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BACKGROUND: Degradation and chemical modification of RNA in formalin-fixed paraffin-embedded (FFPE) samples hamper their use
in expression profiling studies. This study aimed to show that useful information can be obtained by Exon-array profiling archival
FFPE tumour samples.
METHODS: Nineteen cervical squamous cell carcinoma (SCC) and 9 adenocarcinoma (AC) FFPE samples (10–16-year-old) were
profiled using Affymetrix Exon arrays. The gene signature derived was tested on a fresh-frozen non-small cell lung cancer (NSCLC)
series. Exploration of biological networks involved gene set enrichment analysis (GSEA). Differential gene expression was confirmed
using Quantigene, a multiplex bead-based alternative to qRT–PCR.
RESULTS: In all, 1062 genes were higher in SCC vs AC, and 155 genes higher in AC. The 1217-gene signature correctly separated
58 NSCLC into SCC and AC. A gene network centered on hepatic nuclear factor and GATA6 was identified in AC, suggesting a role
in glandular cell differentiation of the cervix. Quantigene analysis of the top 26 differentially expressed genes correctly partitioned
cervix samples as SCC or AC.
CONCLUSION: FFPE samples can be profiled using Exon arrays to derive gene expression signatures that are sufficiently robust to
be applied to independent data sets, identify novel biology and design assays for independent platform validation.
British Journal of Cancer (2011) 104, 971–981. doi:10.1038/bjc.2011.66 www.bjcancer.com
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Archival formalin-fixed paraffin-embedded (FFPE) samples
contain a wealth of information pertaining to clinical disease,
particularly cancer. Although FFPE is the standard tissue
preservation method worldwide, constituent nucleic acids suffer
from chemical modification and degradation during sample
processing and storage (Lee et al, 2005), rendering archival RNA
incompatible with most high-throughput molecular techniques.
Microarray technology allows high-throughput RNA expression
analysis and predictive signature generation, such as the use of the
Oncotype DX array to profile node-negative, oestrogen receptor
positive breast cancers (Paik et al, 2004). The existence of
substantial libraries of archival material with long-term clinical
data makes their application to FFPE samples particularly
appealing. However, issues with RNA quality mean that failure
rates as high as 76% have been reported (Penland et al, 2007).
Significant effort has been made to modify existing microarray
protocols to enhance their compatibility with FFPE material
(Linton et al, 2009; Abdueva et al, 2010), and good concordance

between FFPE and fresh-frozen material (490% overlap in
detected probesets) is now achievable (Farragher et al, 2008;
Linton et al, 2009). Despite these advances, there is reluctance to
work with or trust FFPE data, and the vast repository of archival
samples with precious long-term follow-up remains largely
untapped, in favour of prospectively collected material, prepared
and stored at great expense. As microRNAs are well preserved in
formalin, there is interest in searching for microRNA biomarkers
in routinely processed material (Lebanony et al, 2009). However,
as the majority of microRNAs are poorly characterised, this
approach disregards the wealth of data regarding gene function.
Here, we investigate the feasibility of gene expression signature

generation from archival FFPE tissues. We describe an ensemble of
recently developed molecular and computational techniques,
which when used in concert unlock clinically and biologically
meaningful gene information from FFPE samples. In particular, we
make use of Affymetrix Exon 1.0 ST arrays, which were originally
designed to study alternative splicing. These arrays feature
probesets distributed along the length of each gene, rather than
simply targeting the 30 end, as is done with conventional 30 IVT
arrays. This intrinsic redundancy offers potential advantages with
FFPE material, as it increases the likelihood of detecting intact and
measurable RNA for each gene of interest. Furthermore, additional
confidence can be attributed to genes that have multiple,
differentially expressed and concordant probesets. As the arrays
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require different RNA preparation protocols and analysis to
‘standard’ Affymetrix arrays, the study serves to validate this
novel use of the arrays themselves, the upstream protocols used to
prepare material for hybridisation, and the downstream computa-
tional biology tools used for their analysis.
We, like many groups around the world are interested in

generating gene expression signatures relating to clinical parameters,
such as survival, specifically in cervix cancer. However, before
carrying out this signature generation, we need to ensure our
methods are compatible with archival FFPE samples. To allow a clear
validation without the requirement for paired fresh-frozen tissues,
we asked a question where the answer would be categorically black
or white. We hypothesised that the morphogenetic difference
between squamous cell carcinoma (SCC) and adenocarcinoma
(AC) of the cervix would allow us to be certain of both whether
and how well the FFPE methods worked. A further advantage of
using this combination is that the protein marker p63 can be used
to confirm tumours of squamous origin. (McCluggage, 2007). The
principal aim of this study was, therefore, to investigate whether the
intrinsic redundancy of Exon arrays could be exploited to derive a
gene signature using archival FFPE tumour material.

MATERIALS AND METHODS

Patients

FFPE blocks for 28 patients with cervical carcinoma (Supplemen-
tary Table S1) were identified from a database of archived
specimens, based on histology information from the original
pathology report. Squamous cell carcinoma samples (n¼ 19) were
selected at random, along with all available AC blocks (n¼ 9). All
tumours contained 430% tumour material. Local ethical approval
was obtained for using the human material (LREC: 08/H1011/63).

RNA extraction and Exon-array hybridisation

RNA was extracted and DNase treated using RecoverAll Total
Nucleic Acid Isolation Kit (Ambion, Austin, TX, USA), as per
manufacturer’s instructions. RNA was quantified using a Bioana-
lyser (Agilent Technologies Ltd, Santa Clara, CA, USA) and 100 ng
amplified using NuGEN WT-Ovation FFPE v2 kit (NuGEN Inc.,
San Carlos, CA, USA). The WT-Ovation Exon Module V1.0
(NuGEN Inc.) was used to generate ST-cDNA and 4 mg was
hybridised to Human Exon 1.0 ST (Affymetrix, Santa Clara, CA,
USA) arrays. Further details and raw data (CEL files) are available
at http://bioinformatics.picr.man.ac.uk/vice (or GSE27388).

Microarray data analysis

The microarray data were normalised using RMA (Irizarry et al,
2003). The R/BioConductor package xmapcore and the X:Map
database (Yates et al, 2008) were used to filter non-exonic and
multi-targeting probesets. Only probesets that were flagged as
‘present’ (i.e., Detection Above Background (DABG) Po0.01) in at
least three samples were retained for further analysis. LIMMA
(Smyth, 2004) was used to identify probesets that were differen-
tially expressed between SCC and AC subtypes, using FDR o0.01
and absolute fold-change42 as cutoff. Annotation of differentially
expressed genes was performed using GSA (Efron and Tibshirani,
2007), Ingenuity (IPA; Ingenuity Systems) and PAKORA (Leong
and Kipling, 2009). The complete bioinformatics analysis pipeline
is detailed in Supplementary Methods.

Validation of SCC and AC gene signature in an
independent data set

The microarray results were validated in an independent data set
derived from fresh-frozen human non-small cell lung cancer

(NSCLC) with known histology (downloaded from GEO database,
accession number: GSE10245) (Kuner et al, 2009). Affymetrix
HG-U133 Plus 2.0 array (Plus 2.0) probesets corresponding to the
differentially expressed Exon 1.0 ST probesets were identified
using a cross-platform probeset conversion strategy detailed in
Supplementary Methods. Mapped probesets were used for
supervised clustering analysis.

QuantiGene

QuantiGene 2.0 Plex Magnetic Separation Assay kit was used
(Affymetrix). Probes were designed to specific gene regions
anchored by Exon 1.0 ST probesets differentially expressed
between SCC and AC. The assay was performed according to the
manufacturer’s instructions. In triplicate, 150 ng of RNA was
added to separate wells of a 96-well hybridisation plate containing
magnetic capture beads and QG_2.0 probesets. The plate was
incubated for B20 h at 551C and agitated at 600 r.p.m. to maintain
suspension. Beads were sequentially hybridised (1 h, 501C) with
Pre-Amplifier probe, the Amplifier probe, the label probe and
SAPE with washes in between followed by a final 30min incubation
at 371C. Bead discrimination and signal detection were performed
on a Luminex instrument (Bio-Rad Laboratories, Hercules, CA,
USA). Data were exported to Excel, where background subtraction
and normalisation to four housekeepers (TBP, GAPDH, PGK1 and
YWHAZ) were performed. Quote ‘Panel number 11658’ when
specifying QuantiGene probes.

RESULTS

Quality control

Twenty-eight FFPE samples were profiled. Independent pathologist
review (KAS) confirmed 19 were SCC and 9 AC. Patient
demographics and age of the FFPE blocks are summarised in
Supplementary Table S1. The blocks had been stored an average of
12 (range 10–16) years. Assessment of over 100 FFPE samples on
Affymetrix Exon 1.0 ST arrays showed neither RNA integrity,
260/280, 260/230, concentration nor ST-cDNA yield correlates with
percent DABG, a measure of Exon array quality control (data not
shown). The only factor found to correlate was sample age,
highlighting the importance of comparing material of similar age.
In this study, at least 100 ng of total RNA was extracted from all
28 samples, sufficient for NuGen amplification. Similarly, the
amplification yield for all samples was 43.8 mg ST-cDNA,
sufficient for hybridising to Exon arrays. Post-hybridisation
quality control analysis using standard metrics, including percent
DABG, did not identify any inconsistent samples, and all samples
were included in subsequent analyses.
To assess the main source of variation in the experiment,

we applied unsupervised hierarchical clustering and principal
component analysis, using the 1000 probesets with greatest
variance across all 28 samples (Figure 1). In both cases, samples
separated according to histological subtypes. Thus, biology is the
predominant signal in the data and not that of degradation, sample
preparation or processing.

Molecular stratification of cervical cancer subtypes

Differential gene expression analysis using LIMMA (Smyth, 2004)
identified 2673 differentially expressed probesets between SCC and
AC (FDR o0.01; absolute fold-change 42). Mapping probesets to
genes using xmapcore and X:Map (Yates et al, 2008) yielded 1217
non-redundant genes: 1062 expressed higher in SCC than AC; 155
genes higher in AC. The top 30 genes in each group are listed
in Supplementary Table S2.
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Figure 1 Unsupervised clustering of 1000 probesets with the highest variance across the 28 FFPE cervical cancer samples. (A) Each row represents a
probeset; each column represents a sample. The expression level of each probeset was standardised by subtracting that probeset’s mean expression from
its expression value and then dividing by the standard deviation across all the samples. This scaled expression value, denoted as the row Z-score, is plotted in
red–blue colour scale with red indicating high expression and blue indicating low expression. Hierarchical clustering of genes and samples was based on
Pearson’s correlation. The first colour bar at the top indicates the histological classifications of the samples: SCC in orange and AC in green. p63 staining
status is indicated by the second coloured bar, where black represents p63þ and white represents p63�. (B) Principal component analysis of the top 1000
most variable probesets. Different colours are used for the two histological subtypes: orange represents SCC samples; green represent AC samples.
(C) Percentage variance explained by the first 10 principal components.
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Figure 2 Concordance of TP63 probeset with p63 protein immunohistochemistry. (A) SCC (V562, V558 and V554) and AC (V505, V524 and V594)
tumours, stained for p63 by immunohistochemistry (� 5). Brown indicates p63 and blue indicates haematoxylin nuclear counterstain. (B) High magnification
(� 20) example of V592 and V594 demonstrating the specificity of the nuclear stain. (C) Cluster dendrogram of the 19 TP63 probesets detected above
background (DABG Po0.01) in our SCC and AC samples. Clustered by samples and by probesets. The scaled expression of each probeset, denoted as the
row Z-score, is plotted in red–blue colour scale with red indicating high expression and blue indicating low expression. LIMMA P-value for each probeset is
displayed in brackets. p63 IHC result for each sample is indicated by the p63 bar, coloured black for positive and white for negative.
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p63 protein level validation, probe multiplicity and
putative marker discovery

The squamous histology marker p63 (McCluggage, 2007) was
detected in all 19 SCC, but none of the 9 AC (Figures 2A and B).
Twenty-six separate probesets target TP63 on the arrays. Nineteen
of the 26 probesets were detected (DABG Po0.05; Figure 2C) and
18 were differentially expressed between AC and SCC (FDR o0.01;
absolute fold-change42); only 1, ‘2657668’, was not. The complete
agreement with the immunohistochemistry data shows that Exon
array measurements of FFPE RNA reflect genuine changes at the
protein level. Given these data we compared genes which
correlated and anti-correlated with TP63 gene expression, as a
method for identifying putative novel markers of SCC and AC
(Figure 3). TP63 correlating genes included well-known markers,
such as KRT5 (R2¼ 0.93), along with novel genes such as
CTA-55I10.1 (R2¼ 0.95). TP63 anti-correlated genes included
MUC13 (R2¼�0.81) and EPS8L3 (R2¼�0.92).

Literature-based biological validation

We assessed the expression of four genes known to be specifically
expressed in SCC (TP63, DSG3, DSC3 and KRT5) or AC (MUC13,
MUC5B, MUC3A and TFF3) (Contag et al, 2004; Chao et al, 2006;
McCluggage, 2007). All eight genes were differentially expressed in
the Exon array data and behaved as expected (Supplementary
Figure S1A). In addition, the microRNA hsa-miR-205, a newly
identified marker of SCC (Lebanony et al, 2009), was also found to
be differentially expressed between SCC and AC (Supplementary
Figure S1B). To assess more robustly the literature, text-based
over-representation analysis was performed using PAKORA
(Leong & Kipling, 2009). This yielded biologically meaningful
terms associated with the different histological subtypes (Supple-
mentary Table S3). Ingenuity Biological Function analysis
identified categories such as ‘cancer’ and ‘reproductive system
disease’ as expected (Supplementary Table S4). Interestingly, the
top canonical pathways associated with SCC-associated genes were
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Figure 3 Identification of novel markers of SCC and AC based on TP63 transcript correlation. Hierarchical clustering of genes and samples was based on
Pearson’s correlation.
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‘Breast Cancer Regulation by Stathmin1’ and ‘HER-2 Signalling
in Breast Cancer’. Conversely, the most significant Canonical
Pathway associated with AC genes was ‘Maturity Onset Diabetes of
Young’ (MODY Signalling, P¼ 0.00071).

Transcription factor binding site and biological
network analysis

Gene Set Enrichment Analysis was used to investigate the
transcriptional regulation of cellular fate, that is, SCC or AC,
focusing on transcription factor binding motifs (GSA (Efron and
Tibshirani, 2007); Supplementary Table S5). Four degenerate
motifs for hepatic nuclear factor 1 (HNF1) were enriched in
the promoter regions of 38 genes associated with AC. Genes with
predicted HNF1 transcription factor binding motifs include
SPINK1, HNF4A and GATA6. HNF4A and HNF1B were also

identified in the MODY signalling pathway, further reinforcing
their significance. Figure 4 shows the highest scoring network
(score: 100) inferred from the AC gene list using Ingenuity
Network Analysis. In addition to the literature links automatically
created by Ingenuity (black lines), we manually added genes that
have a putative upstream HNF1 motif and were differentially
expressed (blue lines). Taken together, these data suggest a role for
these transcription factors (GATA6, HNF1B, HNF4A and HNF4G)
in AC.

Cross-validation of the AC/SCC gene signature in an
independent fresh-frozen NSCLC cohort

An independent carcinoma of the cervix data set with histology
data was not available publically. A search for any clinical cancer
cohort that contained the histological groups SCC and AC
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Figure 4 Biological network analysis identifies HNF regulated transcription in adenocarcinoma. (A) Network analysis identifies a putative developmental
axis centered on hepatic nuclear factor transcription. (B) qRT–PCR validation of HNF genes. Data shown are derived from 7 SCC and 6 AC samples.
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identified one data set. This independent cohort comprised 58
fresh-frozen human NSCLC tissue samples hybridised to Plus 2.0
arrays (Kuner et al, 2009) (GEO accession: GSE10245). The use of a
different tumour type represents a more stringent test of the
signature derived in FFPE than if a cervix carcinoma validation
cohort was available. Of our 2673 probesets, only 27% had
corresponding probesets on the Plus 2.0 array through mapping to
common exonic locus, such that the Plus 2.0 array probesets
identified are contained within or overlapping the genomic regions

spanned by the Exon array probes (see Supplementary Methods
for more details). We used xmapcore (Yates et al, 2008) to perform
this cross-platform probeset conversion and identified 730 Plus 2.0
probesets that targeted 333 genes in the SCC/AC gene signature.
When tested on the NSCLC data set, the signature stratified the
NSCLC sample as SCC or AC in good agreement with histopatho-
logical data (Figure 5). Disagreements were observed for four
samples: Pat 342 was classified as AC but clustered to the SCC
group, while Pat 30, 55, 188 which were classified as SCC by

Colour key

–6 –4 –2 0 2 4 6
Row z-score

SCC
AC
Misclassified

Histology
10

5

0

P
C

2

–5

–10

–15

–20 –10 0 10 20
PC1

30

100

60

%
 V

ar
ia

nc
e 

ex
pl

ai
ne

d

40

20

0

80

PC1
PC2

PC3
PC4

PC5
PC6

PC7
PC8

PC9
PC10

Principal component

47

5.5
2.7 2.5 2.1 1.9 1.7 1.64.1 3.7
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histology, clustered with the other AC samples. The same discrepan-
cies were apparent in the original study, attributed, by the authors, to
sample misclassification (Kuner et al, 2009). Thus, the FFPE signature
is not only robust, but generalises across cancer types.

Jackknife analysis to assess stability of the gene signature

Because of transcript fragmentation, there is scepticism over the
reproducibility and clinical applicability of results generated from
expression profiling FFPE samples. To address this, we assessed
the stability of the list of 2673 differentially expressed probesets
using jackknife analysis. We removed 10 or 30% of the samples
from the original data set, and generated 100 jackknifed data sets
for each subsample. The jackknifed data sets were analysed with
LIMMA as before to determine how the perturbation affects the

composition of the resulting gene lists. Removal of 10% of the
samples modified differentially expressed probesets only moder-
ately; with 1151 (43% of original DE probesets) probesets remained
significant 95% of the time (Figure 6A). Omitting 30% of samples
led to the number of significant probesets declining markedly to
296 (11% of original DE probesets). However, the resulting 296
probesets that were called significant 95% of the time were still
sufficiently robust to discriminate between SCC and AC in the
independent NSCLC data set (Figures 6B–D).

Application of a subset of genes using an alternate
platform (QuantiGene)

We then selected a subset of genes for further study using the
QuantiGene 2.0 Plex assay. The 13 most differentially expressed
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genes in SCC or AC identified by LIMMA analysis were tested
across a subset of 11 SCC and 6 AC. There was insufficient RNA for
further study for the remaining 11 samples. Unsupervised
hierarchical clustering of the resultant data completely separated
the cervix tumours into the two histological types (Figure 7).
Expression of eight of these genes was also successfully confirmed
by qRT–PCR (Supplementary Figure S2). Thus, gene expression
changes identified using Exon array profiling of
FFPE tumours can be successfully reproduced using alternative
technologies.

DISCUSSION

Recent articles have shown concordance between fresh-frozen and
FFPE profiles, using a variety of array technologies (Farragher
et al, 2008; Linton et al, 2009; Di Cesare et al, 2010; Saleh et al,
2010; Williams et al, 2010). While signatures derived from fresh-
frozen material have been subsequently tested in FFPE tissue
(Roberts et al, 2009; Rodriguez et al, 2010), this is, to the best of
our knowledge, the first time a genome-wide signature has been
generated de novo from FFPE material and has been shown to
successfully stratify an independent clinical data set.
We investigated whether B12-year-old FFPE material can be

used to derive clinically relevant signatures and discover novel
biology. We used standard methods and, in essence, treated our
samples and data in a similar way to fresh-frozen material, albeit
with a newly developed RNA amplification approach, and an
analysis strategy that exploited the intrinsic redundancy of
Affymetrix Exon 1.0 ST arrays. The advantage of our pipeline is

that the methods are readily implementable using the same array
facilities that are already exploited for standard gene expression
analyses, with little additional cost.
In cervix cancer, p63 is arguably the best marker of squamous

cells (McCluggage, 2007). There is some debate as to its utility in
distinguishing between SCC and AC in NSCLC (Au et al, 2004) or
even whether IHC is a sufficiently robust method for any
biomarker (Wolff et al, 2007; Hellberg et al, 2009). Currently, in
a diagnostic setting ‘no marker is totally specific or sensitive for
any given lesion’ (McCluggage, 2007). Other biomarkers, which
may be more specific, have therefore been pursued, including the
microRNA hsa-miR-205 (Lebanony et al, 2009). hsa-miR-205
is specifically expressed in SCC compared with AC, and this is
supported by the current study, which found the precursor RNA
to be over-expressed in SCC (Supplementary Figure S1B).
Our identification of a number of genes that correlated or
anti-correlated with both TP63 (Figure 3) and hsa-miR-205
(Supplementary Figure S3) suggests they are strong candidates
for further study as novel histological markers.
Exon arrays with their increased probe density also have better

genomic coverage, and include many newly annotated genes. Along
with well-annotated genes that were differentially expressed in our
analysis, we also identified a number of genes with no ascribed
function. For example, the SCC-specific transcript CTA-55I10.1 is a
processed transcript that has no predicted protein coding potential.
CTA-55I10.1 is located on chromosome 1 and the 30-end of this gene
overlaps with the microRNA and SCC marker gene hsa-miR-205.
Moreover, CTA-55I10.1 shows a similar expression profile to TP63 in
the Exon array data (Figure 3) and also in cervix cancer cell line
mRNA, with intact RNA (Supplementary Figure S4).
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The analysis revealed that SCC genes are predominantly
associated with two pathways previously described in breast
cancer: Her2 and Stathmin1. Stathmins are over-expressed
in many human malignancies (Singer et al, 2009), have roles in
microtubule depolymerisation, which affect cell motility and
viability (Cassimeris, 2002) and as such, are promising therapeutic
targets. Furthermore, in AC a network of genes centered on HNF
transcription factors (HNF1B, HNF4A and HNF4G) and GATA6
was also identified. It is likely that this HNF–GATA developmental
axis has a role in glandular cell differentiation of the cervix,
through the transcriptional regulation of multiple target genes
(Figure 4A).
Perhaps the strongest validation of our methods is the

application of the FFPE-derived signature to an independent
clinical data set. Not only did this involve a comparison across
array platforms (from Exon 1.0 ST to Plus 2.0 arrays), but also the
successful stratification of lung cancer samples using a signature
derived from cervix, demonstrating a significant level of robust-
ness to the data. Jackknife analysis further supports this
by confirming the overall stability of the results (Figure 6). The
resultant 296 probesets, whose differential expression between SCC
and AC shows the most stability, are robust candidates for
signature validation. Moreover, it was possible to use the Exon
array data to design assays using the alternate QuantiGene
platform, which recapitulated the original data and stratified
cervix samples into histological categories, as expected.
Although the derivation of a classifier suitable for use as a

clinical diagnostic is beyond the scope of this publication, the high
degree of correspondence found when validating the signature
using both qRT–PCR and QuantiGene demonstrates the potential
of FFPE in designing targeted assays for clinical exploitation.
We feel therefore that these data/methods could be used to this
end, and a reduced signature/classifier may be more robust than a
single biomarker such as p63 or hsa-miR-205 (Feng et al, 2004;
Winter et al, 2007; Buffa et al, 2010).
It has been suggested that expression profiling and biomarker

discovery have failed to deliver the much anticipated era of
personalised medicine, through the introduction of clinically
applicable tests (Diamandis, 2010). While there are many reasons
this may be the case, one clear caveat in many studies is the lack of
sufficient power to account for biological variation. This along
with a paucity of independent data sets to allow refinement of gene
signatures has resulted in the bias towards prevalent cancers, such
as breast, where prospective studies have resulted in diagnostics
reaching the clinic (Paik et al, 2004). Prospective collection of
samples is costly and requires considerable time and effort to
accrue sufficient numbers to address clinically meaningful
questions. By utilising the wealth of samples already collected
and preserved in FFPE, we overcome sample limitation and

facilitate the design and execution of better and more abundant
studies in many more centres. Around the world there are an
estimated one billion tissue samples archived in hospitals and
tissue banks, most of them FFPE (Blow, 2007). This study shows
that biological and clinically relevant information can be unlocked
from FFPE tumours using whole-genome approaches. The
redundancy offered by Exon arrays, which feature multiple
probesets targeting individual exons along the length of each gene
provide a robust platform for dealing with the uncertainties of
RNA extracted from FFPE material. The congruent nature of the
results from the different analysis methods (LIMMA, PAKORA,
Ingenuity and GSEA) is indicative of high data quality. This is
reinforced by the fact that the gene set derived from FFPE cervix
tissues performs impressively when applied to an independent
fresh-frozen lung cancer data set. While our study focused on the
difference between the histological subtypes of cervical SCC and
AC to allow us to unambiguously validate our methods, it is
reasonable to expect the methods are applicable to many routinely
collected FFPE sample sets (e.g., survival series, unknown
primaries and so on).
Although working with FFPE material is perhaps not as

straightforward as prospectively collected RNA, it is worth noting
that sample quality and RNA degradation are not simply restricted
to formalin fixation. While international efforts are still required to
improve certain areas pertaining to FFPE study, we show
unequivocally that the preconception of FFPE data being noisy,
uninterpretable and meaningless is wrong. Our work has
shown that, with the described methods, robust signatures can
be generated from archival FFPE tumour samples. These can be
applied to independent data sets, identify novel biology, and
be used to design assays for independent validation with an
alternative platform that has potential for clinical exploitation. In
conclusion, clinically meaningful and biologically relevant
gene expression profiles can be derived from archival FFPE
samples with Exon array profiling and this will undoubtedly have
significant impact on clinical research and, with time, practice.
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