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Background: Resistance to chemotherapeutic agents is a major obstacle to cancer treatment. A group of ABC efflux pumps, the
Multidrug Resistance Proteins, is a source of resistance. Herein, we investigated the role of ABCC10 in mammary tumours, given
the important role we have defined for ABCC10 in transporting taxanes, and the recognition that some ABCC proteins have roles
in tumour growth.

Methods: ABCC10 expression was correlated to human breast cancer subtype using breast tissue microarrays. Real-time
quantitative PCR and western blot analysis were used to examine ABCC10 expression in human breast cancer lines. Abcc10� /�

mice were crossed to MMTV-PyVmT mice to produce Abcc10� /� vs Abcc10þ /þ mammary tumours and derivative cell lines. We
used allograft and cellular assays to perform baseline and drug sensitization analysis of tumours and cell lines.

Results: Clinical sample analyses indicated that ABCC10 was more highly expressed in Her2þ and ERþ than in Her2� , ER� ,
and triple-negative breast cancer. Unexpectedly, PyVmT; Abcc10� /� tumours grew more rapidly than PyVmT; Abcc10þ /þ

tumours and were associated with significantly reduced apoptosis and metastasis. PyVmT; Abcc10� /� lines were less migratory
than PyVmT; Abcc10þ /þ lines. Finally, we showed increased survival of docetaxel-treated MMTV-PyVmT; Abcc10� /� mice
compared with wild-type mice.

Conclusions: These data identify roles for Abcc10 in breast cancer pathogenesis and in vivo docetaxel resistance.

Much of the mortality of any cancer is associated with resistance to
therapeutic agents. Docetaxel and paclitaxel have been mainstays
of breast cancer treatment regimens and the development of
chemotherapeutic resistance to these agents has long been a major
impediment to cancer treatment. One reported contributing factor
to multidrug resistance is the overexpression of a class of efflux
pumps known as ATP-Binding Cassette (ABC) transporters. The C
subfamily of ABC proteins, alternatively known as the ABCC
proteins, or the Multidrug Resistance Protein subfamily, consists of
nine family members. These pumps confer resistance to and
transport several classes of chemotherapeutics including taxanes,
vinca alkaloids, and anthracyclines, as well as physiological
substrates including leukotrienes (Glavinas et al, 2004; Keppler, 2011).

Taxanes are important agents in the treatment of many cancers,
including breast cancer (Woodward and Twelves, 2010). Well-
studied taxane pumps such as ABCB1 have been highly
investigated over the past few decades as possible mediators of
taxane resistance in breast cancer. To date, numerous studies have
been unable to find a clinical benefit of inhibiting ABCB1 (Kelly
et al, 2012; Amiri-Kordestani et al, 2013).

By contrast, although we and others have demonstrated that
ABCC10 expression is widespread (Hopper et al, 2001; Wang et al,
2009), few studies have addressed the role of this protein in in vivo
treatment resistance. ABCC10 is a particularly interesting trans-
porter to study, as overexpression of ABCC10 in vitro confers
resistance to an unusually wide range of clinically valuable drugs,
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including taxanes, vinca alkaloids, nucleoside analogues, and
epothilone B (Hopper-Borge et al, 2004; Oguri et al, 2008;
Hopper-Borge et al, 2009). Excitingly, we used a newly developed
Abcc10� /� mouse model to show that absence of this transporter
in vivo sensitises animals to taxanes, with Abcc10� /� mice
experiencing increased sensitivity (that is, increased neutropenia
and bone marrow hypoplasia) compared with their wild-type
counterparts following paclitaxel treatment (Hopper-Borge et al,
2011). These findings also suggest that modulation of ABCC10
activity by inhibitors may have clinical value in management of
breast cancer and other cancers that are treated with taxanes, based
on action in eliminating these drugs from breast tumour tissue.

Besides direct action in regulating drug efflux, a growing and
intriguing body of work suggests that some ABC transporters may
affect cancer biology in additional ways that affect disease course or
treatment. A recent study has implied a link between ABCC1,
ABCC11, and poor prognosis in breast cancer (Yamada et al,
2013). ABCC1, ABCC3, and ABCC4 have clinical and biological
effects in neuroblastoma independent of their abilities to efflux
drug (Henderson et al, 2011). For all of these transporters,
expression tends to increase with age, causing them to be more
abundant at the time of great rates of cancer onset. Interestingly,
ABCC1 suppresses neuroblastoma development in an hMCYN
mouse model. In vitro inhibition of ABCC1 and ABCC4 suppresses
wound closure, whereas ABCC3 overexpression inhibits cell
migration and cell line clonogenicity (Henderson et al, 2011).
Such unexpected activities might also affect drug resistance, by
affecting the proliferation rate of tumours, or by contributing to
epithelial–mesenchymal transitions that are associated with general
drug resistance (Dave et al, 2012; McMillin et al, 2013).

To date, few studies have addressed the impact of ABCC10 in
breast cancer. One recent study showed that ABCC10 mRNA is
upregulated in breast carcinoma and that its expression correlates
with ER status (Hlavac et al, 2013). We have now examined the
expression of the ABCC10 protein in breast tumours and breast
cancer cell lines to establish physiological relevance in this context.
To further investigate the role of ABCC10 in breast cancer, and in
particular the viability of ABCC10 as a target for cancer treatment,
we have also bred Abcc10� /� mice to the well-described mouse
mammary tumour virus-polyomavirus middle T (MMTV-PyVmT)
model (Lin et al, 2003). We chose this model because detailed
pathological analysis of PyVmT tumours indicates that the
progression from premalignant to highly malignant stages is very
similar to that seen in human breast tumours (Lin et al, 2003).
Together, our data showed for the first time that ABCC10 affects
multiple parameters of breast tumour biology and may modulate
the efficacy of docetaxel to treat tumours.

MATERIALS AND METHODS

Cell lines. HS578T, BT549, T47D, MDA-MB-231 human breast
cancer cell lines were purchased from the National Cancer Institute
(Bethesda, MD, USA). MCF10F, MCF7, BT474, SKBR-3, MDA-
MB-361 human breast cancer cell lines were purchased from the
American Type Culture Collection (ATCC). Cells were passaged in
our laboratory for fewer than 3 months after receipt or
resuscitation.

Reagents. [3H]-docetaxel (5 Cimmol� 1; Moravek Biochemicals
Inc, Brea, CA, USA). Docetaxel was purchased from LC
Laboratories (Woburn, MA, USA). Paclitaxel was purchased from
Sigma (St Louis, MO, USA).

Mouse strains, handling and measurement of tumours. All
experiments involving mice were preapproved by the Fox Chase
Cancer Center Institutional Animal Care and Use Committee.
MMTV-PyVmT mice of the 634Mul/J subline were purchased

from The Jackson Laboratory (Bar Harbor, ME, USA). Homo-
zygous Abcc10� /� mice (Hopper-Borge et al, 2011) were crossed
with MMTV-PyVmT mice to generate the Abcc10� /� ; PyVmT-
positive and Abcc10þ /þ PyVmT-positive female siblings for
analysis. We have confirmed that Abcc10 is lost in this model at
the RNA and protein levels. Tumour volumes were calculated
following caliper measurement as width2� length� 0.52. Mice
were killed by methoxyfluorane inhalation when the tumours
reached 10% of mice body weight or if mice exhibited signs of
illness or distress.

Xenograft studies. MMTV-PyVT;Abcc10þ /þ and MMTV-
PyVT;Abcc10� /� mammary tumour-derived cells were implanted
into the mammary gland area of 8-week-old female SCID mice
(n¼ 15 per cell line). Two weeks later, when the tumours grew to
B50mm3, the mice were divided into two groups: vehicle (n¼ 5)
and 25mg kg� 1 docetaxel treatment (n¼ 10). To evaluate
tumours, a very dense measuring technique was used to assess
solid tumour mass and to reduce the volume added from liquid.
The mice were treated weekly by intraperitoneal injection until the
tumours reached the maximum size (200mm3); at the end of the
experiment mice were killed by methoxyfluorane inhalation.

Immunohistochemical analysis. The largest tumour and lungs
were excised, divided, and fixed 24–48 h in 10% neutral-buffered
formalin. Specimens were paraffin-embedded, sectioned, and
analysed with haematoxylin/eosin staining. Consecutive 5-mm
sections were cut and mounted on silinized slides (Superfrost Plus,
Fisher Scientific Inc., Waltham, MA, USA). Sections were
deparaffinised in xylene and rehydrated in a graded series of
ethanol. The sections were subjected to antigen retrieval by boiling
in 0.01-M sodium citrate buffer (pH 6.0) in a steamer for 20min
and allowed to cool in the buffer for 20min. Immunostaining was
performed by standard protocols previously described (Cai et al,
2009). All slides were viewed with a Nikon Eclipse 50i microscope
and photomicrographs were taken with an attached Nikon DS-Fi1
camera (Melville, NY, USA). Lung metastases were expressed as
number of metastases per square millimetre of lung cross-section
using Image Pro-Plus (Media Cybernetics, Silver Spring, MD,
USA). Immunostained slides (for Ki-67) were scanned using an
Aperio ScanScope CS 5 slide scanner (Aperio, Vista, CA, USA)
with a � 40 objective. Scanned images were then viewed with
Aperio’s image viewer software (ImageScope, version 11.1.2.760,
Aperio). Selected regions of interest were outlined manually by a
pathologist. Proliferative index (Ki-67) was quantified using Aperio
Nuclear V9 algorithm (Aperio) with modifications.

Tissue microarray (TMA). A breast TMA was constructed as
previously described (Kononen et al, 1998; Parsons, 2009). The
intensity of immunostaining using a monoclonal ABCC10 anti-
body (Hopper-Borge et al, 2009) was scored visually by an
experienced pathologist. For certain statistical analyses, absence of
ABCC10 staining was considered to be one group and presence of
ABCC10 staining was considered to be another group.

Derivation of mammary tumour cells and cellular assays. Cell
lines were derived as previously described (Izumchenko et al,
2009). Drug accumulation assay was performed as previously
described (Hopper-Borge et al, 2004). Proliferation was quantitated
with CyQuant (Invitrogen, Eugene, OR, USA) according to the
manufacturer’s instructions and adhesion of cells was monitored
by the xCELLigence Real-Time Cell Analysis detection platform
(ACEA Bioscience Inc., San Diego, CA, USA). Cellular prolifera-
tion assays with HEK-293 cells were performed as previously
described (Hopper-Borge et al, 2009). To analyse change of
mammary tumours, cell line shape factor after drug treatment cells
were stained for phalloidin-FITS-conjugated, 40,6-diamidino-2-
phenylindole (DAPI) and Deep Red Cell Mask. Image quantitative
analysis was performed with the MetaXpress 3.1 software
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(MDS Analytical Technologies, Sunnyvale, CA, USA). Confocal
laser scanning microscopy was performed as previously described
(Malofeeva et al, 2012). Cell cycle and apoptosis analyses were
assessed using Guava Nexin and cell cycle reagents (Guava
Technologies, Hayward, CA, USA) according to the manufac-
turer’s protocol. For all cytotoxicity experiments, treatment of
Abcc10 knockout and wild-type cells was started after the cells
were attached completely.

Colony formation and wound-healing assays. PyVmT; Abcc10þ /þ

and PyVmT; Abcc10� /� mammary tumour cell lines were seeded at
low density in individual wells of a standard six-well plate and treated
with docetaxel or paclitaxel for 5 days. Colonies were visualised with
crystal violet staining. For wound-healing assays, cell-free areas were
generated with a pipette tip on a confluent monolayer. Cells were
treated with docetaxel (3 nM) or paclitaxel (3 nM). Two or three
wound areas per condition were photographed at 8 or 24 h. Wound
size was quantified by measuring the cell-free areas using the Image-J
software (NIH, Bethasda, MD, USA).

Quantitative real-time PCR. Total RNA was isolated using
the RNeasy mini kit (Qiagen, Valencia, CA, USA) according to the
manufacturer’s suggestions. RNA was reverse-transcribed using the
M-MLV reverse transcriptase and a mixture of anchored oligo-dT
primers and random decamers. Aliquots of cDNA were used for
qRT–PCR. Cycling conditions were 95 1C, 15min followed by 40
cycles (95 1C, 15 s; 60 1C, 60 s). To compare transporter expression
levels, all mean quantity data were normalised to an independent
gene Ppib (cyclophilin B).

Western blot analysis. Western blot analysis was performed as
described (Izumchenko et al, 2009). Anti-Abcc10 antibody was
used at a concentration of 1 : 500 (Hopper-Borge et al, 2011).
ABCB1, ABCG2 (Santa Cruz Biotechnology, Dallas, TX, USA),
b-actin (Abcam, Cambridge, MA, USA), HER2 and ERa (Cell
Signalling Technology, Danvers, MA, USA) antibodies were used
according to the manufacturer’s instructions.

Statistical procedures. We used Fisher’s exact tests for Figure 1C.
We used Kaplan–Meier curves with log-rank tests for Figures 2A
and 7C. We used generalised linear models estimated by general-
ised estimating equations with appropriate working correlation
matrices for Figures 2B, 6A, 7A and B (Shults et al, 2007). We used
restricted cubic splines to model day effects where there were
enough days to do so (Harrell, 2001). The previous analyses were
conducted using STATA (StataCorp, College Station, TX, USA).
For Supplementary Figure 1 data from two data sets were
background-corrected and RMA-normalised (Bolstad et al, 2003),
then LIMMA methodology (Smyth, 2004) was applied to conduct
the differential analysis between tumour and normal tissues. For
other analyses, we used two-sided Student’s t-tests. Error bars in
figures represent one s.e. intervals, unless otherwise noted. The
nominal criteria for statistical significance was set to Po0.05.

RESULTS

Elevated ABCC10 protein expression in human HER2þ and
ERþ breast cancer. A prior study examined ABCC10 expression
at the mRNA level using the NCI panel cell lines (Szakacs et al,
2004). As a way to ascertain the ABCC10 protein expression levels
in breast cancer, we examined eight well-characterised breast
cancer-derived cell lines and one nontumorigenic breast epithelial
cell line as a control. Other groups have previously shown that
HER2 and ER expression positively correlates with taxane
resistance (Ueno et al, 1997; Sui et al, 2007) and we decided to
analyse the expression of ABCC10 in the context of ER and HER2
status of the cell lines. We determined that ABCC10 was expressed
in all cell lines and was expressed most highly in MCF7, T47D, and

BT474 cell lines (Figure 1A). In contrast, HS578T, BT549, and MDA-
MB-231, all triple-negative cell lines expressed the lowest levels of
ABCC10. Upon further analysis, we determined that ABCC10
expression was higher in HER2-positive cell lines compared with
HER2-negative cell lines (Figure 1B and Supplementary Figure 1).
However, greater significance was observed in the ABCC10
expression levels of ER-positive lines compared with ER-negative
lines (Figure 1B and Supplementary Figure 1). We also analysed
ABCC10 mRNA level in two breast cancer data sets from Gene
Expression Omnibus (GSE5764 and GSE8977). ABCC10 expression
was significantly higher in tumour than in normal lobular breast
tissue in contrast to ABCB1 and ABCG2 expression (Supplementary
Figure 2). We developed and screened TMAs containing 51
(Figure 1C and D) breast cancer specimens, including 18 HER2þ ,
15 HER2� , and 18 triple-negative (ER� /PgR� /HER2� ) sam-
ples; we chose these breast cancer subtypes to focus on primarily
because they are treated with chemotherapeutic agents that are
ABCC10 substrates. We found that ABCC10 expression correlated
positively with HER2þ and surprisingly ERþ status. In addition,
using HEK-ABCC10 transfectants (Hopper-Borge et al, 2009) we
found that ABCC10 did not confer cellular resistance to tamoxifen,
the agent used primarily to treat ERþ breast cancer (Higgins and
Baselga, 2011). In these standard proliferation assays (n¼ 7) we
found the IC50 for the control cell line HEK-293 to be
187.5±23.6mM vs for the ABCC10 transfectant lines, 202±21.6mM
for HEK-ABCC10-C17 and 190.4±26.0mM for HEK-ABCC10-C18.
We observed that ABCC10 was expressed mainly in the cytoplasm
and membrane. In addition, triple-negative breast cancer subtype
showed higher heterogeneity for ABCC10 expression compared with
other cancer subtypes (38.9% of ER� /PgR� /HER2� samples did
not express ABCC10 vs 6.7% and 0% for HER2� and HER2þ
breast cancer subtypes, respectively, Figure 1C). We also noted a
tendency towards increased ABCC10 expression with age
(Supplementary Table 1).

Mammary tumour growth is enhanced in MMTV-
PyVmT;Abcc10� /� vs MMTV-PyVmT;Abcc10þ /þ mice. To
understand the role of Abcc10 in mammary tumours in a
physiological context, we bred Abcc10� /� mice (Hopper-Borge
et al, 2011) to mice expressing the MMTV-PyVmT transgene. The
MMTV-PyVmT mouse mammary model (Guy et al, 1992) has
been used in numerous publications in the past (Forrester et al,
2005; Izumchenko et al, 2009; Marcotte et al, 2012; Ishihara et al,
2013). Latency until detection of mammary tumours was
comparable in MMTV-PyVmT; Abcc10� /� and MMTV-PyVmT;
Abcc10þ /þ mice (Figure 2A). Abcc10þ /þ status, however,
significantly limited the total tumour burden of MMTV-PyVmT
mice. After 20 weeks, tumours derived from MMTV-PyVmT;
Abcc10� /� animals reached an average volume of 1000mm3,
whereas tumours derived from MMTV-PyVmT; Abcc10þ /þ mice
had an average volume of 300mm3 (P¼ 0.020; Figure 2B). Given
this result, it was surprising that after killing, histopathological
analysis revealed that MMTV-PyVmT; Abcc10þ /þ and MMTV-
PyVmT; Abcc10þ /� tumours were less differentiated than
MMTV-PyVmT; Abcc10� /� tumours (P¼ 0.030; Supplementary
Table 2), as less differentiated tumours are typically more
aggressive, metastasise early, and have a much poorer prognosis
(Soerjomataram et al, 2008). Quantification of blood vessel density
with CD31 staining showed a trend towards higher vascularisation
of MMTV-PyVmT; Abcc10þ /þ tumours, and Caspase 3 staining
indicated a higher rate of apoptosis in wild-type tumours
compared with Abcc10 null tumours (Figure 2C). Interestingly,
increased Caspase 3 activity correlates with a worse prognosis
(O’Donovan et al, 2003). Analysis of lungs from mice bearing
primary mammary tumours indicated greater levels of metastasis
in MMTV-PyVmT; Abcc10þ /þ tumours compared with MMTV-
PyVmT; Abcc10� /� tumours (Figure 2D).
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Abcc10 status affects the growth of mammary tumour-derived
cell lines. To better understand ABCC10-mediated effects on
cancer progression and drug resistance, we derived MMTV-
PyVmT; Abcc10� /� and MMTV-PyVmT; Abcc10þ /þ tumour
cell lines (Figure 3A). We found that the rate of proliferation of
MMTV-PyVmT; Abcc10þ /þ cells was initially comparable to that
of MMTV-PyVmT; Abcc10� /� cells; however, 6 days after plating,
MMTV-PyVmT; Abcc10� /� had an increased proliferation rate
(Figure 3B). To ascertain whether adhesion had a role in

the growth rate differences between PyVmt;Abcc10þ /þ and
PyVmT;Abcc10� /� mammary tumour-derived cell lines, we
seeded cells and allowed attachment for 24 h. By 24 h all knockout
cells attached, in contrast fewer Abcc10 wild-type cells were
attached at this time point (Figure 3C). This result was confirmed
by real-time monitoring of cell adhesion and spreading with
xCELLigence system over a 24-h period (Figure 3D). A colony
formation assay revealed that MMTV-PyVmT; Abcc10� /� cells
formed threefold larger foci than MMTV-PyVmT; Abcc10þ /þ
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cells (Figure 3E). Further, MMTV-PyVmT; Abcc10� /� cells are
significantly larger than MMTV-PyVmT; Abcc10þ /þ cells
(Figure 3F). Finally, a wound-healing assay was used to assess
differences in migration of Abcc10 wild-type and null cell lines. We
found that 24 h post scratch, MMTV-PyVmT; Abcc10� /� cells
migrated B40% less compared with MMTV-PyVmT; Abcc10þ /þ

cells (Figure 3G).
We assessed whether other transporters were modulated as a

result of Abcc10 loss. mRNA expression of Abcc1, Abcc3, Abcc4,
Abcc5, Abcb1a/b, and Abcg2 was not elevated to compensate for
Abcc10 loss (Supplementary Figure 3). Interestingly, there was a
significant downregulation of Abcg2 in Abcc10� /� cell lines
compared with Abcc10þ /þ cells (Figure 3H). However, a reduced
level of Abcg2 in Abcc10� /� cell lines would likely not have an
impact on taxane sensitization as the class of taxanes is not an
abcg2 substrate (Huisman et al, 2005).

MMTV-PyVmT;Abcc10� /� mammary tumour cells are
sensitised to taxanes. We used the well-established colony
formation assay to assess taxane cytotoxicity on the primary
tumour lines as previously described (Grassilli et al, 2013;
Kuo et al, 2006). A 5-day treatment with 3 nM paclitaxel
did not affect foci formation in MMTV-PyVmT; Abcc10þ /þ

cell lines while decreasing formation by more than 20% in

MMTV-PyVmT; Abcc10� /� cell lines. Similarly, in MMTV-
PyVmT; Abcc10þ /þ cells, treatment with 3 nM docetaxel produced
45% fewer colonies vs vehicle-treated cells but 90% fewer colonies
in MMTV-PyVmT; Abcc10� /� cells (Figure 4A).

In addition, incubation with taxanes affected the morphology of
Abcc10 null cells more dramatically than Abcc10 wild-type cells.
Analysis of phalloidin, DAPI, Deep Red Cell Mask staining with a
fluorescence microscopy showed a significant change in the cell
shape factor of MMTV-PyVmT; Abcc10� /� cell lines after
paclitaxel or docetaxel treatment (Supplementary Figure 4).
Docetaxel is a microtubule-stabilizing agent: we observed
significant tubulin stabilisation at 3 nM docetaxel in MMTV-
PyVmT; Abcc10� /� cells, whereas MMTV-PyVmt;Abcc10þ /þ

cells required a higher concentration (25 nM) for a similar effect
(Figure 4B). We also examined the wound closure ability
of the MMTV-PyVmt;Abcc10þ /þ compared with MMTV-
PyVmt;Abcc10� /� cell lines after docetaxel treatment. We noted
a more dramatic effect on cellular migratory activity of 3 nM
docetaxel treatment on Abcc10-disrupted lines at 8 and 24 h post
treatment (Figure 4C).

These genotype-associated differences are all compatible with
the idea that higher effective concentrations of taxanes accumulate
in MMTV-PyVmt;Abcc10� /� cell lines. We incubated mammary
cell lines of both genotypes with 0.1 mM [3H]-docetaxel in an
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line; n¼ 21) mice. (B) Comparison of growth rates of MMTV-PyVmT; Abcc10� /� mammary tumours and MMTV-PyVmT; Abcc10þ /þ tumours.
(C) H&E, CD31, and Caspase 3-stained sections of tumours isolated from MMTV-PyVmT;Abcc10þ /þ and MMTV-PyVmT; Abcc10� /� mice
(n¼5 per genotype). Scale bar, 100mm. (D) H&E-stained lung sections isolated from MMTV-PyVmT; Abcc10þ /þ and MMTV-PyVmT; Abcc10� /�

mice. Error bars denote mean±s.e.m. Statistical significance was determined by two-sided Student’s t-test.
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accumulation experiment; we observed a 60% reduction in
intracellular accumulation of [3H]-docetaxel in MMTV-
PyVmt;Abcc10þ /þ compared with MMTV-PyVmt;Abcc10� /�

cell lines (Figure 4D). The amount of reduction in [3H]-docetaxel
is comparable to reduction we published using ABCC10 transfec-
tants (Malofeeva et al, 2012). Cell cycle analysis showed a marked,
dose-dependent G2/M accumulation of MMTV-PyVmt; Abcc10� /�

mammary tumour cell lines after 48 h of docetaxel exposure
(Figure 5A) or paclitaxel (Figure 5B) but no such accumulation
for MMTV-PyVmt;Abcc10þ /þ cell lines (Figures 5A and B).
A 48-h treatment with 25 nM docetaxel led to a non-statistically
significant trend towards early apoptosis in MMTV-PyVmt;
Abcc10� /� but not MMTV-PyVmt;Abcc10þ /þ cell lines
(Figure 5C). Similarly, 25 nM paclitaxel significantly increased

apoptosis in MMTV-PyVmt; Abcc10� /� but not in the MMTV-
PyVmt;Abcc10þ /þ cell lines (Figure 5D).

ABCC10 loss increased the impact of docetaxel treatment in an
orthotopic mammary tumour model. An orthotopic mammary
tumour model was used to extend our in vitro work to
a more clinically relevant in vivo model, offering the additional
ability to characterise the cell lines in vitro and in vivo.
To determine whether Abcc10 status affects mammary tumour
sensitisation to taxanes MMTV-PyVmT; Abcc10þ /þ and MMTV-
PyVmT; Abcc10� /� mammary tumour-derived cells (three cell
lines per genotype) were implanted into the mammary gland area
of 8-week-old female mice (n¼ 15 per cell line). Two weeks later,
when the tumours grew to B50mm3, the mice were divided into
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two groups: a vehicle control group (n¼ 5) and a 25-mg kg� 1

docetaxel treatment group (n¼ 10). The mice were treated
weekly by intraperitoneal injection until the tumours reached
200mm3. As in primary tumour formation, MMTV-PyVmT;
Abcc10� /� tumours grew more rapidly than did MMTV-PyVmT;
Abcc10þ /þ tumours (Figures 6A; P¼ 0.001). PyVMT; Abcc10þ /þ

and Abcc10� /� tumours were both responsive to docetaxel

(P¼ 0.003 and Po0.001). Importantly, over 21 days while
MMTV-PyVmT; Abcc10þ /þ tumour size was reduced
by 50%, MMTV-PyVmT; Abcc10� /� tumour sensitisation to
docetaxel was more dramatic as tumour size was reduced by 86%
compared with untreated mice. To further compare the effective-
ness of docetaxel treatment on wild-type and Abcc10 knockout
tumours, we analysed the impact of Abcc10 status on proliferation

MMTV-PyVmT;
Abcc10 +/+

P
ac

lit
ax

el
(3

 n
M

)
D

oc
et

ax
el

(3
 n

M
)

P=0.0079

P<0.0001

P=0.0351125

100

75

50

25

0

0 
h

8 
h

24
 h

Con
tro

l

Pac
lita

xe
l 3

 n
M

Doc
et

ax
el 

3 
nM

Con
tro

l

Pac
lita

xe
l 3

 n
M

Doc
et

ax
el 

3 
nM

C
ol

on
y 

fo
rm

at
io

n
(%

 o
f c

on
tr

ol
)

MMTV-PyVmT;
Abcc10 –/–

MMTV-PyVmT;
Abcc10 +/+

MMTV-PyVmT;
Abcc10 –/–

P=0.03741.5

1.0

A
re

a 
co

ve
re

d
re

la
tiv

e 
fo

ld
 c

ha
ng

e
(d

oc
et

ax
el

 v
s.

 v
eh

ic
le

)

0.5

0.0
8 h 24 h

P=0.0068

D
oc

et
ax

el
 (

10
 m

M
)

D
oc

et
ax

el
 (

25
 n

M
)

C
on

tr
ol

D
oc

et
ax

el
 (

3 
nM

)

MMTV-PyVmT;
Abcc10 +/+

MMTV-PyVmT;
Abcc10 –/–

Time (min)
0

0

4

8

12

WT
KO

pm
ol

es
 o

f d
oc

et
ax

el
 p

er
 1

05  c
el

ls 16

20 40 60

P=0.0105
P=0.0472

Figure 4. Mammary tumour cell lines originating from PyVmT;Abcc10 null cells are sensitised to cytotoxic ABCC10 substrates. (A) Images of
colonies from Abcc10� /� vs Abcc10þ /þ cells following paclitaxel or docetaxel treatment (the analysis with controls is presented on graphs under
images). (B) Microtubule staining of Abcc10 wild-type and Abcc10 null cell lines after incubation with 3, 10, or 25 nM of docetaxel; tubulin (red),
nuclei (blue). Scale bar, 100mm. (C) Images from wound-healing assays assessing the mobility of wild-type and Abcc10� /� lines after docetaxel
treatment (the analysis with controls is presented on graphs under images). (D) Accumulation of 0.1mM [3H]-docetaxel in Abcc10þ /þ cells (WT,
black triangle) compared with the mammary tumour cell lines derived from Abcc10-disrupted mice (KO, white triangle) was observed. Error bars
denote mean±s.e.m. Statistical significance was determined by two-sided Student’s t-test.

BRITISH JOURNAL OF CANCER Abcc10 status affects breast tumour biology

702 www.bjcancer.com |DOI:10.1038/bjc.2014.326

http://www.bjcancer.com


rate, vascularisation, and apoptosis after docetaxel treatment. The
graph represents the relative fold change (Docetaxel vs Vehicle)
where vehicle treated is 1 for both wild-type and Abcc10 knockout
tumours. We found that Abcc10� /� tumours showed a significant
reduction in Ki-67-positive cells (Figure 6C), as well as a reduction
in blood vessel density compared with MMTV-PyVmT;
Abcc10þ /þ after treatment (Figure 6D). We also observed that
the number of apoptotic cells in treated Abcc10 knockout tumours
was increased more than threefold compared with Abcc10 � /�

control tumours. Lastly, we saw an increased number of apoptotic

cells in Abcc10� /� -treated tumours compared with wild-type
treated tumours (Figure 6E).

MMTV-PyVmT;Abcc10� /� mice experienced enhanced
docetaxel-dependent therapy and increased overall survival
compared with MMTV-PyVmT;Abcc10þ /þ counterparts. We
used the primary MMTV-PyVmT tumour model with Abcc10� /�

and Abcc10þ /þ genotypes to assess the therapeutic effect of
docetaxel in vivo. Mice were treated with vehicle or 25mg kg� 1

of docetaxel weekly for 12 weeks. Mice were also killed if the largest
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tumour reached 1000mm3 or if the total tumour burden was
greater than 10% of body weight (Figure 7A and B). MMTV-
PyVmT; Abcc10� /� mice were responsive to docetaxel treatment
over time (P¼ 0.006) compared with wild-type mice (P¼ 0.063;
Figure 7B). Treated wild-type mice reached the study end
points and died much earlier compared with MMTV-PyVmT;
Abcc10� /� mice treated with docetaxel; at 8 weeks only 44% of
wild-type mice survived in contrast 100% of Abcc10 knockout
mice were still alive. Kaplan–Meier curve analysis indicated
significantly increased survival of docetaxel-treated MMTV-PyVmT;
Abcc10� /� mice compared with wild-type mice (Figure 7C).

DISCUSSION

In this study, we investigated the impact of ABCC10 loss on
breast tumour phenotype and tumour sensitisation using a novel

MMTV-PyVmT; Abcc10� /� model. Although they grew more
rapidly, tumours derived from MMTV-PyVmT; Abcc10� /� mice
had decreased apoptosis, blood vessel formation, and lung metastasis
in contrast to those from MMTV-PyVmT; Abcc10þ /þ mice. This
was accompanied by numerous differences in the growth properties
of cell lines associated with the two genotypes, including most
markedly differences in proliferation and migration. Here we showed
that cell lines derived from wild-type tumours were less adherent and
were more migratory active compared with cell lines derived from
Abcc10 null tumours. These characteristics phenocopy the metastatic
properties of tumours in vivo. During metastatic disease, cancer cells
leave the primary site (reduced adhesion) and go to the secondary
environment (migratory activity). Many studies in experimental
model systems and in human patients have revealed that alterations
in the adhesive and migratory properties of tumour cells correlate
with progression to tumour malignancy (Hirohashi, 1998; Cavallaro
and Christofori, 2001).
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Taken together, these data imply that, similar to ABCC1 and
ABCC3, ABCC10 has important roles beyond controlling drug
efflux in mammary tumour biology. We hypothesise that these
phenotypes may be related to ABCC10’s ability to transport as yet
unidentified physiological substrate(s). Alternatively it is possible
that ABCC10 has a role in signalling pathways that mediate
processes such as proliferation, malignant transformation, cell
survival, and drug resistance. It has been reported previously that
inhibition of ABCG2 expression in A549 cells or mixantrone-
resistant MCF cells by shRNA inhibited proliferation, cell cycle
progression. and also modulated the expression of cell cycle
regulator genes (Chen et al, 2010). Although the exact mechanisms
through which ABCG2 or ABCC10 mediate these processes are
unknown, prior studies suggest a link between ABC transporters
and MAPK/ERK or PI3K/AKT signalling pathways (Bleau et al,
2009; Hoffmann et al, 2011; Imai et al, 2012; Pick and Wiese, 2012;
Huang et al, 2013). Figure 8 illustrates a schematic which
summarises the effects of ABCC10 loss, as well as potential

pathways to investigate in connection with ABCC10 expression.
Further studies are required to define the exact mechanisms in
which ABCC10 is involved; hence, this area is currently under
investigation in our laboratory.

Knowledge of ABCC10 expression is important for under-
standing the potential effects of this pump’s activity in normal
and malignant tissues. ABCC10 transcript expression is wide-
spread, with highest levels detected in the gonads and spleen
(Hopper-Borge et al, 2009). The ABCC10 transcript has been
detected in multiple types of adenocarcinoma that are routinely
treated with taxanes, including breast, ovary, and lung (Dabrowska
and Sirotnak, 2004; Takayanagi et al, 2004). ABCC10 transcript
has also been found in hepatocellular carcinoma (Borel et al, 2012)
and colorectal tumours (Hlavata et al, 2012). Recent work has
shown that ABCC10 is among the transporters that are
upregulated in pancreatic adenocarcinoma tumours compared
with normal tissue and the idea was put forth that ABCC10 might
contribute to poor treatment response in this tumour type
(Mohelnikova-Duchonova et al, 2013). Another paper compared
the absolute gene expression of all the human xenobiotic
transporter genes in various tissue types and tumours. These
authors demonstrated that ABCC10 expression in tumours derived
from lung, colon, and breast was relatively high in terms of
absolute intensity (Bleasby et al, 2006). However, only few studies
have been published regarding ABCC10 protein expression.
Immunohistochemical staining of normal and tumour tissues
revealed that ABCC10 is upregulated in cancer compared with the
normal lung (Wang et al, 2009). ABCC10 protein expression was
also evaluated in two human head and neck cancer cell lines,
SCCHA and HSY. ABCC10 was not detected in the parental cell
lines. However, after vincristine treatment ABCC10 was upregu-
lated in the HSY cell line (Naramoto et al, 2007).

In this report we demonstrate that ABCC10 is expressed in
various breast cancer lines and importantly that it is expressed in
clinical samples derived from several breast cancer molecular
subtypes. Further, we showed that ABCC10 is more highly
expressed in HER2þ and ERþ human breast cancer cell lines.
Analysis of human tumour tissue also showed higher expression of
ABCC10 in HER2þ and ERþ tumours. Interestingly, the triple-
negative breast cancer subtype was more heterogeneous for
ABCC10 expression compared with other subtypes. This observa-
tion suggests that it may be prudent to investigate ABCC10 as a
novel potential target for clinical screening of triple-negative breast
cancer as this information could support the development of more
personalised therapies. Further, triple-negative breast cancer has
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the worst prognosis of the breast cancer subtypes and affects
African American women disproportionately (Stead et al, 2009). It
is of considerable interest to assess ABCC10 protein expression in
African American women to determine whether ABCC10 expres-
sion is linked to health disparities in response to treatment.

We recently demonstrated that ABCC10 transporter activity is
inhibited by sorafenib, a multitargeted tyrosine kinase inhibitor
currently in use for the treatment of renal cell carcinoma and other
cancers (Malofeeva et al, 2012). At this time, there are no identified
inhibitors with specific, in vivo efficacy against endogenous
ABCC10; an important goal for future work would be the
exploration of the ability of sorafenib, cepharanthine, and other
putative inhibitors to modulate in vivo taxane transport capabilities
of ABCC10 in relevant preclinical models. ABCC10 inhibition is
particularly nominated as a potentially high-value target for
inhibition based on its physiological relevance to in vivo taxane
resistance in breast cancer. Whether absence of ABCC10 sensitises
solid tumours to taxanes while not leading to unacceptable toxicity
in normal tissue remains to be determined (Burkhart et al, 2009).
In summary, we showed that ABCC10 does not only modulate
drug transport but has an impact on tumour biology. For better
understanding of the mechanisms by which Abcc10 influences
proliferation, migration, and metastasis, further investigation will
be required. Importantly, we also showed that elimination of
endogenous Abcc10 has a profound effect on tumour sensitization
to taxanes and overall survival. This work emphasises the value of
future studies of ABCC10 in breast cancer pathogenesis and
resistance to treatment.
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