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Effect of k-opioid receptor agonist on the growth of non-small
cell lung cancer (NSCLC) cells
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BACKGROUND: It is becoming increasingly recognised that opioids are responsible for tumour growth. However, the effects of opioids
on tumour growth have been controversial.
METHODS: The effects of k-opioid receptor (KOR) agonist on the growth of non-small cell lung cancer (NSCLC) cells were assessed
by a cell proliferation assay. Western blotting was performed to ascertain the mechanism by which treatment with KOR agonist
suppresses tumour growth.
RESULTS: Addition of the selective KOR agonist U50,488H to gefitinib-sensitive (HCC827) and gefitinib-resistant (H1975) NSCLC
cells produced a concentration-dependent decrease in their growth. These effects were abolished by co-treatment with the selective
KOR antagonist nor-BNI. Furthermore, the growth-inhibitory effect of gefitinib in HCC827 cells was further enhanced by co-
treatment with U50,488H. With regard to the inhibition of tumour growth, the addition of U50, 488H to H1975 cells produced a
concentration-dependent decrease in phosphorylated-glycogen synthase kinase 3b (p-GSK3b).
CONCLUSION: The present results showed that stimulation of KOR reduces the growth of gefitinib-resistant NSCLC cells through the
activation of GSK3b.
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Opioids are small endogenously produced peptide molecules
that are widely known for their analgesic and psychoactive
properties (Ciccone et al, 1980; Zubieta et al, 2001; Moles
et al, 2004). It has been shown that opioids can promote the
growth of tumour cells (Lazarczyk et al, 2010). On the other
hand, it has been controversially reported that opioids induce
the apoptosis of immunocytes, cancer cells and neuroblastoma
cells (Boehncke et al, 2010). Thus, it is becoming increasingly
recognised that opioids have a role in tumour growth (Saurer
et al, 2008).
Three major types of opioid receptors, m, d and k, have been well

characterised. k-Opioid receptors (KORs) are widely expressed
throughout the central nervous system (Chavkin et al, 1982;
Dhawan et al, 1996). It has been reported that KOR is also
expressed in the human adenocarcinoma breast cancer cell line
MCF7 and small cell lung carcinoma (Kallergi et al, 2003).
Furthermore, KOR agonist has been shown to inhibit the growth of
H157 cell, which is a non-small cell lung cancer (NSCLC) cell

(Maneckjee and Minna, 1990). However, little is known about the
mechanism that underlies the inhibitory effect of KOR stimulation
on the growth of NSCLC cells.
Epidermal growth factor receptor (EGFR) is a major target of

molecular anti-NSCLC therapy (Wakeling et al, 2002). Non-small
cell lung cancer patients with L858R or exon 19 deletion mutations
in EGFR show good responses to the tyrosine kinase inhibitor
gefitinib. However, patients with wild-type EGFR and acquired
mutation in EGFR T790M are eventually resistant to treatment
with gefitinib. In this study, we examined whether the selective
KOR agonist U50,488H could inhibit the growth of gefitinib-
sensitive and EGFR mutant (delE746-A750, L858R) NSCLC cells
(HCC827) and gefitinib-resistant and EGFR mutant (T790M)
NSCLC cells (H1975), and investigated the signalling mechanism
of the KOR-mediated inhibitory effect on tumour cell growth.

MATERIALS AND METHODS

Cell culture

The human NSCLC cell lines HCC827 and NCI-H1975 (H1975;
both from American Type Culture Collection Co., MD, USA) were
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cultured in HEPES-modified RPMI 1640 medium (Sigma-Aldrich
Co., St Louis, MO, USA) with 10% fetal bovine serum (FBS;
Invitrogen Life Technologies Co., Carlsbad, CA, USA) and 1%
penicillin-streptomycin (Invitrogen Life Technologies Co.). Normal
human lung fibroblasts (NHLF; Lonza Inc., Allendale, NJ, USA)
were cultured in fibroblast basal medium with insulin, rhFGF-B,
GA-1000 and FBS (all from Takara Bio Inc., Tokyo, Japan).
All cells were maintained under a humidified atmosphere of
5% CO2 at 371C.

Reagents

The reagents used in the present study were gefitinib (Toronto
Research Chemicals Inc., Canada), (±) trans 3,4-dichloro-N-methyl-
N-(2-(1-pyrrolidinyl) cyclohexyl)-benzeneacetamide (U50,488H)
methanesulfonate (Sigma Chemical Co.), nor-binaltorphimine
dihydrochloride (nor-BNI; Tocris Cookson Ltd., St Louis, MO,
USA), and 6-bromoindirubin-30-oxime (BIO; WAKO Pure Chemi-
cal Industries Ltd., Osaka, Japan).

Cell viability assay

Cell viability was determined by a cell proliferation assay using
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, yellow
tetrazole (MTT). A 20-ml of MTT solution (5mgml�1) was added
to each well of the culture medium. After incubation for an
additional 2 h, the medium was removed and 100 ml of DMSO
was added to resolve the formazan crystals. Optical density was
measured using a microplate reader with an absorption wavelength
of 600 nm. In each experiment, three replicates were prepared
for each sample. The proportion of living cells was determined
based on the difference in absorbance between the samples and
controls.

Immunohistochemistry

The procedure for immunohistochemistry is described in the
Supplementary Methods.

RNA preparation and semiquantitative analysis by reverse
transcription (RT)-PCR

The RNA preparation and RT-PCR method are described in the
Supplementary Methods.

Western blotting

Sample preparation and loading for western blotting are described
in the Supplementary Methods. For immunoblot detection,
membranes were blocked in Tris-buffered saline (TBS) containing
1% non-fat milk (Bio-Rad Laboratories, Hercules, CA, USA)
containing 0.1% Tween 20 (Sigma-Aldrich Co.) for 1 h at room
temperature with agitation. The membrane was incubated with
primary antibody diluted in TBS (1 : 1000 phosphorylated-EGFR
(Cell Signaling Technology Inc., Boston, MA, USA), 1 : 500 p-Akt
(Cell Signaling Technology Inc.), 1 : 1000 p-GSK3b (Cell Signaling
Technology Inc.), 1 : 2000 p-STAT3 (Cell Signaling Technology Inc.),
1 : 750 GSK3b (Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA),
1 : 5000 Akt (Cell Signaling Technology Inc.) and 1 : 3500 Stat3 (Cell
Signaling Technology Inc.) containing 1% non-fat dried milk with
0.1% Tween 20 overnight at 41C. The membrane was washed in
TBS containing 0.05% Tween 20, and then incubated for 2h at
room temperature with horseradish peroxidase-conjugated goat anti-
rabbit IgG (Southern Biotechnology Associates Inc., Birmingham, AL,
USA) diluted 1 : 10 000 in TBS containing 1% non-fat dried milk
containing 0.1% Tween 20. The antigen–antibody peroxidase complex
was finally detected by enhanced chemiluminescence (Pierce,
Rockford, IL, USA) and visualised by exposure to Amersham
Hyperfilm (Amersham Life Sciences, Arlington Heights, IL, USA).
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Figure 1 Expression of k-opioid receptors in either NHLF, HCC827 or H1975 cells. (A) Upper: Representative RT-PCR for mRNAs of k-opioid
receptors and GAPDH, an internal standard, in each cell type. Lower: The intensity of the bands was determined semiquantitatively using ImageJ (National
Institute of Health, Bethesda, MD, USA). The values for k-opioid receptor mRNA were normalised by the value for GAPDH mRNA. Data represent the
mean with s.e.m. of five independent samples (**Po0.01, ***Po0.001 vs NHLF). (B) Distribution of the k-opioid receptor-like immunoreactivity in either
NHLF (B– i), HCC827 (B-ii) or H1975 (B-iii) cells. Scale bars¼ 50 mm for all panels.
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RESULTS

Localisation of KORs in NSCLC cells

KORs were found in gefitinib-sensitive HCC827 cells, gefitinib-
resistant H1975 cells and NHLF cells, as detected by RT-PCR
(Figure 1A) and immunoreactivity towards KOR antibody
(Figure 1B). The expression of KOR mRNA was significantly
increased in HCC827 cells (Po0.01 vs NHLF) and H1975 cells
(Po0.001 vs NHLF) compared with NHLF (Figure 1).

Effect of KOR agonist on the growth of the EGFR exon 19
mutant NSCLC cell line HCC827

Addition of the KOR agonist U50,488H to HCC827 cells for
2 days produced a concentration-dependent decrease in tumour
cell growth (Figure 2A, Po0.001 vs non-treated group). This
effect was abolished by co-treatment with the selective
KOR antagonist nor-BNI (Figure 2B, ***Po0.001 vs non-treated
group, ###Po0.001 vs U50,488H-treated group). In contrast,
treatment of NHLF cells with U50,488H did not affect their
growth (Figure 2C). In experiments that compared the inhi-
bition of cell growth in cells treated with gefitinib and cells
treated with a combination of gefitinib and U50,488H, the
growth-inhibitory effects in HCC827 cells were further enhanced
in a dose-dependent manner (Figure 2D, Po0.001 vs gefitinib-
treated cells).

Changes in the growth of gefitinib-resistant H1975 cells by
treatment with KOR agonist

Treatment of gefitinib-resistant H1975 cells with U50,488H for 2
days produced a concentration-dependent and dramatic decrease
in tumour cell growth (Figure 3A, Po0.001 vs non-treated group).
This effect was blocked by co-treatment with nor-BNI (Figure 3B,
***Po0.001 vs non-treated group, ###Po0.001 vs U50,488H-
treated group).

Effect of KOR agonist on the levels of phosphorylated Akt,
GSK3b and Stat3 in H1975 cells

There were no changes in the levels of either p-Akt
or p-Stat3 in H1975 cells by treatment with U50,488H for
2 days (Figures 3C and E). However, the addition of U50,488H
to H1975 cells produced a significant and concentration-
dependent decrease in p-GSK3b (Figure 3D, Po0.001 vs non-
treated group). Furthermore, treatment with a specific GSK-3b
inhibitor BIO produced a concentration-dependent and significant
decrease in tumour cell growth (Figure 3F, Po0.001 vs non-treated
group).

DISCUSSION

In the present study, we investigated the role of KOR in NSCLC
cells using gefitinib-sensitive HCC827 and gefitinib-resistant
H1975 cells. We found that KORs were highly expressed in
both cell lines. Under these conditions, addition of the selec-
tive KOR agonist U50,488H to either HCC827 or H1975 cells
produced a concentration-dependent decrease in tumour cell
growth. Although some of the doses of U50,488H were relatively
high, these effects were abolished by co-treatment with the
selective KOR antagonist nor-BNI. These results support the idea
that U50,488H can pharmacologically act on KORs to decrease
tumour growth. Additionally, the inhibition of tumour growth by
gefitinib in HCC827 cells was further enhanced by co-treatment

with U50,488H. These findings suggest that the stimulation of
KOR may provide unique opportunities for the prevention and
treatment of NSCLC.
GSK3b is a multifunctional serine/threonine kinase that

phosphorylates and thereby regulates the functions of many
metabolic, signaling, and structural proteins and transcriptional
factors (Grimes and Jope, 2001). EGF can inactivate GSK3b,
leading to the degradation of c-Myc and b-catenin, which are
overexpressed in tumour cells. Furthermore, the tumour suppres-
sor p53 can be inactivated because of inactive GSK3b. It has been
reported that the progressive inactivation of GSK3b, which is
related to the increase in phosphorylation of GSK3b, is critical for
the progression of lung cancer (Tian et al, 2006). In this study,
treatment of H1975 cells with U50,488H produced a significant
decrease in the phosphorylation of GSK3b. It has been recognised
that activated protein kinase A (PKA) leads to phosphorylation
of GSK3b (Fang et al, 2000), whereas activated JNK increases
GSK3b activity (Hu et al, 2009). It should be noted that the
stimulation of KOR suppresses cAMP production through Gi
proteins, which leads to the inactivation of PKA (Tso and Wong,
2003). Furthermore, the stimulation of KOR invokes the JNK
cascade (Kam et al, 2004). Although the exact mechanism of
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Figure 2 Effect of a k-opioid receptor agonist on the growth of
HCC827 cells. (A) Suppression of H1975 cell growth by addition of the
k-opioid receptor agonist U50,488H (15.6–250 mM) for 2 days. Data
represent the mean with s.e.m. of ten independent samples (***Po0.001
vs non-treated group). (B) The suppression of tumour cells by U50,488H
was abolished by co-treatment with 60 mM of the k-opioid receptor
antagonist nor-BNI. Data represent the mean with s.e.m. of five
independent samples (***Po0.001 vs non-treated group, ###Po0.001
vs U50,488H-treated group). (C) Treatment with U50,488H for 2 days had
no effect on the growth of NHLF cells. Data represent the mean with s.e.m.
of five independent samples. (D) Effect of co-treatment with U50,488H
and gefitinib on the viability HCC827 cell. The data represent the mean
with s.e.m. of five independent samples (F(3,12)¼ 12.67, Po0.001, gefitinib-
treated cells vs gefitinib plus U50,488H (30 mM)-treated cells; F(3,15)¼ 29.43,
Po0.001, gefitinib-treated cells vs gefitinib plus U50,488H (60 mM)-treated
cells; *Po0.05, ***Po0.001 vs non-treated group).
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KOR-mediated GSK3b activation remains unclear at this time, we
propose that the stimulation of KOR may activate GSK3b through
inhibition of the cAMP/PKA pathway and/or activation of the JNK
pathway in NSCLC, resulting in the prevention of cancer.
In conclusion, the present results suggest that stimulation of

KOR reduces the growth of NSCLC cells through the activation of

GSK3b. Furthermore, KOR agonist might be a valuable candidate
for preventing gefitinib-resistant NSCLC.

Supplementary Information accompanies the paper on British
Journal of Cancer website (http://www.nature.com/bjc)
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Upper: Representative western blots of p-AKT, p-GSK3b and p-STAT3 Lower: Representative western blots of AKT, GSK3b and STAT3 in membranous
and cytosolic fractions of H1975 cells treated with U50,488H. Each column represents the mean with s.e.m. of five independent samples (**Po0.01,
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