; Grbovic et al, 2006;
Paraiso et al, 2012). This, along with the requirement for HSP90 in
multiple BRAF inhibitor resistance mechanisms, has raised interest
in co-targeting the HSP90 ‘clientome’ along with mutant BRAF.
This concept has already been validated in other cancers, with
studies showing that HSP90 inhibitors reverse trastuzamab
resistance in HER2-positive breast cancer as well as bortezomib
resistance in multiple myeloma (Modi et al, 2011; Richardson et al,
2011). At least three preclinical studies have now demonstrated
that HSP90 inhibitors (including XL888 and ganetespib) can
overcome or abrogate the onset of BRAF inhibitor resistance
(Paraiso et al, 2012; Wu et al, 2013; Acquaviva et al, 2014). At this
time, a phase I dose escalation study of vemurafenibþXL888 in
patients with metastatic BRAF V600-mutant melanoma is ongoing
(Table 1) (NCT01657591).

Although reactivation of MAPK signalling is frequently
associated with BRAF and BRAF/MEK inhibitor failure, other
pathways such as the PI3K/AKT pathway have also been
implicated in resistance. In melanoma cell lines, constitutive
PI3K/AKT signalling is commonly observed and can result from
multiple mechanisms, including the loss/mutation of the tumour
suppressors PTEN or neurofibromin (NF1) or increased expression
of AKT3 (Stahl et al, 2004; Tsao et al, 2004; Maertens et al, 2012).
In vitro studies have suggested that BRAF and MEK inhibition may
sometimes lead to rebound PI3K/AKT signalling, resulting in
therapeutic escape mediated through the suppression of apoptosis
(Gopal et al, 2010; Paraiso et al, 2011). These lab-based findings
have also been supported by the observation that increased PI3K/
AKT signalling occurs in some early (4–25 days) on-therapy
specimens from patients treated with a BRAF inhibitor (Shi et al,
2014). One study showed that 22% of tumours from patients failing
therapy exhibited increased AKT activity (Shi et al, 2014). In the
majority of cases (81%) increased AKT signalling overlapped with
recovery of signalling in the MAPK pathway, with the AKT
pathway representing the primary resistance pathway in only a
minority of cases (Shi et al, 2014). A number of potential
mechanisms of PI3K/AKT activation were identified including
mutations in PI3KCA (D350G and E544G), PI3KCG (V983E),
PTEN (134M_ and fs.40), PI3KR2 (N561D), AKT1 (Q79K), AKT3
(E17K) and PHLPP1 (K596E) (Shi et al, 2014). Of these, loss of
PTEN function, either through mutation or loss of expression, has
been the most extensively investigated with somewhat conflicting
results about its relevancy. Although there is preclinical evidence
suggesting that loss of PTEN expression predicts for a reduced
cytotoxic response to BRAF inhibition, some BRAF V600E/PTEN-
null melanoma cell lines have also been identified with sensitivity
to vemurafenib (Atefi et al, 2011; Paraiso et al, 2011). In addition,
good levels of tumour regression have been observed in BRAF
V600E/PTEN-null GEMM models of melanoma following BRAF
inhibitor treatment (Marsh Durban et al, 2013). A similarly
nuanced picture also emerged when patients receiving dabrafenib
were stratified according to their PTEN status, with a trend being
seen towards a lower PFS in individuals whose tumours lacked
PTEN function (Nathanson et al, 2013).

The identification of PI3K/AKT signalling as a core pathway
for melanoma development and therapeutic escape suggested
the possibility of co-targeting MAPK and PI3K/AKT signalling
in BRAF-mutant melanoma (Table 1). A number of early
preclinical studies demonstrated the utility of concurrently
targeting the MAPK and PI3K/AKT pathways across multiple
melanoma cell lines and xenografts (Bedogni et al, 2006;
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Smalley et al, 2006). In BRAF V600E/PTEN-null GEMM models,
the combination of the BRAF inhibitor LGX818 with the PI3K
inhibitor BKM-120 was associated with a more rapid and durable
pattern of tumour regression compared with LGX818 alone
(Marsh Durban et al, 2013). With the clinical availability of
PI3K, AKT and mTOR inhibitors, multiple trials are now
underway with combined inhibition of the MAPK and PI3K
pathways (Tables 1 and 2).

Melanomas have the highest mutational loads of all cancers
(Alexandrov et al, 2013). One central question that has arisen is
whether resistance is mediated through pre-existing clones that are
BRAF wild type or occurs through drug-induced selection pressure
that drives the mutational landscape. Evidence in favour of drug-
induced selection pressure comes from a recent whole-exome
sequencing study of multiple progressing lesions from one patient
failing dabrafenib therapy after 383 days (Shi et al, 2014). Of the
nine distinct progressing lesions analysed, at least five co-existent
mechanisms of resistance were identified, including an acquired
KRAS mutation, a BRAF splice-mutant, BRAF amplification, a
PTEN indel and one mechanism that remains unknown (Shi et al,
2014). At the same time, the mutational spectra of the progressing
tumours significantly altered on BRAF inhibitor therapy, with a
reduction in the frequency of C4T transition mutations being
observed in the resistant tumours compared with the pre-treatment
tumours (Shi et al, 2014).

NRAS-MUTANT AND BRAF/NRAS-WILD-TYPE
MELANOMA

Although the majority of therapeutic advancements in the past few
years have been largely focused on patients with mutations in
BRAF, NRAS was actually the first oncogene identified in
melanoma (Albino et al, 1984). NRAS is part of family of low-
molecular weight GTP-binding proteins that are associated with
the plasma membrane. Ras proteins control a wide array of cellular
functions, including growth, survival and invasion, by relaying
signals from activated RTKs at the cell surface to downstream
effectors in the nucleus, including cell-cycle proteins and
transcription factors (Malumbres and Barbacid, 2003; Cully and
Downward, 2008). Activated Ras can trigger a number of
intracellular signalling pathways such as the Raf/MEK/ERK
mitogen-activated protein kinase (MAPK) pathway and the
PI3K/AKT pathway (Downward, 2003). Mutated Ras can mediate
cellular transformation through a network of signal-transduction
pathways independent of upstream RTK activation (Malumbres
and Barbacid, 2003). The role of NRAS in driving growth of
melanoma cells was confirmed through knockdown of NRAS in
melanoma cell lines using small-interfering RNA, which showed a
marked reduction in cell growth and with decreased expression of
cyclins D1 and E2 (Eskandarpour et al, 2009). It is currently known
that NRAS, KRAS and HRASmutations are present in 20%, 2% and
1% of all melanomas, respectively, with the most common NRAS
mutation occurring at position Q61 (Milagre et al, 2010).

NRAS-mutant melanomas differ from BRAF-mutant melano-
mas in clinical presentation and prognostic features (Devitt et al,
2011; Ellerhorst et al, 2011). Patients who present with NRAS-
mutant melanomas tend to be older and have a history of chronic
UV exposure (Devitt et al, 2011). These individuals tend to have
thicker primary tumours that are located on the extremities and
have higher rates of mitosis (Devitt et al, 2011). While MAPK
signalling in melanocytes is typically driven through BRAF, BRAF
activity is not required for MAPK activation in NRAS-mutant
melanomas, which alternatively rely on CRAF signalling (Dumaz
et al, 2006). In NRAS-mutant melanoma, the switch to CRAF
signalling is dependent on both the phosphorylation and
inactivation of BRAF at S151, T401, S750 and T753 and the

deregulation of protein kinase A (PKA) activity (which serves to
prevent CRAF from being phosphorylated at inhibitory sites)
(Dumaz et al, 2006; Marquette et al, 2011). The role of PKA in the
regulation of CRAF suggests the possibility for therapeutic
intervention, with studies showing selective phosphodiesterase IV
inhibitors to be growth inhibitory and pro-apoptotic in NRAS-
mutant cell lines (Marquette et al, 2011). Similarly, PI3K/AKT
pathway regulation in NRAS-mutant melanoma cells proceeds
differently than in those harbouring a BRAF mutation, and occurs
directly through the Ras-mediated recruitment of PI3K, rather
than the concurrent loss of PTEN or NF1 function (Tsao et al,
2004; Maertens et al, 2012).

So far, the direct targeting of NRAS has proven to be a challenge.
Several approaches have been explored for targeting Ras directly by
designing drugs that prevent the post-translational modifications
required for the insertion of Ras into the plasma membrane.
Farnesyl transferase inhibitors initially showed great preclinical
potential, but have ultimately been disappointing in the clinical
setting (Konstantinopoulos et al, 2007). The recent years have seen
renewed interest in the development of small-molecule RAS
inhibitors that bind to domains unique to the mutant protein. One
approach has utilised the binding of drug to the cysteine in the
G12-mutant form of KRAS to achieve selectivity over the wild-type
protein (Ostrem et al, 2013). In preclinical studies, compounds
directed against KRAS-G12 had anti-proliferative and pro-
apoptotic activity against KRAS-mutant lung cancer cell lines in
the low micromolar range. Another RAS targeting approach is to
inhibit the interaction between KRAS and the prenyl binding
protein PDEd, which in turn prevents KRAS signalling by altering
its localisation to endomembranes (Zimmermann et al, 2013).
Although these new inhibitors have been developed for mutant
KRAS, it is likely that a similar concept can be applied to NRAS-
mutant tumours in the near future.

One other strategy being actively explored is the inhibition of
the downstream mediators of Ras signalling, including MEK, ERK,
PI3K and CDK4. The greatest focus of preclinical studies for
NRAS-mutant melanoma has been upon MAPK pathway inhibi-
tion in combination with inhibitors of other pathways activated by
Ras. Preclinical work using shRNA to knock down Ras targets
demonstrated that good levels of tumour regression could be
achieved in vivo following the ablation of either BRAFþCRAF or
BRAFþPI3K (Jaiswal et al, 2009). Other studies, in which small-
molecule inhibitors of the MAPK and PI3K/AKT pathway were
evaluated in NRAS-mutant melanoma xenograft models, demon-
strated the combination of MEK/PI3K inhibitors to be superior to
a combination targeting MEKþmTOR (Posch et al, 2013). It was
further found that the combination of a MEK inhibitor with a
PI3K/mTOR inhibitor was synergistic and was associated with
profound levels of tumour regression (Posch et al, 2013). Further
support for this combination comes from studies of BRAF-mutant
melanoma cell lines in which resistance was mediated through the
acquisition of an NRAS mutation(Greger et al, 2012). There is also
evidence from unbiased bioinformatic studies of synergy between
MEK and CDK4/6 inhibitors in NRAS (Q61K)/CDKN2ANull

mouse melanoma models, and this combination is currently being
evaluated clinically in patients with NRAS-mutant melanoma
as well as those with BRAF-mutant melanoma (Table 2)
(NCT01781572, NCT01777776) (Kwong et al, 2012).

Despite the focus upon the co-targeting of the MAPK and PI3K/
AKT pathways in NRAS-mutant melanoma, other Ras-driven
pathways may also be important for tumour initiation and
maintenance—and significantly less is known about these.
A recent study in which ARF-null immortalised melanocytes were
transformed with active forms of PI3K, MEK or Ral-GDS revealed
distinct roles for all of these signal transduction mediators in
tumour initiation, with Ral-GDS being a prerequisite for
anchorage-independent growth (Mishra et al, 2010). Other work
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Table 2. Clinical trials for genotypes other than BRAF-mutant only

NCT ID Genotype Drug Target Phase Status Results Reference

NCT01781572 NRAS LEE011
MEK162

Cyclin D1/CDK4,
cyclin D3/CDK6
MEK

1/2 Recruiting a

NCT01763164 NRAS MEK162 MEK 3 Recruiting a

NCT02138292 BRAF WT Trametinib
Digoxin

MEK
cardiac glycoside

1 Not yet
recruiting

a

NCT01941927 BRAF WT Trametinib
GSK2141795

MEK AKT 2 Recruiting a

NCT00470470 c-KIT Imatinib c-KIT 2 Active The overall durable response
rate was 16% (95% confidence
interval (CI), 2–30%), with a
median time to progression of
12 weeks (interquartile range
(IQR), 6–18 weeks; 95% CI, 11–
18 weeks), and a median OS of
46.3 weeks (IQR, 28 weeks-not
achieved; 95% CI, 28 weeks-not
achieved)

Robert et al (2013)

NCT00631618 c-KIT Sunitinib Multiple RTKs 2 Completed Of 4 patients with KIT
mutations, 1 had a CR for 15
months and 2 had PR (1 and 7
months). 1 of the 6 patients with
only KIT amplification or
overexpression alone had a PR.
In 1 responder with rectal
melanoma who later
progressed, the recurring
tumour had a previously
undetected mutation in NRAS,
which was found in addition to
the persisting mutation in KIT

Minor et al (2012)

NCT00591734 Not specified Everolomus
Bevacizumab

mTOR
angiogenesis

2 Completed 12% major response, 58%
stable disease, mPFS 4.0
months, OS 8.6 months

Hainsworth et al (2010)

NCT00591734 Not specified Paclitaxel
Carboplatin
Everolimus

mTOR 2 Completed ORR 17%, PFS 4.04 months, OS
10.12 months

a

NCT00338130 Not specified Temozolomide
vs Selumetinib

Chemotherapy vs
MEK

2 Active Selumetinib group: mPFS 78
days, ORR 5.8%
Temozolomide group: mPFS 80
days, ORR 9.4%
Five of the six selumetinib
partial responders were BRAF
mutated

Kirkwood et al (2012)

NCT00827177 NRAS WT/
mutant

Sorafenib
Tivantinib

Pan-RAS
c-Met

1 Completed CR in 1 pt, PR in 3 pts, and SD in
3 pts. 4 pts had progressive
disease and 5 pts were not
evaluable. ORR and disease
control rate were 25% and 44%,
respectively. mPFS was 5.3 mo
(95% CI, 1.6–12.9 mo). Among
8 pts with NRAS mutations,
mPFS was 9.2 mo (95% CI, 5.3–
12.9 mo) and responses were 1
CR, 1 PR and 2 SD

Means-Powell et al (2012)

NCT01363232 BRAF/NRAS BKM120
MEK162

PI3K
MEK

1 Active No results reported a

NCT01337765 BRAF/NRAS BEZ235
MEK162

PI3K
MEK

1 Active No results reported a
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showed the RAL-GEF effector TANK-binding kinase 1 (TBK1) to
be a key mediator of RAL activity in NRAS-mutant melanoma,
with its siRNA-mediated knockdown found to prevent tumour
invasion and migration (Vu and Aplin, 2014).

In the same vein, the HSP inhibitor XL888 demonstrated
efficacy against a panel of NRAS-mutant cell lines through
simultaneous suppression of a number of targets crucial for
NRAS-mutant melanoma cell survival, including CDK4, AKT and
WEE1 (Haarberg et al, 2013). The potential role of WEE1 in Ras-
mutant tumours has also been confirmed in other systems, with
positive interactions seen between the WEE1 inhibitor MK-1775
and PI3K/AKT/mTOR inhibitors in various models including
acute leukaemia (Weisberg et al, 2014).

Despite strong preclinical evidence for treating NRAS-mutant
melanoma using inhibitors of MEK, clinical trials so far have
demonstrated only modest activity in patients. At first, early
generation MEK inhibitors exhibited only a 10% objective response
rate. However, excitement at the idea of targeting MEK resurfaced
with the development of potent third-generation MEK inhibitors
trametinib (GSK1120212) and MEK162 (ARRY-438162) (Table 2).
In the recent phase II clinical trial of MEK162, 20% of NRAS-
mutant patients exhibited objective responses while a further 43%
showed stable disease; however, median PFS was 3.7 months
(Ascierto et al, 2013). A phase III trial is currently ongoing
comparing MEK162 with dacarbazine specifically in NRAS-mutant
metastatic melanoma patients (Table 2) (NCT01763164). The
mechanisms by which NRAS-mutant melanomas escape from
MEK inhibition are starting to be elucidated. Treatment of NRAS-
mutant melanoma cell lines with the MEK inhibitors AZD6244
and trametinib is associated with recovery of MAPK signalling, an
effect that can be overcome through dual MEK/ERK inhibition.
Another potential mechanism of escape from MEK inhibition in
NRAS-mutant melanoma is adaptive (here defined as a change in
signalling that occurs following the administration of a first drug)
RTK signalling, with increased PDGFR-B signalling being observed
in some cell lines following treatment with the MEK inhibitor
AZD6244 (Rebecca et al, 2014b). In these instances, therapeutic
escape was abrogated and cytotoxicity was enhanced when MEK
inhibitors were combined with the PDGFR inhibitor crenolanib
(Rebecca et al, 2014b).

NRAS-mutant melanoma cell lines are known to have
constitutive activity in many RTKs and there is growing preclinical

evidence that multi-RTK targeted inhibitors have efficacy against
subsets of NRAS-mutant melanoma (Tworkoski et al, 2011;
Fedorenko et al, 2014). Studies have already shown RAF-265
(which inhibits CRAF, BRAF, VEGFR and FLT-3 among other
things) to have good anti-tumour activity in some BRAF-wild-type
melanoma patient-derived xenografts and that amuvatinib (inhi-
bits c-KIT, c-MET, Axl and RAD51) is effective in some NRAS-
mutant melanoma cell lines (Su et al, 2012; Fedorenko et al, 2014).
In the clinical setting, NRAS-mutant melanoma patients also
showed better responses to the combination of sorafenib with
carboplatinþ paclitaxel than their BRAF-mutant counterparts
(Wilson et al, 2014).

Strategies to target melanomas that are BRAF/NRAS/KIT-wild
type (so-called ‘triple-negative’ or ‘pan-negative’ melanomas) have
proven even more elusive. The recent whole-exome sequencing of
21 melanomas that were BRAF/NRAS-wild type painted a complex
picture involving mutations in NF1 as well as rare CRAF and
MAP2K1 mutations (Hodis et al, 2012). Some of the BRAF/NRAS-
wild-type melanomas in this study showed focal amplification in
potential oncogenes such as cyclin D1 and CDK4, although it was
not determined whether this conveyed sensitivity to CDK4
inhibition (Hodis et al, 2012). In a second more recent study, the
next-generation sequencing of 623 cancer-related genes across 241
melanoma samples included 69 tumours that were ‘triple-negative’.
In this cohort, a number of potential driver mutations were
identified including ALK (3.5%), RAC1 (2.9%), STK31 (8.7%),
DGK1 (4.7%), NF1 (7.6%), KDR (6.4%) and ERBB4 (11.6%) (Xia
et al, 2014). Although both these sequencing studies identified
mutations in NF1 (which is a negative regulator of Ras signalling)
as a potential driver of BRAF/NRAS-wild-type melanoma, its loss
seems to also play a role in BRAF-mutant melanoma (Maertens
et al, 2012; Whittaker et al, 2012; Nissan et al, 2014).
In the BRAF-mutant context, loss of NF1 function leads to
increased CRAF-mediated MAPK signalling and activation of the
PI3K/AKT pathway, and it is implicated in both BRAF inhibitor
resistance and melanoma development (Maertens et al, 2012;
Whittaker et al, 2012; Nissan et al, 2014). It is likely that melanoma
patients lacking NF1 function (regardless of other co-operating
oncogenes) will require combination therapy treatment; with
preclinical studies suggesting the utility of the MEKþmTOR
inhibitor combination, a pan-RAF inhibitor or an ERK inhibitor
(Maertens et al, 2012; Whittaker et al, 2012; Nissan et al, 2014).

Table 2. ( Continued )

NCT ID Genotype Drug Target Phase Status Results Reference

NCT01320085 BRAF/NRAS MEK162 MEK 2 Active No patients had a complete
response. Six (20%) of 30
patients with NRAS-mutated
melanoma had a partial
response (three confirmed) as
did 8 (20%) of 41 patients with
BRAF-mutated melanoma (two
confirmed)

Ascierto et al (2013)

NCT00866177 BRAF/NRAS Selumetinib MEK 2 Completed Tumour regression was seen in
3/5 patients with BRAF-
mutated, low pAKT melanomas;
no responses were seen in the
high pAKT cohort. The
estimated mPFS was 2.2
months in the high pAKT cohort
and 7.1 months in the low pAKT
cohort

Catalanotti et al (2013)

Abbreviations: CI¼ confidence interval; CR¼ complete response; mOS¼median overall survival; mPFS¼median progression-free survival; OS¼overall survival; ORR¼objective response
rate; PD¼progressive disease; PFS¼progression-free survival; PR¼partial response; SD¼ stable disease.
aClinicaltrials.org.
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RAC1 is a small GTPase that has been linked to cancer cell
motility (Sanz-Moreno et al, 2008). Recurrent P29S mutations in
RAC1 were recently reported in 3.3–9.2% of cutaneous melanomas,
with mutations occurring at a greater frequency in male patients
(Krauthammer et al, 2012; Mar et al, 2014). Although an
association was reported between RAC1 mutations and BRAF/
NRAS-wild-type mutational status, this was not found in a second,
larger study (Krauthammer et al, 2012; Mar et al, 2014). From a
functional standpoint, the presence of a RAC1 mutation was
associated with a greater risk of nodal metastasis and it was
suggested that the acquisition of a Rac1 mutation led to a greater
risk of early disease dissemination (Mar et al, 2014).

Although triple-negative melanomas may lack BRAF mutations,
they may still be dependent upon BRAF signalling, with two recent
reports identifying the potential role of BRAF fusion proteins
(Botton et al, 2013; Hutchinson et al, 2013). These fusion events,
which typically involve the fusion of the BRAF kinase domain to
other N-terminal binding partners including PASSP1, CDC27,
TAX1BP1 and TRIM24, occur in 4–8% of cases of triple-negative
melanomas (Hutchinson et al, 2013). Preliminary evidence
suggests that these fusion proteins activate the MAPK pathway
in melanoma cell lines and convey sensitivity to either sorafenib or
MEK inhibition (Botton et al, 2013; Hutchinson et al, 2013). At the
same time there have also been reports of melanomas with non-
position 600 mutations in BRAF such as K601, L597R and L597Q
showing sensitivity to MEK inhibition (Dahlman et al, 2012;
Bowyer et al, 2014).

Inhibition of the MAPK and PI3K/AKT signalling pathways
leads to adaptive RTK signalling in multiple cancer types
(Chandarlapaty et al, 2011; Duncan et al, 2012; Lito et al, 2012).
BRAF/NRAS-wild-type melanoma is no exception and there is
evidence that inhibition of MEK signalling leads to increased
endothelin-B receptor (EDNRB) expression that limits therapeutic
efficacy (Asundi et al, 2014). In an in vivo model of BRAF/NRAS-
wild-type melanoma, the co-targeting of MEK with an antibody
drug conjugate targeted against EDNRB was more efficacious
than either agent alone and was associated with good levels of
tumour suppression (Asundi et al, 2014). Similarly, inhibition of
AKT in combination with paclitaxel and carboplatin suppressed
the long-term growth of BRAF/NRAS-wild-type melanoma
cell lines in vitro, and was associated with stable disease (410
months) in two cases of BRAF-wild-type melanoma (Rebecca
et al, 2014a).

Another potential therapeutic target that is frequently either
amplified or overexpressed in BRAF-wild-type and BRAF/NRAS-
wild-type melanoma is p21-activated kinase (PAK)-1 (Ong et al,
2013). This kinase, which is downstream of both RAC1 and
CDC42, stimulates the MAPK pathway by directly phosphorylat-
ing CRAF at S338 and MEK1 at S298. In NRAS-mutant and BRAF/
NRAS-wild-type melanomas, inhibition of PAK1 through either
siRNA knockdown or the PAK1 inhibitor PF-3758309 suppresses
ERK phosphorylation and was associated with the reduction
growth in a BRAF/NRAS-wild-type melanoma xenograft model
(Ong et al, 2013). In this instance, the effect seemed to be more
cytostatic than cytotoxic: suggesting that other drugs may need to
be combined with PF-3758309 to achieve cytoreduction and
durable responses.

CONCLUSION

Tremendous progress has been made in developing oncogene-
directed therapies for treating BRAF-mutant melanoma. Resistance
remains a major problem that limits the long-term responsiveness
of the majority of the patients to these drugs. Current strategies to
improve the durability of response are now focused on the

development of personalised combination therapy strategies, the
majority of which centre upon the suppression of adaptive MAPK
and PI3K/AKT signalling (Table 1). Given the current success of
the BRAF/MEK inhibitor doublet, future combinations will likely
be based upon this backbone. At this time, the relationship
between the genetic prolife of the tumour and patterns of adaptive
signalling are not well understood. Better assays and biomarkers
will be needed to interrogate the early treatment responses so that
combinations can be rapidly personalised before resistance ensues.
Strategies being explored in this realm include the analysis of
circulating tumour cells, circulating tumour DNA and proteomic
methods. Considerably less progress has been made in the
development of precision medicine strategies for BRAF-wild-type
melanoma. Although there are hints that MEK inhibitors may be
effective in NRAS-mutant melanoma, responses have been sub-
optimal and combinations (likely highly personalised ones) will be
needed.
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