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Background: Several tyrosine kinase inhibitors (TKIs) can decrease docetaxel clearance in patients by an unknown mechanism.
We hypothesised that these interactions are mediated by the hepatic uptake transporter OATP1B1.

Methods: The influence of 16 approved TKIs on transport was studied in vitro using HEK293 cells expressing OATP1B1 or its
mouse equivalent Oatp1b2. Pharmacokinetic studies were performed with Oatp1b2-knockout and OATP1B1-transgenic mice.

Results: All docetaxel-interacting TKIs, including sorafenib, were identified as potent inhibitors of OATP1B1 in vitro. Although
Oatp1b2 deficiency in vivo was associated with increased docetaxel exposure, single- or multiple-dose sorafenib did not influence
docetaxel pharmacokinetics.

Conclusion: These findings highlight the importance of identifying proper preclinical models for verifying and predicting
TKI–chemotherapy interactions involving transporters.

Docetaxel is widely used for the treatment of multiple solid tumours,
including cancers of the breast, lung, head and neck, stomach, and
prostate. The interindividual pharmacokinetic variability seen with
docetaxel treatment remains high, and this phenomenon may have
important ramifications for the agent’s clinical activity and toxicity
(Baker et al, 2006). Docetaxel is mainly metabolised by the hepatic
enzyme CYP3A4, and the importance of this pathway has
been confirmed in mice with a deletion of the Cyp3a gene cluster
(Van Herwaarden et al, 2007). We previously reported that
differential expression of organic anion-transporting polypeptides
of the OATP1B family in the human liver regulates the initial step in
the elimination of docetaxel, before metabolism (De Graan et al,
2012). In view of the relevance of these uptake transporters in the
pharmacokinetics of docetaxel, instances of idiosyncratic hyper-
sensitivity to docetaxel could possibly be the result of currently
unrecognised drug–drug interactions at the level of hepatocellular
uptake mechanisms involving OATP1B1, the main OATP1B-
family member expressed in the human liver (Konig et al, 2013).

In this context, it is worth noting that several tyrosine kinase
inhibitors (TKIs) evaluated in combination regimens with
docetaxel, including axitinib (Martin et al, 2012), pazopanib
(Hamberg et al, 2012), and sorafenib (Awada et al, 2012),
can increase the systemic exposure to docetaxel in cancer patients

by a mechanism that is currently not understood (Table 1). In the
current study, we tested the hypothesis that these TKIs can inhibit
the function of OATP1B1 and its murine equivalent Oatp1b2
in vitro, and evaluated the contribution of this process to an
interaction with docetaxel in vivo using mice that are knocked out
for Oatp1b2 or knocked in for OATP1B1.

MATERIALS AND METHODS

Crizotinib, lapatinib, nilotinib, regorafenib, ruxolitinib, sorafenib
and vemurafenib were purchased from Chemie Tek (Indianapolis,
IN, USA); dasatinib, erlotinib, imatinib, pazopanib, and vandetanib
from LC laboratories (Woburn, MA, USA); gefitinib and sunitinib
from Toronto Research Chemicals (Toronto, ON, Canada);
axitinib from Selleckchem (Houston, TX, USA); and bosutinib
from Pfizer (New York, NY, USA). [3H]Docetaxel (specific activity,
60 Cimmol� 1; radiochemical purity, 99.0%) and [3H]estradiol-
17b-D-glucuronide (specific activity, 50.1Cimmol� 1; radiochemical
purity, 99.0%) were purchased from American Radiolabeled
Chemicals (St. Louis, MO, USA). Dimethyl sulfoxide (Sigma Aldrich,
St. Louis, MO, USA) was used as a solvent for all TKIs, and ethanol
for docetaxel.
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Flp-In T-Rex293 cells transfected with OATP1B1*1A
(wild type) and HEK293 cells overexpressing Oatp1b2 were created
from a commercial Slco1b2 cDNA cloned into a pDream2.1/MCS
vector (GenScript, Piscataway, NJ, USA), as described (De Graan
et al, 2012). Inhibition of OATP1B1- or Oatp1b2-mediated
transport was determined by assessing the effect of TKIs on
the intracellular accumulation of estradiol-17b-D-glucuronide or
docetaxel according to established procedures (De Graan et al,
2012; Zimmerman et al, 2013).

Adult Oatp1b2 knockout mice and age-matched wild-type mice,
both on a DBA/1LacJ background, were bred in-house. Adult
knockout mice for entire Oatp1a and Oatp1b loci and age-matched
transgenic mice with liver-specific expression of OATP1B1, both
on an FVB background, were obtained from Taconic (Hudson, NY,
USA). Mice were housed in a temperature-controlled environment
with a 12-h light cycle and given a standard diet and water. All
experiments were approved by the Institutional Animal Care and
Use Committee of St. Jude Children’s Research Hospital.

Docetaxel was formulated in polysorbate 80 and diluted in
normal saline (final polysorbate 80 concentration, 5%), whereas
sorafenib was formulated in 50% Cremophor EL (Sigma Aldrich)
and 50% ethanol and diluted to 1 : 4 (vol/vol) with deionized water
immediately before administration. Single or multiple doses of
sorafenib (60mg kg� 1) were administered by oral gavage, followed
1.5 h later by a tail vein injection of docetaxel (10mg kg� 1). The
selected doses of sorafenib and docetaxel in these murine
experiments are associated with plasma concentrations that are
similar to those observed in patients receiving sorafenib at 400mg
b.i.d. (Hu et al, 2011) or docetaxel at 100mgm� 2 (Van Tellingen
et al, 1999). Previous in vitro studies have demonstrated that the
drug vehicles employed in the mouse study may affect the function
of hepatic transporters. In particular, Cremophor EL has been
identified as a potent inhibitor of OATP1B3, OATP1A2 and
OATP2B1 (Engel et al, 2012). However, Cremophor EL is not
absorbed after oral administration (Malingré et al, 2000) and
therefore will not be able to influence the function of hepatic
transporters of relevance to the current investigation.

Plasma from each mouse was collected at 5, 15, 30, 60, 120, and
240min after docetaxel administration, and samples were analysed
by a validated method based on liquid chromatography with
tandem mass-spectrometric detection (De Graan et al, 2012).
Pharmacokinetic parameters were calculated using non-compart-
mental methods in the WinNonlin 6.2 software (Pharsight, St
Louis, MO, USA). All data are presented as mean±s.d. Statistical
analyses were based on a two-tailed, non-parametric t-test
(GraphPad Prism v5.0, La Jolla, CA, USA), and Po0.05 was
considered statistically significant.

RESULTS

Inhibition of OATP1B1 by TKIs in vitro. We initially deter-
mined whether FDA-approved TKIs can inhibit OATP1B1
function in mammalian cells that overexpress the transporter,
using estradiol-17b-D-glucuronide as a prototypical substrate
(Konig et al, 2000). Of the 16 TKIs evaluated, axitinib, nilotinib,
pazopanib, and sorafenib were identified as potent inhibitors of
OATP1B1 (490% inhibition; Figure 1A). As a representative of
this class of TKIs, sorafenib was further evaluated and found to
also potently inhibit the OATP1B1-mediated transport of doc-
etaxel with a half-inhibitory maximum concentration of 6.96 nM
(Figure 1B), and almost completely inhibit the function of human
OATP1B1 (Figure 1C) and mouse Oatp1b2 (Figure 1D) at 10mM, a
concentration achievable in humans and mice (Hu et al, 2011).

Pharmacokinetic studies in vivo. To test whether sorafenib
inhibits OATP1B-type transporters in vivo, we determined the
pharmacokinetic profile of docetaxel in a DBA/1LacJ strain of mice
deficient in Oatp1b2 (Oatp1b2(� /� ) mice). In the absence of the
TKI, Oatp1b2 deficiency was associated with a significantly
increased exposure to docetaxel, as measured by peak plasma
concentration (P¼ 0.00033; Figure 2A) and area under the curve
(AUC) (Po0.0001; Figure 2B). Unexpectedly, coadministration of
a single oral dose of sorafenib did not result in a significantly
altered AUC of docetaxel in either wild-type (P¼ 0.97) or
Oatp1b2(� /� ) mice (P¼ 0.75). The lack of a pharmacokinetic
interaction was also noted when sorafenib was given twice daily for
4 consecutive days before docetaxel administration to wild-type
(P¼ 0.14) or Oatp1b2(� /� ) mice (P¼ 0.29; Figure 2B).

As hepatocytes of the Oatp1b2(� /� ) mice express multiple
members of Oatp1a, a related subfamily of transporters that can
potentially provide compensatory restoration of function when
Oatp1b2 is inhibited (Iusuf et al, 2012), we next determined the
pharmacokinetics of docetaxel in mice on an FVB strain deficient
in both the Oatp1a and Oatp1b gene loci (Oatp1a/1b(� /� )
mice), either with or without liver-specific expression of OATP1B1
(OATP1B1(tg)). The AUC of docetaxel was similar in Oatp1a/
1b(� /� ) and Oatp1b2(� /� ) mice (P¼ 0.73; Figure 2B), and
was significantly reduced in OATP1B1(tg) mice (P¼ 0.0052),
supporting a direct role of OATP1B1 in the elimination of this
agent. However, despite the ability of sorafenib to inhibit the
OATP1B1-mediated transport of docetaxel in vitro, sorafenib did
not influence the AUC of docetaxel in this mouse model (P¼ 0.15;
Figure 2B).

DISCUSSION

In this study, we demonstrate that several TKIs, including axitinib,
pazopanib, nilotinib, and sorafenib, can inhibit the activity of the
human OATP1B1 transporter by more than 90%. The results for
pazopanib are consistent with a previous report using a similar
model (Xu et al, 2010). Interestingly, among TKIs that have been
evaluated clinically in combination with docetaxel, only those

Table 1. Evaluation of pharmacokinetic interactions between TKIs and
docetaxel in patients

TKI

Docetaxel
dose

(mgm�2) Observation Reference
Axitinib 100 AUC B55% increased Martin et al, 2012

Bosutinib NA

Crizotinib NA

Dasatinib 75 No change Araujo et al, 2012

Erlotinib 25 No change Chiorean et al, 2008

Gefitinib 75 No change Manegold et al, 2005

Imatinib 20–25 No change Connolly et al, 2011

Lapatinib 75 No change LoRusso et al, 2008

Nilotinib NA

Pazopanib 50–60 AUC B57% increased Hamberg et al, 2012

Regorafenib NA

Ruxolitinib NA

Sorafenib 75–100 AUC B36–80% increased Awada et al, 2012

Sunitinib 75 No change Bergh et al, 2012

Vandetanib NA

Vemurafenib NA

Abbreviation: NA¼ no data available.
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found here to be potent OATP1B1 inhibitors cause clinical drug–
drug interactions, resulting in increases in the systemic exposure to
docetaxel of up to 80%. Of these TKIs, pazopanib is a known weak

inhibitor of CYP3A4 and can moderately increase exposure to
other CYP3A4 substrates such as midazolam (Goh et al, 2010) and
paclitaxel (Tan et al, 2010). This suggests that the mechanism by
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Figure 1. Inhibition of OATP1B-type transporters by TKIs. (A) Influence of 16 different TKIs (10mM; 15-min pre-incubation) on the activity of
OATP1B1, expressed in Flp-In T-Rex293 cells, as determined by the intracellular accumulation of [3H]estradiol-17b-D-glucuronide (E2G) (0.1mM;
5-min incubation). (B) Influence of sorafenib (0.040–40mM; 15-min pre-incubation) on the activity of OATP1B1, expressed in HEK293 cells, as
determined by intracellular accumulation of [3H]docetaxel (0.1 mM; 5-min incubation). The curve was obtained by fitting the Hill equation to the
data. (C, D) Influence of sorafenib (10mM; 15-min pre-incubation) on the intracellular accumulation of [3H]estradiol-17b-D-glucuronide (E2G) (0.1 mM;
5-min incubation) or [3H]docetaxel (0.1mM; 5-min incubation) in HEK293 cells with or without expression of OATP1B1 (C) or Oatp1b2 (D). All data
represent the mean (bar)±s.d. (error bar) of two experiments performed in triplicate (n¼ 6).
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Figure 2. Influence of Oatp1b2 deficiency and sorafenib on docetaxel pharmacokinetics. Wild-type, Oatp1b2(� /� ), Oatp1a/1b(� /� ), or
OATP1B1(tg) mice (n¼ 3–11 per group) were given oral vehicle or oral sorafenib (60mgkg� 1) as a single oral dose (denoted ‘single’) or twice daily
for 4 days (denoted ‘multiple’) before i.v. docetaxel (10mgkg� 1). Results represent the mean (symbol)±s.d. (error bar) for the observed peak
plasma concentrations (Cmax) in panel (A) or the area under the curve extrapolated to infinity (AUC) in panel (B). The corresponding plasma–
concentration time profiles and kinetic parameter estimates are provided in Supplementary Figure S1 and Supplementary Table S1, respectively.
*Po0.05 compared with the reference group (wild type or OATP1B1(tg)).
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which pazopanib affects the pharmacokinetic profile of docetaxel
may involve both metabolism and transport. However, unlike
pazopanib, axitinib does not inhibit CYP3A4 (Chen et al, 2013),
and although sorafenib competitively inhibits recombinant
CYP3A4 in vitro (Sugiyama et al, 2011) it has no influence on
the pharmacokinetics of midazolam (Flaherty et al, 2011) or
paclitaxel (Flaherty et al, 2008; Okamoto et al, 2010). The previous
demonstration that axitinib (Reyner et al, 2013) and sorafenib
(Zimmerman et al, 2013) are themselves substrates of OATP1B1
supports the possibility that the reported pharmacokinetic
interactions of these TKIs with docetaxel in patients are the result
of a competitive inhibitory mechanism at the level of docetaxel
entry into hepatocytes mediated by OATP1B1. This would be
consistent with the notion that, unlike for docetaxel, the
pharmacokinetics of neither midazolam (Ziesenitz et al, 2013)
nor paclitaxel (Van De Steeg et al, 2013) is affected by OATP1B1.

The human and rodent OATP1B-type transporters share a high
degree of sequence homology, similarity in basolateral membrane
localisation, and have largely overlapping substrate and inhibitor
specificity (Roth et al, 2012). Our current in vitro data are in line
with that prior knowledge in that sorafenib was found to be an
inhibitor for both human OATP1B1 and mouse Oatp1b2.
Moreover, our in vivo studies confirmed the significant influence
of Oatp1b2 deficiency in mice on the pharmacokinetics of
docetaxel (De Graan et al, 2012), and demonstrated that this
defect can be fully restored by introducing OATP1B1 in the
hepatocytes of these animals without involvement of the related
Oatp1a-type transporters.

Surprisingly, the reported clinical pharmacokinetic interaction
between sorafenib and docetaxel (Awada et al, 2012) could not be
replicated in mice. We previously demonstrated that Oatp1b2
deficiency in mice is not associated with any pronounced
compensatory alterations in expression of hepatic transporters
that can explain these findings (Lancaster et al, 2012). Moreover,
there are no changes in the functional expression of Cyp3a
isoforms, the key enzymes associated with docetaxel metabolism in
these transporter knockout mice (Lancaster et al, 2012). In our
current study, we found no substantial differences in pharmaco-
kinetic parameters of docetaxel when comparing results in
Oatp1b2(� /� ) mice to those in Oatp1a/1b(� /� ) mice. This
eliminates the possibility that the lack of a change in docetaxel
plasma levels in the presence of sorafenib was due to compensatory
effects involving Oatp1a-type transporters. The discrepancy
between the clinical observations and those observed here in mice
supports the possibility that additional uptake transporters for
docetaxel may exist in mice that are insensitive to inhibition by
sorafenib. Such demonstration of inherent interspecies differences
in drug–drug interactions is not unprecedented, although
this phenomenon is usually associated with differential affinity
of inhibitors for human compared with rodent transporters
(Shirasaka et al, 2010). Studies are ongoing to evaluate the
potential utility of mice with a humanised liver (Chen et al, 2011)
as a tool to predict interactions between TKIs and chemotherapy.

Overall, our findings support a direct contribution of OATP1B1
in previously recorded pharmacokinetic interactions between TKIs
and docetaxel, which can be predicted from a simple in vitro
experiment. Although the present investigation involved in vivo
studies with only one TKI, our failure to reproduce an established
interaction of sorafenib with docetaxel in mice suggests that
caution is warranted when attempting to extrapolate in vivo
findings to a clinical scenario.
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