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BACKGROUND: Carboplatin and cisplatin, alone or in combination with paclitaxel, have similar efficacies against ovarian cancer (OVCA)
yet exhibit different toxicity profiles. We characterised the common and unique cellular pathways that underlie OVCA response to
these drugs and analyse whether they have a role in OVCA survival.
METHODS: Ovarian cancer cell lines (n¼ 36) were treated with carboplatin, cisplatin, paclitaxel, or carboplatin–paclitaxel (CPTX).
For each cell line, IC50 levels were quantified and pre-treatment gene expression analyses were performed. Genes demonstrating
expression/IC50 correlations (measured by Pearson; Po0.01) were subjected to biological pathway analysis. An independent OVCA
clinico-genomic data set (n¼ 142) was evaluated for clinical features associated with represented pathways.
RESULTS: Cell line sensitivity to carboplatin, cisplatin, paclitaxel, and CPTX was associated with the expression of 77, 68, 64, and
25 biological pathways (Po0.01), respectively. We found three common pathways when drug combinations were compared.
Expression of one pathway (‘Transcription/CREB pathway’) was associated with OVCA overall survival.
CONCLUSION: The identification of the Transcription/CREB pathway (associated with OVCA cell line platinum sensitivity and overall
survival) could improve patient stratification for treatment with current therapies and the rational selection of future OVCA therapy
agents targeted to these pathways.
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The American Cancer Society ranks ovarian cancer (OVCA) as the
fifth leading cause of cancer mortality in women, accounting
for more deaths than any other gynaecologic cancer. In 2010 in the
United States alone, approximately 22 000 women had been
predicted to be diagnosed with OVCA, with an estimated 14 000
women dying of their disease (Jemal et al, 2010). This high
mortality is attributed not only to the advanced stage (III/IV) at
diagnosis observed for most patients (Herrin and Thigpen, 1999)
but also to limited treatment options available for patients who
develop acquired resistance to chemotherapy.
After cytoreductive surgery, most patients with advanced-stage

disease receive systemic treatment with a platinum plus/minus
taxane-based regimen. Clinical trials performed in the 1980s and
1990s established the platinum compounds to be superior to
alkylating agents, either alone or in combination with other non-
platinum drugs (Omura et al, 1986). Cisplatin and carboplatin
do not differ significantly in their efficacy or effect on survival but

do have markedly different side effects (Ozols et al, 2003).
Paclitaxel, a compound extracted from Pacific yew tree bark, has
been used as an antineoplastic agent since the 1980s and has been
shown to improve OVCA progression-free and overall survival
when combined with cisplatin or carboplatin in first-line therapy
(McGuire et al, 1996). Randomised clinical trials comparing the
combination of paclitaxel with either cisplatin or with carboplatin
in patients with advanced-stage OVCA found no significant
differences in efficacy between the two combination treatments,
although there was generally an improved tolerability for the
carboplatin-containing regimen (Neijt et al, 2000; du Bois et al,
2003; Ozols et al, 2003). Despite substantial clinical data
demonstrating the superiority of platinum-based regimens vs
non-platinum regimens, the non-inferiority of carboplatin over
cisplatin, and the benefit of paclitaxel combined with platinum-
based regimens, the molecular basis to OVCA sensitivity to these
drugs remains to be fully characterised.
The objectives of this study were to characterise the biological

signalling pathways that underlie response to standard of care
therapy and to further determine the influence of these pathways
on overall survival from OVCA. To accomplish these objectives,
we integrated chemo-sensitivity data from OVCA cell lines treated
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with cisplatin, carboplatin, and carboplatin plus paclitaxel with
genome-wide expression data to provide insights into the unique
and common signalling pathways that may comprise the biological
basis of OVCA response to primary therapy agents. Although it is
recognised that platinum-based agents induce cell death via initial
mechanisms (and molecular pathways) that are distinct from those
of the taxanes, it is also accepted that the two groups of drugs
likely share a number of final biological and molecular pathways
associated with the apoptotic process (Fisher, 1994; Eguchi et al,
1997; Zhan et al, 1999; Pestell et al, 2000; Wang et al, 2000), thus
underlying the assumptions for this study. The identification of
unique and shared determinants of drug response in OVCA has the
potential to improve our understanding of OVCA chemo-response
and also the stratification of patients for treatment with current
therapies and the rational selection of agents targeted to these
pathways for future treatment of OVCA.

MATERIALS AND METHODS

Cell culture

Ovarian cancer cell lines were obtained from the American
Type Culture Collection (Manassas, VA, USA) (CAOV3, OV90,
OVCAR3, SKOV3, TOV112D); from the European Collection of
Cell Cultures, Salisbury, UK (A2780CP, A2780S); or from Kyoto
University, Kyoto, Japan (CHI, CHIcisR, M41, M41CSR, Tyknu,
and TyknuCisR) or were kind gifts from Dr Patricia Kruk,
Department of Pathology, College of Medicine, University of South
Florida, Tampa, FL, USA, and Susan Murphy, PhD, Department of
OBGYN/Division of GYN Oncology, Duke University, Durham,
NC, USA (A2008, C13, CAOV2, FUOV1, HeyA8, IGR-OV1, IMCC3,
IMCC5, MCAS, OV2008, OVCA420, OVCA429, OVCA432,
OVCA433, OVCAR4, OVCAR5, OVCAR8, Dov13, BG1, Ovary1847,
OVCAR10, OVCAR2, SK-OV-4).
Cell lines were maintained in RPMI-1640 (Invitrogen, Carlsbad,

CA, USA) supplemented with 10% fetal bovine serum
(Fisher Scientific, Pittsburgh, PA, USA), 1% sodium pyruvate,
1% penicillin/streptomycin (Cellgro, Manassas, VA, USA), and 1%
nonessential amino acids (HyClone, Hudson, NH, USA).
Mycoplasma testing was performed every 6 months following
manufacturer’s protocol (Lonza, Rockland, ME, USA).

RNA extraction and microarray expression analysis

RNA from 36 OVCA cell lines was extracted using RNeasy kit
following manufacturer’s recommendations (Qiagen, Valencia, CA,
USA). Quality of the RNA was measured using an Agilent 2100
Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). The
targets for Affymetrix DNA microarray analysis were prepared
according to the manufacturer’s instructions, and targets were
hybridised to customised Human Affymetrix HuRSTA gene chips
(HuRSTA-2a520709), which include 60 607 probe sets and repre-
sentation of 19 308 genes (Gene Expression Omnibus accession
number GSE34615).

CellTiter-blue cell viability assays

Drug activity was evaluated using a high-throughput CellTiter-Blue
cell viability assay. Cells (2.5� 103 per well) were plated in 384-well
plates using complete media with 10% fetal bovine serum and
allowed to adhere overnight. After cell adherence, increasing
concentrations of cisplatin, carboplatin (Sigma-Aldrich, St Louis,
MO, USA), paclitaxel (Sequoia Research Products Ltd., Pang-
bourne, UK), or carboplatin plus paclitaxel (carbotaxol: constant
molar ratio of carboplatin to paclitaxel of 20 000 : 1) were added to
appropriate wells using an automated pipetting station. Four
replicate wells were used for each drug concentration and vehicle
controls. Drug dilutions initially consisted of 1.5-fold serial

dilutions from a maximum concentration of 100 mM. The cells
were incubated with the drug for 72 h to ensure all cell lines
underwent a minimum of two doublings. After drug incubation,
5 ml of CellTiter-Blue reagent (Promega Corp., Madison, WI, USA)
was added to each well. Fluorescence was read at 579 nm excitation/
584 nm emission using a Synergy 4 microplate reader (Bio-Tek
Instruments, Inc., Winooski, VT, USA). IC50 results were determined
using a sigmoidal equilibrium model fit (XLfit 5.2, ID Business
Solutions Ltd., Guildford, Surrey, UK). IC50 was defined as the concen-
tration of drug required for a 50% reduction in growth/viability.

Statistical analysis

Expression data from 36 OVCA cell lines were subjected
to background correction and normalisation using the Robust
Multichip Average algorithm in the Affymetrix Expression
Console (http://www.affymetrix.com). Pearson correlation test
was performed on individual gene expression values and IC50

results. Probe sets with Po0.01 were considered to have signifi-
cant correlations with IC50 results and were uploaded to GeneGo
MetaCore for pathway analysis (http://www.genego.com/metacore.
php). Pathways with Po0.05 were considered significant, based on
the GeneGo MetaCore statistical test for significance.

Building signatures of pathway activity

The principal component analysis methodology was used to derive
a pathway gene expression signature with a corresponding
‘pathway score’ to represent an overall gene expression level for
the pathways of interest. First, data were reduced into a small set of
uncorrelated principal components. This set of principal compo-
nents was generated based on its ability to account for variation.
The first principal component analysis is used to represent the
overall expression level for the pathway, as it accounts for the
largest variability in the data. That is, pathway score is equal toP

wixi, a weighted average expression among the BAD pathway
genes, where xi represents gene i expression level, wi is the
corresponding weight (loading coefficient) with

P
w2
i ¼ 1, and the

wi values maximise the variance of
P

wixi.

Validation of signatures in primary OVCA data sets

The pathway gene expression signature scores developed in OVCA
cell lines were evaluated in an independent clinico-genomic data
set from 142 advanced-stage (III/IV) serous OVCA samples as
previously described (Marchion et al, 2011). Gene expression data
and the corresponding clinical parameters for these 142 OVCA
samples are publicly available at www.ncbi.nlm.nih.gov/geo,
accession number GSE23554. In brief, all 142 patients signed the
IRB-approved, written informed consent forms, were known to
have advanced-stage (III/IV) serous epithelial OVCA, and under-
went primary cytoreductive surgery followed by primary therapy
with a platinum-based regimen (with or without taxane or
cyclophosphamide). Additional details are provided in the
Supplementary Data section. Log-rank tests with Kaplan–Meier
survival curves were used to test any association between the
pathway scores (‘high’ vs ‘low’ based on a median value cutoff) and
overall survival for patients with OVCA. None of the data from the
142 OVCA samples was used to identify the principal component
analysis signatures; the OVCA ovarian genomic data made up a
completely independent evaluation set.

CREB pathway analysis

To further elucidate the biological basis to the association between
CREB pathway expression and overall survival from OVCA, we
performed a series of in silico analyses, including Pearson’s
correlation between growth doubling times for the NCI60 human
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cancer cell lines (and CREB pathway expression, quantified
by CREB PC1 score). Affymetrix HG-U133A expression and
doubling time data for the 60 NCI cancer cell lines (6 leukaemia,
9 melanoma, 9 non-small cell lung, 7 colon, 6 central nervous
system, 7 ovarian, 8 renal, 2 prostate, and 6 breast cancer cell lines)
were obtained from NCI web sites (http://discover.nci.nih.gov/
cellminer/loadDownload.do and http://dtp.nci.nih.gov/docs/misc/
common_files/cell_list.html).
In light of the ability of the CREB pathway to influence

transcription of other genes and molecular pathways, we evaluated
differences in genome-wide expression in OVCAs that demonstrate
high vs low CREB pathway expression. Using genomic data from
142 advanced-stage (III/IV) serous OVCAs (described above and
previously (Marchion et al, 2011)), we studied genomic profiles
from OVCAs that demonstrated a complete response (CR) to
primary therapy for evidence of molecular signalling pathways that
may differentially expressed in OVCAs that harbour high vs low
expression levels of the CREB pathway (based on the median score
threshold to define high vs low). We performed a SAM t-test
analysis to identify differentially expressed genes between ‘CR
high-CREB’ vs ‘CR low-CREB’ OVCAs. Differentially expressed
genes (FDR¼ 0) were subjected to Genego pathway analysis. In a
preliminary analysis, using OVCA data from 23 patients for whom
disease-free interval (DFI) information is available, we compared
DFI for patients with low and high CREB PC1 scores (median score
used as threshold).

RESULTS

The workflow for this study is summarised in Figure 1. The IC50

values for 36 OVCA cell lines treated with increasing doses of

carboplatin, cisplatin, paclitaxel, and carboplatin plus paclitaxel
treatment (Supplementary Table 1) were correlated with gene
expression data for each drug (Pearson correlation coefficient,
Po0.01). Treatment of OVCA cell lines with carboplatin revealed
1201 genes whose differential expression correlated with
carboplatin sensitivity (Po0.01). This gene list corresponded to
77 biological pathways identified by GeneGo MetaCore analysis
(Figure 2A). Cisplatin sensitivity correlated with the expression of
454 unique genes (Po0.01), corresponding to 68 pathways.
Twenty-three of these pathways were also correlated with
carboplatin sensitivity (Figure 2A). Treatment with paclitaxel
revealed 1025 genes associated with OVCA paclitaxel sensitivity
(Po0.01), representing 64 biological pathways (Figure 2B).
Pearson correlation of the IC50 values and gene expression data
for the OVCA cell lines treated with a combination of carboplatin
and paclitaxel (20 000 : 1 molar ratio) revealed 1049 differentially
expressed genes (Po0.01) and 25 pathways (Figure 2B–D).
To distinguish between pathways that are unique to the

mechanism of action of each drug and pathways that are common
determinants of OVCA sensitivity, we identified pathways contain-
ing genes that were correlated with sensitivity to multiple drugs.
Of the 25 pathways linked to sensitivity to carboplatin–paclitaxel
combination therapy and the 68 pathways linked to cisplatin
sensitivity, only 3 were identified in both analyses: ‘Apoptosis and
Survival/BAD Phosphorylation’, ‘Role of APC in Cell Cycle
Regulation’ (where APC is anaphase-promoting complex) and
‘Transcription/CREB’ (Figure 2D). Eight pathways were specifically
correlated with carboplatin sensitivity, regardless of whether
paclitaxel was used (Figure 2C). Two pathways were specifically
correlated with sensitivity to paclitaxel treatment in both the
presence and absence of carboplatin (Figure 2B).
To further distinguish core pathways involved in the response to

chemotherapeutic agents in OVCA, we analysed the union of three
individual comparisons: carboplatin sensitivity vs cisplatin sensi-
tivity, carboplatin–paclitaxel sensitivity vs cisplatin sensitivity, and
carboplatin–paclitaxel sensitivity vs carboplatin sensitivity. We
identified three pathways with a shared role in OVCA sensitivity to
carboplatin and cisplatin single-agent treatment and carboplatin
and paclitaxel combination treatment: 1) ‘Apoptosis and Survival/
BAD Phosphorylation’ 2) ‘Role of APC in Cell Cycle Regulation,’
and 3) ‘Transcription/CREB’ (Figure 3). Diagrams of the genes/
proteins involved in these pathways are provided in Figure 3
(GeneGo MetaCore output: September 29, 2010).

Expression of the Transcription/CREB pathway is
associated with OVCA clinical outcome

Based on the above data, we utilised principal component analysis
to develop expression signatures for both the Role of APC in Cell
Cycle Regulation and the Transcription/CREB pathways. We have
previously reported on an Apoptosis and Survival/BAD Phosphor-
ylation pathway signature and its associations with chemo-
sensitivity and overall survival (Marchion et al, 2011). A 55-gene
APC in Cell Cycle Regulation pathway signature and a 103-gene
Transcription/CREB pathway signature were generated and
evaluated in an independent OVCA genomic data set
(Supplementary Tables 2 and 3). Expression of the Transcrip-
tion/CREB pathway gene signature was associated with overall
survival from OVCA (n¼ 142, Pp0.0001; Figure 4A). Furthermore,
the OVCA genomic data set was evaluated with regard to
Transcription/CREB pathway gene expression signature score
and surgical cytoreductive (debulking, n¼ 141, with debulking
status unavailable for 1 of 142 patients) status (optimal: o1 cm;
suboptimal: 41 cm residual tumour at conclusion of surgery,
Po0.001; Figure 4C) and also response to primary platinum-based
therapy (complete or incomplete response, Po0.0001; Figure 4B).
An association between low Transcription/CREB pathway gene
expression signature score and favourable outcome was observed

Ovarian cancer cell line panel
(n =36)

Affymetrix
gene expression analysis

(HuRSTA chip)

Dose response
analysis

Pearson’s correlation

Gene expression and drug sensitivity (IC50)

Genes associated with OVCA drug sensitivity

Pathways associated with OVCA drug sensitivity

cisplatin, carboplatin,
paclitaxel

carboplatin + paclitaxel

Figure 1 Experimental design flow chart. Gene expression analysis was
performed on a panel of ovarian cancer cell lines (n¼ 36) using the custom
Affymetrix HuRSTA chip. Each cell line was treated with increasing doses of
carboplatin, cisplatin, paclitaxel, or carboplatin plus paclitaxel, and IC50

values were quantified using CellTiter-Blue cell viability assays. Pearson
correlation coefficients were calculated for expression data and drug IC50

values. Genes associated with OVCA sensitivity (demonstrating expression/
IC50 correlations, Po0.01) were subjected to GeneGo Metacore Pathway
analysis.
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in patients who underwent optimal and suboptimal debulking
(optimal: adjusted P¼ 0.002, suboptimal: adjusted P¼ 0.02). Most
importantly, OVCA patients with a low Transcription/CREB
pathway gene expression signature score who underwent sub-
optimal debulking had survival data that trended toward super-
iority vs patients with a high Transcription/CREB pathway gene
expression signature score who underwent optimal debulking
(adjusted P¼ 0.08). Interestingly, patients who demonstrated a
complete response to primary platinum-based therapy but had a
low Transcription/CREB pathway gene expression signature score
had notably superior survival than patients who demonstrated a
complete response but had a high Transcription/CREB pathway
gene expression signature score (adjusted P¼ 0.0001). Patients
who had an incomplete response to primary therapy had no
difference in survival associated with their Transcription/
CREB pathway gene expression signature score (P¼ 0.27). When
evaluated with debulking status and response to primary
platinum-based therapy, grade, and age, the Cox proportional
hazards multivariable model revealed that the Transcription/CREB

pathway gene expression signature score was an independent
variable associated with survival (P¼ 0.01).
The Role of APC in Cell Cycle Regulation pathway gene

expression signature score demonstrated a trend toward an
association with overall survival from OVCA, although results
did not reach statistical significance (n¼ 142, P¼ 0.1, Figure 4D).
No association between the Role of APC in Cell Cycle Regulation
pathway gene expression signature score and survival was
observed within the group of patients who had optimal
(P¼ 0.1384) or suboptimal (P¼ 0.6192) cytoreductive surgery or
who had demonstrated a complete (P¼ 0.2154) or incomplete
(P¼ 0.6984) response to primary platinum-based therapy.

CREB pathway expression and OVCA biology

We identified a correlation between expression of the CREB
pathway (quantified by CREB PC1 score) and the doubling times of
60 human cancer cell lines (http://dtp.nci.nih.gov/docs/misc/
common_files/cell_list.html) (P¼ 0.006). As such, cancer cell lines

1049

25 pathways 64 pathways2

Paclitaxel
Differentially expressed genes:

1025
Cisplatin

Differentially expressed genes: 
454

1. Cell cycle/Spindle assembly and chromosome separation

2. Transcription/Ligand-dependent transcription of retinoid-target genes

77 pathways 23

Carboplatin + paclitaxel
Differentially expressed genes:

1049

25 pathways 77 pathways8

Carboplatin
Differentially expressed genes:

1201

1. Apoptosis and survival/BAD phosphorylation

2. Apoptosis and survival/HTR1A signalling

3. Cell cycle/Role of APC in cell cycle regulation

4. Development/ACM2 and ACM4 activation of ERK

5. Development/Activation of Erk by ACM1, ACM3 and ACM5

6. Development/Activation of ERK by alpha-1 adrenergic receptors

7. Development/Activation of ERK by kappa-type opioid receptor

1. Apoptosis and survival/BAD phosphorylation
2. Cell cycle/ESR1 regulation of G1/S transition
3. Cell cycle/Regulation of G1/S transition (part 1)

8. Development/Alpha-2 adrenergic receptor activation of ERK

9. Development/Angiotensin activation of ERK

10. Development/Angiotensin activation of ERK

11. Development/Beta-adrenergic receptors regulation of ERK
12. Development/G-proteins mediated regulation MARK-ERK
 signalling

4. Cell cycle/role of APC in cell cycle regulation
5. Cell cycle/Role of SCF complex in cell cycle regulation
6. Cell cycle/Spindle assembly and chromosome separation
7. Transcription/CREB pathway
8. Translation /Regulation of EIF2 activity

13. Development/PDGF signalling via MAPK cascades

14. Development/Thyroliberin signalling

15. Immune response/HTR2A-induced activation of cPLA2
16. Immune response/MIF - the neuroendocrine-macrophage
 connector
17. Immune response/Neurotensin-induced activation of IL-8 in
 colonocytes

Carboplatin + paclitaxel
Differentially expressed genes: 

1049 454

25 pathways 3

Cisplatin
Differentially expressed genes:

18. Membrane-bound ESR1: interaction with G-proteins signalling

19. Muscle contraction/Regulation of eNOS activity in cardiomyocytes
20. Neurophysiological process/Delta-type opioid receptor in the
 nervous system
21. Neurophysiological process/Melatonin signalling 1. Apoptosis and survival/BAD phosphorylation cell cycle

2. Role of APC in cell cycle regulation
3. Transcription/CREB pathway

22. Signal transduction/Erk interactions: inhibition of Erk

23. Transcription/CREB pathway

1201

68 pathways

Carboplatin
Differentially expressed genes: 

Carboplatin + paclitaxel
Differentially expressed genes:

68 pathways

Figure 2 Shared biological pathway activation between chemotherapeutic agent treatments. The Pearson correlation test was performed to analyse the
relationship between IC50 values and gene expression. Genes whose expression highly correlated with the IC50 value associated with each drug (Po0.01)
were uploaded into the GeneGo MetaCore software to identify significantly represented pathways (Po0.05). (A) Ovarian cancer cell line sensitivity to
carboplatin or cisplatin treatment was associated with 1201 and 454 genes, respectively. Genes associated with OVCA sensitivity to carboplatin and cisplatin
were represented in 77 (carboplatin) and 68 (cisplatin) biological pathways. (B) Ovarian cancer cell line sensitivity to paclitaxel or carboplatin plus paclitaxel
treatment was associated with the expression of 1025 and 1049 genes, respectively. Genes associated with OVCA sensitivity were represented in 64
(paclitaxel) and 25 (carboplatin plus paclitaxel) biological pathways. (C) Ovarian cancer cell line sensitivity to carboplatin plus paclitaxel treatment or
carboplatin was associated with the expression of 1049 and 1201 genes, respectively. Genes associated with OVCA sensitivity were represented in 25
(carboplatin plus paclitaxel) and 77 (carboplatin) biological pathways. (D) Ovarian cancer cell line sensitivity to carboplatin plus paclitaxel treatment or
cisplatin treatment was associated with the expression of 1049 and 454 genes, respectively. Genes associated with OVCA sensitivity were represented in 25
(carboplatin plus paclitaxel) and 68 (cisplatin) biological pathways.
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with low doubling times (using median number as a threshold)
demonstrated lower CREB pathway expression (PC1 scores) than
cell lines with high doubling times (P¼ 0.003) (Figure 5). Further-
more, study of genomic data from patients who experienced a
complete response to primary therapy revealed that OVCAs with
high vs low CREB pathway expression also reflect differential
expression of other pathways that have influence on tumour
biology. SAM t-test identified differential expression of 4017 probe
sets (FDR¼ 0) between ‘CR low-CREB PC1’ and ‘CR high-
CREB PC1’ score OVCAs. These differentially expressed genes
included representation of 292 pathways (Po0.05; Supplementary
Table S4), including cAMP signalling (P¼ 1.0� 109), CREB
pathway (P¼ 1.0� 106) (both expected given CREB pathway
function), IP3 signalling (P¼ 1.0� 106), apoptosis, survival, and
BAD phosphorylation (P¼ 1.0� 106), G-protein-mediated regula-
tion of MAPK-ERK signalling (P¼ 1.0� 105), and AKT signalling
(P¼ 1.0� 105). Finally, although the findings did not reach
statistical significance, and the number of patients for whom
DFI is available is low (n¼ 23), we did observe a trend toward
shorter DFI in patients with OVCAs harbouring high CREB scores
(P¼ 0.6, data not shown).

DISCUSSION

Cancer cells employ a variety of strategies to deregulate apoptosis,
cell cycle progression, and cellular metabolism during the course
of their evolution (Hanahan and Weinberg, 2011). In this study,
integration of OVCA cell line chemo-sensitivity and genome-wide
expression data implicated pathways, which include BAD, APC,
and CREB, as key mediators of sensitivity to chemotherapeutic
agents, that, when deregulated, may contribute to the acquired
drug resistance frequently observed in OVCA patients. Further-
more, when we integrated genome-wide expression results with
clinical outcomes data from patients with advanced-stage (III/IV)
serous OVCA, we found that these pathways are not only
associated with in vitro drug sensitivity but also with patient
survival. It is perhaps not surprising that there are both common
and unique pathways that underlie OVCA platinum plus/minus
taxane response; those that are associated with the differing initial
mechanisms that ultimately lead to apoptosis, and those common
(and potentially unique) pathways that may be associated with the
apoptotic process. Paclitaxel is a microtubule-stabilising agent
with potent anti-proliferative and anti-migratory activity for

Figure 3 Common biological pathways activated in OVCA cells in response to chemotherapeutic agents. Three biological pathways are commonly
activated in an OVCA cell line panel in multiple comparisons of chemotherapeutic agent response. (A) ‘Apoptosis and Survival/BAD phosphorylation’
pathway. (B) ‘Cell Cycle/Role of APC in Cell Cycle Regulation’ pathway. (C) ‘Transcription/CREB’ pathway.
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multiple cell types, including fibroblasts, epithelial cells and
tumour cells (Thyberg, 1984; Hruban et al, 1989; Bhalla et al,
1993; Donaldson et al, 1994; Rowinsky and Donehower, 1995).
It has been established that paclitaxel kills cancer cells via
microtubule binding, induction of kinetic suppression of micro-
tubule dynamics, and cell cycle arrest in mitosis, that leads to
induced apoptosis via activation of cyclin-dependent kinases,
and the c-Jun N-terminal kinase/stress-activated protein kinase
(JNK/SAPK) (Wang et al, 2000). In contrast, the primary
mechanism of cisplatin-induced cytotoxicity is generally accepted
to be associated with DNA damage that subsequently leads to
apoptosis (Fisher, 1994), though apoptosis may also be caused by
damage to cytoplasmic or nuclear proteins including molecules
involved in cellular energy (i.e., ATP) or proteins directly or
indirectly involved in the apoptotic process (i.e., p53, Bax, Bcl, and
caspases), leading to necrotic cell death (Perez, 1998). In fact, both
apoptosis and necrosis have been observed in cisplatin-treated
cells (Eguchi et al, 1997; Zhan et al, 1999; Pestell et al, 2000).
In light of the different primary mechanisms of action (and
underlying molecular signalling pathways) of platinum-based

agents vs the microtubule-binding taxanes, there also appear to
be potential convergences of action via common pathways that
lead to—and are associated with—the apoptotic processes. Future
studies of both the common and unique pathways associated with
OVCA platinum- plus/minus taxane response may also shed light
on the relative contributions of identified unique and common
pathways to differing mechanisms of cell death.
Our primary finding was regarding the Transcription/CREB

pathway. Expression of this pathway was significantly associated
with survival in patients who demonstrate a complete response to
primary platinum-based therapy (adjusted P¼ 0.0001), suggesting
that expression of this pathway not only influences OVCA
response to platinum-based therapy but also to the behaviour of
de novo platinum-sensitive tumours subsequent to a complete
response to primary therapy such that survival is impacted. We
observed no such effect in patients who experience an incomplete
response to platinum, suggesting that, although expression of the
pathway is associated with primary chemo-sensitivity, it has no
influence on the post-treatment phenotypic behaviour of OVCAs
that are resistant to platinum. Notably, the influence of the
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Transcription/CREB pathway on overall survival also approached
statistical significance, despite cytoreductive status (the volume of
residual disease at the completion of primary surgery), which is
considered one of the most important clinical determinants of
survival for patients with OVCA. Our analyses demonstrated a
statistically significant correlation between CREB pathway expres-
sion and the doubling times of 60 human cancer cell lines, further
supporting the view that the influence of the CREB pathway on
overall survival from OVCA may be due to an effect on biological
processes over-and-above chemo-sensitivity. Indeed, when we
explored genes and pathways that are differentially expressed in
OVCAs that demonstrated complete responses to primary therapy
but that harboured high vs low CREB pathway scores, we identified
a series of molecular signalling pathways known to influence
tumour behaviour, cellular proliferation and apoptosis (e.g., AKT,
G-protein signalling, MAP/ERK, BAD). Our findings suggest that
CREB pathway activity influence OVCA cell sensitivity to
chemotherapeutic agents, but also, perhaps independently, influ-
ence cellular proliferation, which can also influence chemo-
sensitivity. It is possible, therefore, that expression of the pathway
influences clinical outcome from OVCA via direct effects on
chemo-sensitivity, but also indirectly via transcriptional influences
on additional pathways that impact cellular proliferation and
apoptosis, even following a complete response to primary
treatment. These findings highlight the importance of the CREB
pathway in many aspects of OVCA phenotypic behaviour and may
have substantial implications for the future direction of research
into disease development, response to therapy, and clinical
outcome.
cAMP response element-binding protein (CREB) is a transcrip-

tion factor that can be activated by multiple pathways that
affect cellular cAMP levels, and its many targets have important
roles in cellular metabolism, proliferation, and survival (Mayr and
Montminy, 2001; Zhang et al, 2005). G-protein-coupled receptors,
transmembrane proteins that transduce extracellular signals to
intracellular effector pathways via heterotrimeric G proteins,

activate the enzyme adenylate cyclase, which catalyses the
conversion of ATP to cAMP. The cAMP then binds the regulatory
subunits of protein kinase A (PKA), which leads to the release of
the PKA catalytic subunits (Lappano and Maggiolini, 2011). Active
PKA migrates to the nucleus, where it phosphorylates CREB
(Gonzalez and Montminy, 1989). Phosphorylated CREB then binds
its coactivator CBP/p300, a histone acetyltransferase, and together
CREB and CBP/p300 activate the transcription of genes
whose promoters contain a CRE (cAMP response element)
sequence (Bannister and Kouzarides, 1996; Parker et al, 1996).
Overexpression of CREB may be required for the proliferation and
survival of human cancers (Bonni et al, 1999; Siu and Jin, 2007).
Additionally, the CREB coactivator CBP/p300 is mutated in several
human cancers, with loss of CBP/p300 histone acetyltransferase
activity potentially impacting the expression of several tumour
suppressor targets (Iyer et al, 2004). Clearly, additional functional
analyses are warranted to better define the mechanistic basis to
these observations.
BCL-xL/BCL-2-associated death promoter (BAD) was first

identified in a yeast two-hybrid screen for BCL-2 interactors
(Yang et al, 1995). Heterodimerisation between BAD and BCL-2,
BCL-xL, or BCL-W promotes apoptosis through the displacement
of BAK and BAX (Yang et al, 1995; Holmgreen et al, 1999).
The interaction between BAD and its partners is dependent on the
BAD BH3 domain (Zha et al, 1997). Upon apoptotic stimuli, BAD
translocates from the cytosol to the mitochondria (Zha et al, 1996;
Jia et al, 1999), where it neutralises the anti-apoptotic proteins and
promotes mitochondrial membrane permeabilisation (Datta et al,
2000; Roy et al, 2009). Subversion of BAD-mediated apoptosis may
thus be an important mechanism by which tumour cells acquire
resistance to apoptotic stimuli. A role of BAD-induced apoptosis in
tumour suppression is supported by the identification of BAD
mutations in colon cancer that disrupt binding to BCL-2 and
BCL-xL and the observation that BAD-deficient mice are prone to
diffuse B-cell lymphoma (Ranger et al, 2003; Lee et al, 2004).
Furthermore, because post-translational modification of BAD
represents a key control point between cell survival and apoptosis,
BAD phosphorylation is frequently deregulated in cancer. Activa-
tion of multiple signalling pathways by growth factors, cytokines,
or oncogenic mutations can contribute to increased BAD
phosphorylation, with aberrant kinase and phosphatase activity
leading to BAD inactivation and resistance to cell death signalling
in tumours (Danial, 2008).
The anaphase-promoting complex/cyclosome (APC/C) is a

multi-subunit ubiquitin ligase required for regulation of cell
cycle progression and mitotic exit. The APC/C consists of multiple
core subunits and an activator component. The APC/C is tightly
regulated during the cell cycle via the cyclical binding of the
Cdc20- (cell division cycle 20) and Cdh1- (cell division cycle
homologue 1) activating subunits. The major role of APC/C is to
target substrates for proteasomal degradation in an orchestrated
manner, with Cdc20 and Cdh1 mediating substrate recognition to
ensure that mitotic entry and exit occur correctly. The APC/CCdc20

is active from anaphase to the end of mitosis, and APC/CCdh1 is
active from late mitosis to the G1–S transition. The APC/CCdc20-
mediated destruction of targets such as securin and cyclin B drives
chromosome separation and exit from mitosis. As mitotic cyclins
are degraded, cyclin-dependent kinase activity decreases. By late M
phase, Cdh1 is no longer phosphorylated and can bind to the core
APC/C subunits. The APC/CCdh1 has multiple targets, including
Cdc20, mitotic cyclins, mitotic kinases, and inhibitors of DNA
replication origin licensing. Collectively, degradation of APC/CCdh1

targets ensures that cells do not duplicate their DNA and/or enter
mitosis prematurely (Nakayama and Nakayama, 2006). Because of
the critical role of APC/C in regulating chromosome segregation
during mitosis, deregulation of the complex could cause genomic
instability and contribute to tumourigenesis. Indeed, loss-of-
function mutations of core APC/C subunits has been observed in
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colorectal cancer cells, upregulation of Cdc20 has been observed in
several human cancers, and loss of Cdh1 causes chromosomal
instability and tumour formation in mice (Wang et al, 2003;
Nakayama and Nakayama, 2006; Garcia-Higuera et al, 2008).
The BAD, CREB, and APC/C may be linked by common

signalling molecules, as signalling pathways converge in many
ways to regulate cellular proliferation and survival at both the
transcriptional and post-transcriptional levels. For example, PKA
phosphorylation activates CREB and inactivates BAD and APC/
CCdc20 (Gonzalez and Montminy, 1989; Lizcano et al, 2000; Harada
et al, 2001; Searle et al, 2004). AKT also phosphorylates BAD and
CREB, and AKT phosphorylation protects some APC/CCdh1

substrates from degradation (Datta et al, 1997; del Peso et al,
1997; Gao et al, 2009). PTEN can also promote the association
between APC/C and Cdh1 to prevent S phase entry (Song et al,
2011). Cyclin-dependent kinases phosphorylate BAD, APC/C, and
CBP/p300 (Ait-Si-Ali et al, 1998; Zachariae et al, 1998; Konishi
et al, 2002). There may also be more direct crosstalk between BAD,
CREB, and APC. BCL-xL/BCL-2-associated death promoter (BAD)
has been linked to regulation of cell cycle progression and has been
found at CREs in cyclin genes (Chattopadhyay et al, 2001;
Fernando et al, 2007). The APC/C subunits APC5 and APC7
directly bind CBP/p300, stimulate CBP/p300 histone acetyltrans-
ferase activity, and potentiate CBP/p300-dependent transcription
(Turnell et al, 2005). cAMP response element-binding protein may
also directly impact cell survival by binding to CREs in the
promoters of anti-apoptotic factor genes such as BCL-2 to induce
their transcription (Wilson et al, 1996).
Based on the known interactions between these proteins, BAD,

APC/C, and CREB may potentially interact in a common pathway
to induce cell cycle arrest and death in response to mitotic or
metabolic stress caused by carboplatin, cisplatin, and paclitaxel.
Deregulation of components of these pathways may thus lead to
acquired drug resistance. Indeed, abnormal cell cycle progression,
defective apoptosis, and metabolic reprogramming have been
implicated as key mechanisms of OVCA chemoresistance

(Takahashi et al, 2005; Hajra et al, 2008; Etemadmoghadam
et al, 2009; Montopoli et al, 2011).
We have shown that integration of chemo-sensitivity and

genome-wide expression data can provide a more comprehensive
understanding of the mechanisms involved in drug responses. Our
results demonstrate that characterisation of gene expression
signatures in OVCA patients may be useful for characterisng
responses to treatment and also in developing an understanding
of the biology that drives clinical outcome and survival.
Furthermore, our identification of BAD, APC/C, and CREB as
key players in the cytotoxicity of carboplatin, cisplatin, and
paclitaxel in OVCA cell lines suggests that targeted therapies
against regulators of these proteins may be worthy of study
in chemoresistant OVCAs.
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