
Return of the malingering mutants
M Greaves*,1

1Center for Evolution and Cancer, The Institute of Cancer Research, Brookes Lawley Building, 15 Cotswold Road, Sutton,
Surrey SM2 5NG, UK

Of all the hallmark biological features of cancer, drug resistance
stands out as the harbinger of bad news for patients and oncologists
alike. Cancer cells can employ several adaptive mechanisms for
evading chemotherapeutic assault (Redmond et al, 2008) (Table 1).
Prominent among these is mutation of the gene(s) encoding the
drug targets. Unambiguous and consistent evidence for this route to
escape has been provided in the recent era of therapy with small-
molecule tyrosine kinase inhibitors (TKIs) (Gorre et al, 2001; Kosaka
et al, 2006). Despite the extraordinary success of imatinib for the
treatment of chronic myeloid leukaemia (CML), many patients,
particularly with more advanced disease, relapse with imatinib-
resistant ABL1 mutations (Gorre et al, 2001; Branford et al, 2002;
Shah et al, 2002). More than 50 distinct mutations have been
described, all impairing drug binding to the ABL1 kinase domain
active site (Schindler et al, 2000; Shah et al, 2002). Although such
mutations have the appearance of being adaptively acquired in
response to therapy, this is not the underlying mechanism. As in any
Darwinian evolutionary system of natural selection, for example,
speciation in ecosystems, antibiotic resistance in bacteria (Lambert
et al, 2011), mutations accrue in a stochastic or random manner
with respect to the functions encoded by the mutant gene. A vast
majority of them are destined to remain neutral in impact and will
be present in usually undetectable, small subclones. The probability
of a specific drug-resistant mutation arising will be a function of the
intrinsic mutability of that locus and the number of proliferative
‘at-risk’ cycles in self-renewing cancer stem cells – the necessary
repository of selectable mutations (Greaves, 2013). In addition, and
critically, if the cancer has acquired genetic instability, this will
greatly accelerate the rate of mutation accrual. This probability of an
ABL1 kinase mutation being present at diagnosis of CML has been
calculated, albeit making assumptions about the above parameters,
the numbers for which that will have wide confidence limits. These
analyses suggested that B10–100% of patients with CML will have
ABL1 kinase mutations on board before instigation of TKI
therapy, depending upon stage of disease (Michor et al, 2005).
The BCR–ABL1 kinase activity has been associated with ROS
(Nieborowska-Skorska et al, 2012) and increased genetic instability
or mutation frequency (Salloukh and Laneuville, 2000), and this
may accelerate the rate of acquisition of ABL1 kinase mutations as
well as other ‘driver’ or oncogene mutations that promote the acute
or blast crisis phase of disease.

The emergence of TKI-resistant mutants, in relapse, is then the
consequence of the positive selective pressure provided by the
specific drugs: the rare and covert mutant clone now finds itself as
a beneficiary of therapy with an enormous competitive advantage
in terms of ecosystem space and resources, whereas its clonal
relatives are decimated. Evidence for this sequence of events comes
from the finding of low-level, drug-resistant mutations in both
CML (Roche-Lestienne et al, 2002) and BCR–ABL1-positive
ALL (Pfeifer et al, 2007), T-ALL (Meyer et al, 2013) or colorectal
cancer (Diaz et al, 2012) before the exposure to the drugs that
subsequently elicited their clonal dominance.

This much follows simple and predictable evolutionary paths.
But what happens to such emergent drug-resistant clones if the
therapy is then switched to a drug to which they are sensitive? The
expectation is that, following de-selection, they would dramatically
decline to very low levels or become extinct – depending upon the
efficacy of the new drug or drug regime.

In this issue, Parker et al (2013) provide some intriguing insight
into the oscillating fate of ABL1 kinase mutations. Five patients
with imatinib-resistant CML were serially followed throughout
switches in therapy that involved other ABL1 kinase inhibitors
(dasatinib, nilotinib) or bone marrow transplantation. Although
the details vary with the different patients, in principle the data
illustrate that the imatinib-resistant mutant clone that predomi-
nates in initial recurrence of disease declines to undetectable levels
when de-selected but can reappear when the therapy, for one
reason or another, is changed again (Figure 1). The authors
consider the probability that the recurrent mutant is a second,
independent version of the same initial mutation but plausibly
argue that this is unlikely. The result begs two questions. First, is it
surprising that the mutant clone lingers on in a covert manner with
its latent malignancy de-selected? The answer must be no. The new
AML1 kinase inhibitor or alternative therapy may fail to eliminate
all CML cells irrespective of their ABL1 kinase mutant status; plus
quiescent CML stem cells, mutant or not, appear to be remarkably
resistant to ABL1 kinase inhibition (Jiang et al, 2007). Hanfstein
et al (2011) previously reported oscillating selection, de-selection
(but regularly detectable) and re-selection in patients in whom
TKIs were alternated with other chemotherapies. What is more
surprising is that the de-selected clone should return to dominance
in the absence of the specific drug that elicited its emergence in the
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first place. One possible explanation for this is that the mutant
clone may have been less sensitive to the second-line TKI (O’Hare
et al, 2005) and hence at a clonal level retained competitive
advantage. Another is that some ABL1 kinase mutants ironically
have more potent oncogenic activity (Shah et al, 2007) and this
gives them the edge. Whatever the biological explanation, a clear
practical inference from the observation of Parker et al (2013) is
that sensitive molecular screening for residual, specific drug-
resistant mutations would be informative and help dictate choice of
therapy – for CML and any cancer where a limited range of
resistance genotypes can emerge in response to highly targeted
therapy. This would be relatively straightforward for blood-borne
leukaemia cells but more demanding for solid tumours where
biopsies are likely to be a biased sample of a cancer with
topographical segregation of subclones (Gerlinger et al, 2012;
Greaves and Maley, 2012). However, there are potential solutions
to this dilemma. If a limited range of mutations are normally
positively selected by therapy, then these might be detectable,
before therapy, by sensitive screens of DNA fragments in plasma
(Murtaza et al, 2013). Alternative generic measures of clonal

diversity may provide a practical surrogate for the probability than
any drug-resistant mutants exist (Mroz et al, 2013).
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Figure 1. Patterns of sequential clonal dominance in CML treated with
kinase inhibitors. Shifting patterns of clonal dominance seen in several
patients reported by Parker et al (2013) are summarized. Tyrosine
kinase inhibitor 1 (TKI-1, for example, imatinib) and tyrosine kinase
inhibitor 2 (TKI-2, for example, desatinib). *By Sanger sequencing:
10–20% sensitivity or by mass spectrometry: 0.2% sensitivity.

Table 1. Means of therapeutic escape

1. Genetic instability Mutation in target
(or in drug uptake/efflux pathway)a

2. Target redundancy Signal bypass of target dependence
(or addiction)b

3. Stem cell plasticity Quiescent cancer stem cells are generally
chemoresistant (Saito et al, 2010)

4. Subclonal diversity Cancer subclones and their constituent stem
cells are genetically diverse and some may lack
related drug target (Anderson et al, 2011;
Greaves and Maley, 2012).c

aBy amplification of target or mutational loss of drug-binding site.
bAs a result of target redundancy in signalling network (Sharma et al, 2010; Workman and
Clarke, 2011; Prahallad et al, 2012; Wilson et al, 2012) or selection for subclone with another
mutation that facilitates bypass of target (Engelman et al, 2007).
cThis escape route applies particularly to highly targeted therapies aimed at mutant
proteins or specifically dysregulated pathway proteins. However, this escape mechanism
would not apply if the therapeutic target was ubiquitously expressed in the cancer, for
example, as an addictive founder mutation – as in BCR–ABL1 in CML.
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