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Background: We investigated the biologic and pharmacologic activities of a chromosome region maintenance 1 (CRM1) inhibitor
against human non-small cell lung cancer (NSCLC) cells both in vitro and in vivo.

Methods: The in vitro and in vivo effects of a novel CRM1 inhibitor (KPT-330) for a large number of anticancer parameters were
evaluated using a large panel of 11 NSCLC cell lines containing different key driver mutations. Mice bearing human NSCLC
xenografts were treated with KPT-330, and tumour growth was assessed.

Results: KPT-330 inhibited proliferation and induced cell cycle arrest and apoptosis-related proteins in 11 NSCLC cells lines.
Moreover, the combination of KPT-330 with cisplatin synergistically enhanced the cell kill of the NSCLC cells in vitro. Human
NSCLC tumours growing in immunodeficient mice were markedly inhibited by KPT-330. Also, KPT-330 was effective even against
NSCLC cells with a transforming mutation of either exon 20 of EGFR, TP53, phosphatase and tensin homologue, RAS or PIK3CA,
suggesting the drug might be effective against a variety of lung cancers irrespective of their driver mutation.

Conclusions: Our results support clinical testing of KPT-330 as a novel therapeutic strategy for NSCLC.

Chromosome region maintenance 1/exportin-1 (CRM1, XPO1) is
an important nuclear protein export receptor, which recognises the
leucine-rich nuclear export signal on proteins (Fornerod et al,
1997; Fukuda et al, 1997; Ossareh-Nazari et al, 1997). Of the six
known nuclear export proteins, CRM1 is a sole exporter of the
nuclear export signal-containing cargo proteins such as p53, p73,
CDKN1A, Rb, BRCA1, and IkBa (Rodriguez et al, 1999; Huang
et al, 2000; Takenaka et al, 2004; Turner et al, 2012). During
initiation or progression of cancers, malignant cells appear to
acquire the ability to export key nuclear proteins that influence
survival and proliferation (Turner et al, 2012). Overexpression of
CRM1 in cancer cells is correlated with poor survival (Noske et al,
2008; Shen et al, 2009; van der Watt et al, 2009; Kojima et al, 2013;
Tai et al, 2013). High levels of CRM1 can enhance nuclear export
of tumour suppressive proteins and proteins associated with
drug resistance (Kau and Silver, 2003; Turner et al, 2009).

Thus, inhibition of CRM1 may be an effective anticancer therapy
(Turner et al, 2012; Zhang and Wang, 2012). Leptomycin B (LMB)
specifically binds and blocks CRM1 and potentially inhibits growth
of various cancer cell lines, but its clinical development was
discontinued due to significant toxicity (Newlands et al, 1996;
Mutka et al, 2009; Pathria et al, 2012). Nevertheless, blocking
CRM1 nuclear export activity either by small interfering RNA or
several CRM1 inhibitors (LMB and ratjadone) can restore tumour
cell sensitivity to chemotherapeutic drugs such as doxorubicin
(Turner et al, 2009; Lu et al, 2012), etoposide (Turner et al, 2009),
cisplatin (Takenaka et al, 2004), and imatinib mesylate (Aloisi et al,
2006). Novel, orally bioavailable small molecules, ‘selective
inhibitors of nuclear export’ (SINEs) have recently been developed.
These compounds induce apoptosis and block proliferation
of cancer cells, and show potent antileukaemic activity in
mice (Lapalombella et al, 2012; Ranganathan et al, 2012;
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Azmi et al, 2013a,b; Etchin et al, 2013a,b; Kojima et al, 2013;
Salas Fragomeni et al, 2013; Tai et al, 2013; Zhang et al, 2013).
SINEs synergize with doxorubicin to inhibit growth of multiple
myeloma cells (Turner et al, 2012).

Non-small cell lung cancer (NSCLC) represents about 85% of
lung cancers, mainly consisting of adenocarcinoma, squamous cell,
and large-cell carcinomas. Overexpression of epidermal growth
factor receptor (EGFR) occurs in more than 60% of metastatic
NSCLC, which is correlated with a poor prognosis (Sharma et al,
2007). Lung cancer patients with mutations in the tyrosine kinase
(TK) domain (exons 19 or 21) of the EGFR gene respond poorly to
an EGFR TK inhibitor (TKI, geftinib or erlotinib). Indeed, acquired
resistance to EGFR TKI therapy eventually occurs in nearly all
patients (Ohashi et al, 2013). Resistance to EGFR TKI
develops due to abnormalities in several prominent pathways
including a mutation at exon 20 of EGFR, phosphatidylinositol-4,
5-bisphosphate 3- kinase, catalytic subunit alpha (PIK3CA)
mutation, as well as, loss-of-function mutations of the phosphatase
and tensin homologue gene leading to the constitutive activation of
Akt. K-ras mutations can result in the constitutive activation of
EGFR signalling pathways. Cells with these mutations will acquire
resistance to EGFR TKI (Sharma et al, 2007; Stewart, 2010;
Johnson et al, 2012). Therefore, because of the mark heterogeneity
of NSCLC, besides manipulating components of the EGFR
signalling pathways, molecular therapeutic approaches that involve
simultaneously targeting several distinct pathways such as using
SINEs may have therapeutic benefits (Sharma et al, 2007; Stewart,
2010; Johnson et al, 2012).

Mutations of p53 are very common in lung cancer cell lines, as
well as 40–90% of fresh NSCLC tumours (Stewart, 2010). The
presence of p53 mutations is a poor prognostic marker in patients
with adenocarcinoma of the lung (Stewart, 2010). Previously,
LMB was shown to induce cell death in cervical carcinoma cell
lines; these cells likely expressed papilloma virus E6 associated with
inactivation of p53 (Freedman and Levine, 1998; Lecane et al, 2003;
Hoshino et al, 2008). The potential of a CRM1 inhibitor as a
therapeutic agent against lung cancer including those with p53
alterations has not been fully investigated.

Here, we provide evidence that the SINE KPT-330 has
antitumour activity both in vitro and in vivo against NSCLC cells
irrespective of p53 mutational status.

MATERIALS AND METHODS

Reagents and antibodies. KPT-330 was obtained from
Karyopharm Therapeutics (Natick, MA, USA). Gefitinib (product
number G-4408), Dasatinib (product number D-3307), Docetaxel
(product number D-1000), Paclitaxel (product number P-9600),
Gemcitabine (product number G-4177), and Bortezomib
(product number B-1048) were purchased from LC Laboratories
(Woburn, MA, USA). Panobinostat (product number S1030) was
from Selleck Chemicals (Houston, TX, USA). Rapamycin (product
number R0395), Actinomycin D (product number A1410), and
cisplatin (product number P4394) were obtained from
Sigma-Aldrich (St Louis, MO, USA). Wortmannin (product
number 9951) and 40, 6-diamidino-2-phenylindole (product
number 4083) were purchased from Cell Signaling Technology
(Danvers, MA, USA). Flag-hCRM1 plasmid was purchased from
Addgene (Cambridge, MA, USA). BioT transfection reagent was
purchased from Bioland Scientific (Paramount, CA, USA).
Antibodies against CRM1 (H300), cyclin D1 (A-12), c-Myc
(C-19), p27 (C-19), BCL-xL (H-5), Bax (N20), PUMA (H-136),
p53 (FL-393), p73 (H-79), hnRNP A1 (N-15), pifithrin-a
(sc-45050), Z-VAD-FMK (sc-3067), and 17-DMAG (sc-202005)
were obtained from Santa Cruz Biotechnologies (Dallas, TX, USA).

Antibodies against p21 (product number 2947), BCL-2 (product
number 4223), Bim (product number 2933), PARP (product
number 9542), Caspase-3 (product number 9661), Caspase-9
(product number 9501), and a-tubulin (TU-02), as well as rabbit
IgG and murine IgG conjugated with horseradish peroxidase
(HRP) were from Cell Signaling Technology. Antibody to b-actin
(product number A1978) was from Sigma-Aldrich. Rabbit anti-
goat IgG-conjugated HRP was from Dako.

Cell culture, drug treatment, and cell viability assays. Eleven
human lung cancer cell lines (H23, H460, H820, H1299, H1975,
HCC827, HCC2279, HCC2935, HCC4006, A549, and PC14)
were grown in RPMI 1640 medium (Biowest, Kansas City, MO,
USA) supplemented with 10% fetal bovine serum, penicillin, and
streptomycin (Invitrogen, Grand Island, NY, USA) at 37 1C and
5% CO2. Mutational status of the NSCLC cell lines is shown in
Supplementary Table S1. The cells’ identity was verified by STR
analysis (ATCC). Proliferation assays were performed in 96-well
plates using 3� 103 cells per well in 100 ml for 72 h. Cell numbers
were evaluated with the use of the 3-[4, 5-dimethylthiazol-2-yl]-2,
5-diphenyltetrazolium bromide (MTT) reagents (Promega,
Madison, WI, USA). The absorbance of wells at 570 nm was
measured with a microplate reader (Infinite 200; Tecan, San Jose,
CA, USA). Dose-response curves were plotted to determine half-
maximal inhibitory concentrations (IC50) for the compounds
using the GraphPad Prism4 (GraphPad Software, San Diego CA,
USA). To determine the synergy of two drugs, they were combined
at a constant ratio (based on the individual drug’s IC50) at nine
concentrations. Synergy was determined using the CalcuSyn
software (BioSoft, Cambridge, UK). The extent of drug interaction
between the two drugs was presented using the combination index
(CI) for mutually exclusive drugs. Different CI values were
obtained when solving the equation for different concentrations
of drugs. A CI of 1 indicates an additive effect, whereas a CI of o1
denotes synergy. For the cell viability assays, NSCLC cells were
seeded into 96-well plates and treated for 72 h with drugs.

Apoptosis and cell cycle assays. Cells were seeded at 50%
confluency in 6 cm plates. After overnight incubation, culture
media were removed and replaced with media containing
either diluent control or various concentrations of indicated drugs.

Table 1. Quantitative RT–PCR primer sequences

Oligonucleotide
name Sequence

p53-F 50-CTGAGGTTGGCTCTGACTGTACCACCATCC-30

p53-R 50-CTCATTCAGCTCTCGGAACATCTCGAAGCG-30

BCL-XL-F 50-GCAGGCGACGAGTTTGAACT-30

BCL-XL-R 50-GTGTCTGGTCATTTCCGACTGA-30

Bax-F 50-TGACATGTTTTCTGACGGCAAC-30

Bax-R 50-GGAGGCTTGAGGAGTCTCACC-30

Noxa-F 50-GAGATGCCTGGGAAGAAGG-30

Noxa-R 50-ACGTGCACCTCCTGAGAAAA-30

P53AIP1-F 50-AGCTCACTCCGAAAGCCTCTGCTC-30

P53AIP1-R 50-GCATCACCGAGAGGTTCTGGTCTC-30

PUMA-F 50-ACGACCTCAACGCACAGTACGAG-30

PUMA-R 50-AGGAGTCCGCATCTCCGTCAGTG-30

p73-F 50-TTCAACGAAGGACAGTCTG-30

p73-R 50-CAGGGTCATCCACATACTG-3

CRM1-F 50-CTCGTCAGCTGCTTGATTTC-30

CRM1-R 50-CTCTTGTCCAAGCATCAGGA-3
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After 24 h, cells were washed with phosphate-buffered saline,
trypsinized, washed once with phosphate-buffered saline and
resuspended in annexin-binding buffer (BD Biosciences, San Jose,
CA, USA) at 1� 106 cells per ml. Cells were stained with
propidium iodide (BD Biosciences) and annexin V (BD Bios-
ciences) according to the manufacturer’s protocol and assayed on a
LSRII flow cytometer (BD Biosciences). Cell cycle analyses were
performed by propidium iodide staining (Sigma-Aldrich) for DNA
content and flow cytometric analysis.

Proteins, lysates, fractionation, immunoblotting, immunofluor-
escence, and immunohistochemistry. Protein lysates from cells
were extracted using ProteoJET Mammalian Cell Lysis Reagent
(Thermo Scientific, Waltham, MA, USA). Protein concentrations
were determined by bicinchoninic acid assay (Thermo Scientific).
Protein lysates were resolved by sodium dodecyl sulphate–
polyacrylamide gel electrophoresis, transferred to Immobilon-P
PVDF membrane (Merck Millipore, Billerica, MA, USA), and
membranes were blocked for 1 h with TBS containing 5% non-fat
dry milk and 0.5% Tween 20 (TBST). After blocking, the PVDF
membrane was incubated with primary antibody at 4 1C overnight.

The following day, the membrane was washed with T-TBS and
incubated for one hour with a secondary antibody-HRP conjugate
at room temperature. After washing the PVDF membranes with
T-TBS, proteins were visualised with SuperSignal chemilumines-
cent hrp substrates (Thermo Scientific). To prepare nuclear and
cytoplasmic extracts, cells were lysed in 10mM HEPES (pH 7.9),
10mM KCL, 0.1mM EDTA, 0.1mM EDTA, 0.6% NP-40,
1mM DTT, and protease inhibitors (Thermo Scientific) and
centrifuged at 16 000 g for 10min to collect soluble fractions
(cytosolic extracts). Insoluble material was washed with the lysis
buffer (20mM HEPES (pH 7.9), 0.4 M NaCl, 1mM EDTA,
1mM EDTA, 0.6% NP-40, 1mM DTT, and protease inhibitors )
and centrifuged at 16 000 g for 10min to collect the nuclear
extracts. The nuclear and cytoplasmic fractions were subjected
to immunoblot analysis using either anti-hnRNP A1 antibody or
anti-a-tubulin monoclonal antibody.

For immunohistochemistry, tumour tissues were fixed in
formalin, embedded in paraffin, cut into 5.0 mm sections.
Endogenous peroxidase on these slide preparations were quenched
using 3% H2O2 in distilled water. Sections were blocked for 1 h at
room temperature in phosphate-buffered saline containing 3%
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Figure 1. Effects of KPT-330 on the growth of NSCLC cells. (A) Cell viability of 11 NSCLC cell lines. Cells were seeded (3�103 cells per well) in
96-well plates; treated with different concentrations of KPT-330 (0, 0.1, 1, 10, 100, and 1000nM, 72 h), and growth inhibition was measured by
MTT assay. Dose-response curves were plotted to determine IC50 values using the GraphPad Prism 4 (left). IC50 values (nM) were calculated as
described in Materials and Methods. In addition, p53 status (WT, þ ; mutant, � ) is provided (right). (B, C) H1975 NSCLC cells were treated with
KPT-330 (0, 10, 100, and 1000nM, 24 h), and either whole-cell lysates or mRNA were analysed for expression of CRM1 and b-actin by immunoblot
(B) (densitometric analysis was carried out using ImageJ 1.46) or by quantitative RT–PCR (C), respectively. RT–PCR data represent mean±s.d.
of experiments done in triplicate. (D) H1975 cells were stably transfected with flag-CRM1 vector or vector control (Con); CRM1 expression was
evaluated by immunoblot. (E) Dose-response curves of H1975 cells with either CRM1 overexpression or vector control cells (empty vector)
following treatment with different concentrations of KPT-330 (0, 10, 100, and 1000nM) or diluent control (Con). Results represent the mean±s.d.
of three experiments done in triplicate. Cell viability was determined using MTT assay after 72-h treatment. *Po0.05. NA, not available.
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normal serum and incubated overnight at 4 1C with primary
antibody for either TUNEL assay or against Ki-67. Biotin-
conjugated secondary antibody (1 : 200) and avidin–biotin
peroxidase complex were then applied to the sections. Data from
three randomly selected fields of view per section were captured
using a microscope (Olympus, Tokyo, Japan) at � 200 magnifica-
tions. TUNEL- and Ki-67-positive cells were counted using ImageJ
software (NIH, Bethesda, MD, USA) and expressed as a percentage
of total cells counted.

Quantitative RT–PCR. Total RNA from cells was extracted
using AxyPrep Multisourse Total RNA Miniprep Kit (Axygen,
Tewksbury, MA, USA) according to the manufacturer’s protocol.
First-strand cDNA was synthesised from total RNA using Maxima
First Strand cDNA Synthesis Kit for RT–PCR (Thermo Scientific).
Gene expression levels were measured by 7500 Fast Real-Time
PCR System (Applied Biosystems, Beverly, MA, USA) using the
KAPA SYBR FAST qPCR Kits (Kapa Biosystems, Woburn, MA,
USA). Expression of each gene was normalised to b-actin as a
reference. The forward and reverse primer sequences have been
previously described (Leong et al, 2007). The conditions for all
quantitative RT–PCR reactions are as follows: 2min at 95 1C
followed by 15 s at 95 1C and 30 s at 60 1C for 40 cycles. All PCR
products were confirmed by the presence of a single peak upon
melting curve analysis and by gel electrophoresis. Primers used for
all quantitative RT–PCR were listed on Table 1.

shRNA and lentiviral infections. The shRNA constructs in the
pLKO.1 lentiviral vector with the following target sequences were used.

shCRM1, 50-GCTCAAGAAGTACTGACACAT-30

shp73, 50-CCAAGGGTTACAGAGCATTTA-30

shp53-1, 50-CACCATCCACTACAACTACAT-30

shp53-2, 50-CGGCGCACAGAGGAAGAGAAT-30

Viral particles were made by transfection of 293 T cells.
Target cells were incubated with lentiviruses in the presence of
8mgml� 1 polybrene for 16 h followed by replacement of
the lentivirus-containing media with fresh media. Two days after
infection, Puromycin (2mgml� 1) was added for 3 days to
eliminate uninfected cells.

Animal models. NOD/SCID mice were purchased from Cancer
Science Institute of Singapore (Dr Shin Leng). All animal studies
were conducted according to protocols approved by the National
University of Singapore Institutional Animal Care and Use
Committee (IACUC). Seven-week-old male NOD/SCID mice were
inoculated subcutaneously in both flanks with a suspension of
H1975 (1.0� 107 cells) with matrigel. Tumour volumes were
measured thrice weekly with calipers and were calculated using the
following formula: volume (mm3)¼ (width (mm))2� length
(mm)/2. Mice were randomly divided into two groups (five mice
pergroup): orally treated with vehicle (0.6% w/v aqueous Pluronic
F-68 (Karyopharm Therapeutics)) or KPT-330 (10mg kg� 1,
thrice weekly for 4 weeks). Mice were given Nutri-Cal (tomlyn)
during therapy to allow robust nutrition.

Statistics. Differences between conditions were analysed using
either paired or unpaired two-tailed Student’s t-test. One-way
analysis of variance was used for comparisons among multiple
groups. Differences were considered significant for Po0.05.

RESULTS

KPT-330 suppresses the growth of NSCLC cells. The antiproli-
ferative activity of KPT-330 against 11 NSCLC cell lines was
examined using MTT assay. KPT-330 (0.1–1000 nM) induced a
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Figure 2. KPT-330-treated NSCLC cells: measurement of cell cycle and apoptosis. (A, B) Cell cycle of NSCLC cells (A549, H460, H1975, PC14,
H1299, and H23) was analysed by flow cytometry after treatment with KPT-330 (1 mM, 24h) vs diluent control. Representative tracings of cell cycle
of A549 and PC14 are displayed in panel A. (C, D) Cells were analysed by flow cytometry for apoptosis (annexin V/propidium iodide positivity) after
exposure to either KPT-330 (1, 10, 100, and 1000nM) or diluent control for 24 h. Representive tracing of apoptosis analysis of A549 and PC14 is
shown in panel C.
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dose-dependent growth inhibition after 72 h of exposure. The
calculated IC50 values ranged from 25 to 995 nM (Figure 1A).
Western blot analysis of H1975 cell lysate in the presence of
increasing concentrations of KPT-330 (10–1000 nM) showed a
dose-dependent decrease in protein levels of CRM1 (Figure 1B),
but no significant change in its mRNA levels (Figure 1C). To
confirm that KPT-330 in lung cancer cells is specifically targeting
CRM1, we stably overexpressed CRM1 in H1975 cells which was
identified by western blotting (Figure 1D). H1975 cells with forced
expression of CRM1 displayed significantly increased resistance to
KPT-330 treatment (10 and 100 nM, Figure 1E).

KPT-330 promotes G1 arrest and apoptosis. Cell cycle distribu-
tion was determined by propidium iodide staining of six NSCLC
cell lines (A549, H460, H1975, PC14, H1299, and H23) exposed to
KPT-330 (1 mM, 24 h) (Figure 2A and B). All six NSCLC cell lines
had an increase of the G1 cell cycle (range: 56–82%), and a
decrease in the S (range: 8–20%) and G2/M (range: 2–20%) phases
in response to KPT-330 (Figure 2B). Apoptosis was examined
using annexin V combined with propidium iodide staining

(Figure 2C and D). A clear dose-dependent increase in the percent
of annexin V/propidium iodide co-positive cells occurred in the six
NSCLC cell lines after cultured in KPT-330 (1, 10, 100, and
1000 nM for 24 h) (Figure 2D). The range of apoptosis induced by
KPT-330 was 22–54%.

Effect of KPT-330 on wild type (wt) and mutant (mut) p53
NSCLC cells. p53 wild type (p53-wt, A549) and mutant
(p53-mut, PC14) NSCLC cells treated with KPT-330 (1 mM, 24 h)
resulted in dramatic change in key cell cycle and cell death
pathways in both cell lines (Figure 3A and B). KPT-330 stimulated
activation of caspase-3 and -9, causing PARP cleavage associated
with increased levels of pro-apoptotic mediators (Bax, Bim, and
Puma) and slightly decreased levels of anti-apoptotic proteins
(Bcl-2 and Bcl-xL). Cell cycle inhibitors CDKN1A and CDKN1B
were upregulated, while CCND1 and c-Myc were downregulated in
the presence of KPT-330 (Figure 3A). These changes in protein
expression±KPT-330 were similar when comparing p53-wt
(A549) and mut-p53 (PC14) NSCLC cells. p53 and its family
member (e.g. p73) are active either in cell cycle arrest and DNA
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either pifithrin-a (5mM, 48 and 72h) or diluent control, harvested and whole-cell extractions prepared for immunoblot. (G) Dose-response assay of
A549 cultured in either diluent (WT) or pifithrin-a (5mM) plus various concentrations of KPT-330 (0, 100, 200, 400, 800, and 1600nM). Cell viability
was determined using MTT assay after 72 h treatment. (H) A549 Cells analysed by flow cytometry for apoptosis (annexin V/propidium iodide
positivity) after exposure to actinomycin D alone (Act D, 100ngml� 1), Act Dþ Z-VAD-FMK, Z-VAD-FMK (10mM) alone, KPT-330 (1000nM)
alone, KPT-330þ Z-VAD-FMK, or DMSO diluent control for 24 h. RT–PCR data and growth curves represent mean±s.d. of three experiments
done in triplicate wells. *Po0.05.

CRM1 inhibitor in NSCLC BRITISH JOURNAL OF CANCER

www.bjcancer.com |DOI:10.1038/bjc.2014.260 285

http://www.bjcancer.com


repair, or apoptosis if the DNA damage of the cell is too severe
to be repaired. The p53 family member, p73, can help to regulate
p53-dependent genes in p53-deficient cells (Vilgelm et al, 2008)
and has become a potential therapeutic target for treating p53-
mutant cancers (Irwin et al, 2003). KPT-330 increased levels of
wild-type p53 in A549 and levels of p73 in PC14 (mutant p53)
(Figure 3A and B). Bax, p53AIP, Noxa, and Puma are
pro-apoptotic mediators of cell death and are known targets of
both p53 and p73. KPT-330 (1 mM, 24 h) induced their expression
in both cell lines, albeit more profoundly in the p53-wt cells (A549)
(Figure 3C). To identify whether p53 is important for KPT-330-
dependent antiproliferative effects in p53-wt NSCLC cells, we
stably expressed two lentivirus vector-based shp53 (shp53-1
and shp53-2) in A549 cells. Compared with scramble vector
control, shp53-1 and shp53-2 stably infected cells achieved 31%
and 49% knockdown efficiency as measured by western blotting,

respectively (Figure 3D). p53-knockdown A549 cells (shp53-1 and
shp53-2) developed significant cell resistance to several concentra-
tions of KPT-330 (100 and 1000 nM, Figure 3E). Also, pifithrin-a is
a potent agonist of p53, which can decrease both the nuclear
stability and the basal DNA-binding activity of p53 in many cells
(Komarov et al, 1999; Murphy et al, 2004; Sohn et al, 2009). A549
cells exposed to pifithrin-a (5 mM) had decreased levels of p53 (48 h
and 72 h) (Figure 3F), p21cip1, and Mdm2 (Supplementary Figure
S1). Similar to p53-knockdown cells, A549 cells exposed to
pifithrin-a (5 mM) were more resistant to the antiproliferative effect
of KPT-330 (Figure 3F). The apoptosis induced by KPT-330
(cleavage of caspase-3 and -9, as well as polyADP ribose
polymerase (PARP) (Figure 3A)) was inhibited by caspase
inhibitor Z-VAD-FMK (10 mM) in the A549 cells (Figure 3H). As
a positive control, Z-VAD-FMK decreased apoptosis induced by
Actinomycin D (Figure 3H).

Evaluation of combined effect of KPT-330 and Cisplatin
by CI plot at nine combinatorial concentrations
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Figure 4. Drug combinations with NSCLC cells. (A) Upper and middle panel: H1975 cells were cultured with either KPT-330 (30 nM), diluent
(control), experimental drug, or experimental drugþKPT-330 (þKPT) for 72 h, and cell viability was determined by MTT. Lower panel:
combination of KPT-330 with cisplatin cultured with each of six NSCLC cell lines. In each group of four: 1st rectangle is control, 2nd, KPT-330, 3rd,
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KPT-330 and cisplatin synergy. H1975 NSCLC cells were treated
with KPT-330 (30 nM) and 11 additional therapeutic drugs
(wortmannin (10 nM), cisplatin (1 mgml� 1), docetaxel (1 nM),
dasatinib (50 nM), gefitinib (1 mM), panobinostat (10 nM), bortezo-
mib (10 nM), paclitaxel (2 nM), gemcitabine (50 nM), 17-DMAG
(10 nM), and rapamycin (1 nM)) (Figure 4A, upper and middle
panels). The concentrations of the drugs were based on dose-
response proliferation experiments against H1975 cells (data not
shown). The combination of cisplatin and KPT-330 had greater
antiproliferative activity than either drug alone against six NSCLC
cell lines (Figure 4A, lower panel). Cisplatin is often given to
patients with NSCLC either as adjuvant therapy or those with
progressive disease. Therefore, the combinatorial effect of KPT-330
with cisplatin was evaluated using six different paired combina-
tions of KPT-330 (40 and 80 nM) and cisplatin (0.5, 1, and
2mgml� 1) against H1975 NSCLC cell lines. The data were placed
on a CI plot (Figure 4B). Synergistic effects were observed with
KPT-330 at either 40 or 80 nM and cisplatin at either 0.5, 1, or
2mgml� 1 (CI values of 0.816, 0.648, 0.514, 0.441, and 0.418
(No. 2, 3, 4, 5, and 6, respectively). In addition, the combination
of KPT-330 and cisplatin increased apoptosis of H19754H4604A549,
which was greater than either drug alone (Figure 4C).

Silencing CRM1 sensitises NSCLC cells to cisplatin. As proof of
principal, CRM1 was silenced in order to determine whether the

observed synergistic activity of KPT-330 and cisplatin could be
produced in another model system. H1975 cells were stably
infected with the pLKO.1 lentiviral vector expressing shCRM1.
Efficient shRNA was confirmed by immunoblot (60% knockdown)
(Figure 5A) and quantitative RT–PCR (66% knockdown)
(Figure 5B). CRM1-knockdown cells had significantly slower
growth than those stably carrying a scrambled vector (Figure 5C).
The CRM1 knockdown of NSCLC cells and the scramble vector
carrying control cells were treated with different concentrations of
cisplatin (0.01–10 mgml� 1) for 72 h, and cell numbers were
assayed by MTT. Compared with control cells, CRM1-knockdown
cells cultured with cisplatin had enhanced antiproliferative activity
compared with scrambled carrying cells also exposed to
cisplatin (IC50, shCRM1, 1.62 mgml� 1 vs scramble, 8.1 mgml� 1

(Figure 5D). Moreover, upon exposure to cisplatin (1 mgml� 1,
24 h), the CRM1-knockdown cells had elevated levels of Bim and
Puma compared with control cells (scramble controlþ cisplatin)
(Figure 5E). Likewise, mRNA expression of Puma was significantly
enhanced in the CRM1-knockdown cells cultured with cisplatin
compared with a similar treatment of the control cells carrying the
scramble vector (Figure 5F).

shp73 reduces sensitivity to KPT-330 in NSCLC cells. The p73
was stably silenced (shp73) to explore the importance of p73 in
mediating the antiproliferative effect of KPT-330 on NSCLC cells
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having a mutant p53. H1975 cells were stably infected with the
pLKO.1 lentiviral vector expressing shp73. Efficient shRNA
was confirmed by immunoblot (p73, 60% knockdown)
(Figure 6A) and by quantitative RT–PCR (64% knockdown)
(Figure 6B). Growth of the p73-knockdown NSCLC cells was
slightly faster than the vector control cells (stable scramble vector)
(Figure 6C). Also, the p73-knockdown cells were more resistant to
the growth inhibitory effects of KPT-330 (IC50, scramble, 98 nM vs
shp73, 41000 nM) (Figure 6D). Transiently silence of p73 (44%
knockdown, Supplementary Figure S2A) in PC14 cells were also

more resistant the treatment of KPT-330 compared with the vector
control cells (IC50, scramble, 197 nM vs shp73, 318 nM)
(Supplementary Figure S2B). In addition, p73-knockdown cells
exposed to KPT-330 had decreased apoptosis (Figure 6E),
decreased levels of cleaved PARP and caspase-3, as well as lower
levels of BimEL (Figure 6F) compared with the scramble vectorþ
KPT-330. Likewise, mRNA expression of Noxa and Puma was
lower in the p73-knockdown cells cultured with KPT-330
compared with cells cultured with the scramble vectorþKPT-
330 (Figure 6G).
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Antitumour activity of KPT-330 against human NSCLC
xenografts growing in vivo. H1975 NSCLC xenografts were
established in NOD/SCID mice (outlined in the Materials and
Methods). These cells have the T790M EGFR mutation rendering
them resistant to inhibition by the TKIs gefitinib and
erlotinib. Single-agent KPT-330 resulted in a mark inhibition of
tumour growth when compared with vehicle-treated controls
(Figure 7A and B). Immunohistochemistry analysis showed
decreased Ki-67-positive cells (measure of cell growth) and an

increased percent of TUNEL-positive cells (increased apoptosis)
produced by KPT-330 (Figure 7C). These findings established the
efficacy of KPT-330 against NSCLC cells in vivo. Importantly, this
therapy did not have a significant effect on body weight compared
with the vehicle group (mean relative body weight for vehicle
versus KPT-330 cohorts: 106% and 105% body weight compared
with their mean starting weight, respectively) (Figure 7D). In
addition, we analysed peripheral blood after the 28-day treatment
(Table 2). KPT-330-treated mice had no significant alterations of
their total white blood cells as well as neutrophils and platelet
counts, haematocrit, as well as their serum levels of albumin,
alkaline phosphatase, ALT, and creatinine compared with vehicle
group. These results suggest that the KPT-330 has promising
therapeutic applications for the treatment of NSCLC patients
associated with minimal toxicity.

DISCUSSION

Previous reports demonstrated that the natural product LMB, a
CRM1 inhibitor, had anticancer activity. But because of its
significant toxicity, trials with this drug were discontinued
(Newlands et al, 1996). Also, significant animal toxicity was noted
with LMB (Mutka et al, 2009). However, the marked gastro-
intestinal toxicity of LMB was not based on its ability to inhibit
CRM1 as LMB derivatives with improved pharmacologic proper-
ties, but retaining CRM1 inhibitory capacity displayed much less
toxicity (Mutka et al, 2009; Lapalombella et al, 2012). Both classes
of CRM1 inhibitors (LMB and SINE compounds) bind to CYS 539
in the cargo-binding grove of SC-CRM1. However, LMB fills most
of the groove, while SINE compounds occupy only around 40% of
the groove. Sun et al (2013) also demonstrated that LMB, but not
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Table 2. Analysis of blood samples after treatment of mice in vivo

Treatment

Blood values Vechicle
KPT-330

(10mgkg�1)
WBC (�1000 per ml) (range, 2.9–20.9) 4.6±1.5 4.0±0.3

Neut (�1000 per ml) (range, 0.15–7.9) 1.2±0.29 1.26±0.5

HCT (%) (range, 34–53) 34.8±4.9 46.2±7.5

PLT (�1000 per ml) (range, 685–1436) 622±82 786±180

Alb (g l�1) (range, 25–30) 34.7±1.5 36.5±0.6

ALP (U l� 1)(range, 35–96) 82±22.8 96±18

ALT (U l� 1) (range, 17–77) 29±5.2 46.2±10.2

CREAT (mgdl�1) (range, 0.2–0.9) 0.12±0.01 0.062±0.01

Abbreviations: Alb¼ albumin; ALP¼ alkaline phosphatase; ALT¼ alanine aminotransferase;
CREAT¼ creatinine; HCT¼haematocrit; Neut¼neutrophils; PLT¼platelet; WBC¼white
blood cell. Mice were randomly divided into two groups (five mice per group): orally treated
with vehicle (0.6% w/v aqueous Pluronic F-68) or KPT-330 (10mgkg� 1, thrice weekly � 4
weekly). Mice were given Nutri-Cal (tomlyn) during therapy to allow robust nutrition.
Mean± s.d. of NOD/SCID mice.
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SINE, undergoes hydrolysis following the binding to CRM1,
resulting in the decreased affinity of LMB to CRM1. In addition,
the authors showed that LMB binding to CRM1 is not reversible
even following 24 h of incubation, while SINE binding is reversible
at 24 h. Therefore, the improved toxicity profile of SINE
compounds compared with LMB may result from their reversi-
bility of binding to CRM1, allowing ‘normal’ cells to recover.

p53 is mutated in more than half of all human cancers, leading
to a variety of biological effects and often associated with a poor
clinical outcome (Freedman and Levine, 1998; Lecane et al, 2003;
Hoshino et al, 2008). Nuclear export of this protein is mediated
exclusively through CRM1 (Stommel et al, 1999). Previous studies
showed that LMB induced p53 activation, suggesting this was the
key to inducing growth arrest associated with apoptosis in prostate
cancers (Lecane et al, 2003), neuroblastomas (Smart et al, 1999),
and melanoma (Pathria et al, 2012). Recently, a study showed that
p53 was a critical mediator of KPT-induced differentiation and
apoptosis of acute myeloid leukaemia cells (Ranganathan et al,
2012). Interestingly, we observed that KPT-330 induced apoptosis
in both p53-wt and -mut NSCLC cells. We observed that KPT-330
increased the levels of p73. As a transcription factor, p73 shares
structural and functional similarities with p53. In cancer cells that
express p53-wt, p73 cooperates with p53 to induce apoptosis;
whereas in p53-mutant cancer cells, p73 has been reported to cause
apoptosis via activation of p53-inducible genes (Irwin, 2004; Moll
and Slade, 2004; Vayssade et al, 2005; Chung and Irwin, 2010).
p73, similar to p53, is upregulated in response to a subset of
DNA-damaging agents including cisplatin, inducing expression
of apoptosis regulated genes including Bax, Bim, Noxa, and
Puma (Moll & Slade, 2004; Vilgelm et al, 2008; Lunghi et al, 2009;
Zawacka-Pankau et al, 2010). In addition, tumours often have a
p53 missense mutation at R175H, R248H, R249S, or R273H in
human cancers. These p53-mutant proteins retain the ability to
bind to p73 and transactivate endogenous CDKN1A, suppressing
cell proliferation (Willis et al, 2003). We showed that KPT-330
induced apoptosis in H1975 cells (R273H, mutation of p53)
associated with expression of CDKN1A. Silencing of p73 (shRNA
p73) blunted the ability of KPT-330 to slow the growth of these
NSCLC cells. p73 has been shown to be an important determinant
of chemosensitivity in humans cancers (Irwin et al, 2003) and has
an important role in cisplatin-induced apoptosis of tumours
(Al-Bahlani et al, 2011). Taken together, p73 may have a significant
role in the antiproliferative activity of KPT-330 wild-type and
p53-mutant NSCLC cells.

In our study, two of the NSCLC cell lines have a T790M
mutation in exon 20 of EGFR, making them resistant to both
TKIs (gefitinib and erlotinib) (Sharma et al, 2007). But these cells
were sensitive to the antiproliferative effects of KPT-330 showing
that KPT-330 can inhibit growth of NSCLC cells even after
their loss of responsiveness to a TKI. Furthermore, 5 of 11
of the NSCLC cell lines had either a K- or N-RAS mutation,
1 of 11 had loss of phosphatase and tensin homologue, and 2 of 11
NSCLC had PIK3CA mutations. KPT-330 had antiproliferative
activity against each of these NSCLC cell lines. Thus, KPT-330
might have unique abilities to inhibit growth of tumour
cells containing mutant tumour suppressor genes or activated
oncogenes.

In conclusion, the present study shows for the first time that
KPT-330 has prominent in vitro and in vivo antitumour activity
against NSCLC cells. KPT-330 inhibited cell proliferation and
induced apoptosis of NSCLC cells in vitro and in vivo. The drug
was effective regardless of the mutational status of either p53,
EGFR, RAS, PI3K, or phosphatase and tensin homologue. The drug
also reduced levels of CRM1 protein, and produced a significant
nuclear accumulation of p53 and p73. Combination therapy with
KPT-330 and cisplatin displayed synergistic antiproliferative
activity in vitro. Treatment of mice bearing NSCLC tumours

with oral KPT-330 significantly reduced the size of their tumours.
These data suggest that KPT-330 either alone or in combination
with platium-based regimens may be effective in the treatment of
NSCLC patients despite the heterogeneity of this disease.
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