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BACKGROUND: Metastatic prostate cancer (PCa) has no curative treatment options. Some forms of PCa are indolent and slow growing,
while others metastasise quickly and may prove fatal within a very short time. The basis of this variable prognosis is poorly
understood, despite considerable research. The aim of this study was to identify markers associated with the progression of PCa.
METHODS: Artificial neuronal network analysis combined with data from literature and previous work produced a panel of putative
PCa progression markers, which were used in a transcriptomic analysis of 29 radical prostatectomy samples and correlated with
clinical outcome.
RESULTS: Statistical analysis yielded seven putative markers of PCa progression, ANPEP, ABL1, PSCA, EFNA1, HSPB1, INMT and TRIP13.
Two data transformation methods were utilised with only markers that were significant in both selected for further analysis.
ANPEP and EFNA1 were significantly correlated with Gleason score. Models of progression co-utilising markers ANPEP and ABL1 or
ANPEP and PSCA had the ability to correctly predict indolent or aggressive disease, based on Gleason score, in 89.7% and 86.2% of
cases, respectively. Another model of TRIP13 expression in combination with preoperative PSA level and Gleason score was able to
correctly predict recurrence in 85.7% of cases.
CONCLUSION: This proof of principle study demonstrates a novel association of carcinogenic and tumourigenic gene expression with
PCa stage and prognosis.
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Prostate cancer (PCa) is the most common male cancer in the
United Kingdom and accounts for 12% of male cancer deaths,
making it the second most common cause of male cancer death
(CRUK, 2010). At present, the use of markers such as PSA to
indicate the presence of prostatic disease are severely flawed and
lead to unnecessary biopsy procedures, putting patients at risk of
infection and haemorrhage. In addition, many patients with high
PSA levels are PCa negative on investigation of the biopsy and,
conversely, PCa can occur without a rise in PSA and tends to be a
more aggressive form of the disease. Once a diagnosis of PCa is

confirmed, staging from a biopsy specimen is extremely proble-
matic because of the multifocal nature of the disease. Inappropri-
ate staging of the tumour may lead to radical procedures such as
prostate excision, which can lead to a risk of: incontinence (35%),
impotence (58%), infection, thrombosis or haemorrhage (Wilt
et al, 2008). Approximately 20% of radical prostatectomy patients
will recur indicating that a conservative treatment strategy might
have been more appropriate if one could identify those patients at
low risk of recurrence (Bill-Axelson et al, 2008). Equally,
metastatic PCa has a variable prognosis with some patients
suffering from a more indolent form of the disease with no
significant impact on their quality of life or lifespan for at least
15 years. This has led to the use of monitoring strategies where
patients’ PSA levels are monitored and biopsies taken if required.
If there is evidence of PCa growth, radical prostatectomy or other
treatments may be suggested (NICE, 2008). However, some
patients suffer from a more aggressive form of PCa, with a median
time to clinically apparent metastasis of 2 years (Siddiqui et al,
2004). These patients quickly develop local effects of urinary
incontinence and pelvic pain and often present with late stage
prostate disease, with local spread and occult metastasis, a stage at
which there are no curative treatment options. Currently, there is
no definitive method to differentiate indolent from aggressive
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disease. The use of watchful waiting strategies are more acceptable
to patients but in some may lead to the unchecked growth and
spread of a prostate tumour, especially of those more aggressive
tumours, which do not express PSA.
Quantitative real-time PCR (qPCR) has become a useful tool for

validation and reduction of data produced from microarray studies
(VanGuilder et al, 2008). Many PCa biomarker studies employ
microarrays to identify profiles of the disease and its progression
(Chetcuti et al, 2001; Ding et al, 2006). However, these studies
produce huge volumes of data that are difficult to analyse
and resolve further. Chetcuti et al (2001) studied 588 genes in
benign and malignant prostate tissue. They identified 87 genes that
showed differential expression between the two tissue types. Ding
et al (2006) studied 12 000 genes in normal and metastatic PCa cell
lines. Both studies then utilised qPCR to further analyse the data
produced by microarray analysis.
Standard qPCR is labour intensive, and therefore validation

of 410–20 genes is rare. Taqman arrays present a medium-
throughput method for qPCR, enabling the analysis of up to 383
genes per assay card (Abruzzo et al, 2005).
The aim of our current study was to identify putative PCa

progression markers by using a panel of 91 genes and assessing
expression levels in PCa tissue.

MATERIALS AND METHODS

Tissue specimens

Ethical approval was obtained and informed written consent was
given by each patient included in this study. All PCa patients
were from the Portsmouth region and were included if they had
undergone radical prostatectomy between 2003 and 2006 and had
no other cancers. Radical prostatectomy specimens were formalin
fixed, paraffin embedded and stored within the Department of
Pathology at Queen Alexandra Hospital following routine clinical
analysis. A total of 29 tissue samples were successfully analysed: 18
Gleason score X7 and 11 Gleason score o7, 20 without recurrence
and 9 with recurrence. Specimen collection was based on the
principles of scientific sampling as described by Garfield (2000)
and other references therein. Although Gleason scoring is flawed as
an indicator of progression, it still remains one of the best
indicators of lymph node involvement, treatment failure and death
from PCa (NICE, 2008) and as such is routinely recorded in clinic
notes making this a well-documented endpoint to assess. Markers
found to be differentially expressed between Gleason score,
groupings may be indicative of a more aggressive phenotype so
could be assessed in longer term survival studies.

Identification of putative biomarkers

Taqman arrays were designed (genes included on the array are
detailed in Supplementary Information, Supplementary Table 1)
and ordered from Applied Biosystems (Carlsbad, CA, USA). The
arrays were made up of a panel of putative PCa markers primarily
derived from an analysis of published microarray data using
artificial neuronal networks (ANNs) (Narayanan and Keedwell,
2006). Although the analysis by Narayanan and Keedwell (2006)
focussed on diagnostic markers, it has been observed frequently
that some diagnostic markers are altered during disease progres-
sion also. Therefore, this study was utilised to provide an unbiased
panel for Taqman analysis. As ANNs are mathematical models that
use complex statistical modelling to learn from and reduce large
data sets, such as microarray data, the genes selected were more
likely to contain markers of interest (Abbod et al, 2007).
Narayanan and Keedwell (2006) utilised Affymetrix (Santa Clara,
CA, USA) data from 102 samples (52 PCa cases and 50 normal)
spanning 12 533 genes (Welsh et al, 2001) to assess the use of
‘perceptrons’ to identify the most important carcinogenesis genes

within an extensive data set. A perceptron is an iterative algorithm
that can inspect the effect of each gene on the output classification.
Narayanan and Keedwell (2006) used two methods to reduce the
genes to a core set of PCa-associated genes: a cross-validation
method involving three rounds of iterative training with a cross-
validation step after each iteration (102 samples divided into four
groups); and an iteration only method, which just involved three
rounds of iterative training, no cross-validation (102 samples
divided into three groups). The methods employed were similar to
those used previously to study melanoma and childhood
medulloblastoma (Narayanan et al, 2004a, b). The cross-validation
method yielded 52 genes and the iteration only method yielded 44
genes, 21 of which were common to the cross-validation method.
This study utilised the genes identified by the iteration only
method to include in the panel of markers for qPCR analysis as
this incorporated all of the samples for maximum knowledge
discovery (Narayanan and Keedwell, 2006). Additional markers
were included following a review of current literature to identify
further putative PCa progression markers. Pubmed was used to
search for PCa prognosis markers and progression markers.
The most promising markers, based upon prostate biology and
discussions with urologists and original authors, were included on
the array (e.g., prostate stem cell antigen (PSCA)). In addition,
markers identified from our previous work were also included,
such as ANXA2 and CD9 (Hastie et al, 2005).
To provide information on inter- and intra-assay variation,

reference genes included were included on each Taqman array:
18S, TBP (TATA box-binding protein), HPRT1 (hypoxanthine
phosphoribosyltransferase 1), PBGD (porphobilinogen deaminase)
and SDHA (succinate dehydrogenase complex, subunit A), which
all showed little variation of expression in prostate and PCa tissues
(Aerts et al, 2004; Ohl et al, 2005; Schmidt et al, 2006). PBGD in
particular was chosen for normalisation as studies found it to show
little variation between PCa tissue of different stage and grade.

Identification and extraction of cancerous tissue

Tumour tissue was identified by a histopathologist and, to avoid
inconsistency, the same histopathologist worked on this project
throughout. Haematoxylin and eosin (HE) labelled slides
were used to identify regions of the highest grade of PCa and
these regions were marked. The HE slide was then used to guide
sampling of the tissue of interest. Where possible, duplicate
0.6mm punches were taken using a manual tissue microarray
platform (Beecher Instruments, Mitogen, UK). A total of
41 samples were included at this stage.

RNA extraction and two-step qPCR

RNA was extracted and reverse transcription (RT) performed as
detailed by Glaysher et al (2009). Nucleic acid quantification was
carried out using the Nanodrop 1000 spectrophotometer according
to the instruction manual (Thermo Scientific, Waltham, MA, USA)
and the concentrations and purity ratios were recorded. Newly
prepared cDNA was subjected to an assessment of quality before
large-scale qPCR analysis. PBGD (reference gene) was amplified by
qPCR (using the iCycler, Bio-Rad, Hemel Hempstead, UK) in
triplicate for each sample and also once for each RT-negative
control. Additionally, several no template controls and a positive
control in triplicate were included. These ‘sighting shot’ experi-
ments were performed as detailed by Glaysher et al (2009). The
experimental qPCR cycling parameters were; 1 cycle of 50 1C for
120 s and 95 1C for 600 s, then 50 cycles of 95 1C for 15 s and 60 1C
for 60 s. A CT (cycle threshold) of o40 was classed as showing
good quality cDNA.
The cDNA was prepared and loaded, and the Taqman arrays

sealed as described by Glaysher et al (2009) and qPCR performed
using the following cycling parameters; heating to 50 1C for 120 s,
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further heating to 94.5 1C for 600 s and then 40 cycles of 97 1C for
30 s and 59.7 1C for 60 s. At the start and end of the trial, a standard
curve plate of different dilutions of a pooled cDNA reference
sample was performed to determine the efficiency of the assay.
Additionally, the same pooled cDNA reference sample was used to
perform a triplicate repeat at the start and end of the trial to assess
intra- and inter-plate variability. Triplicate data could not be
obtained for each sample because of insufficient sample quantity.

Analysis of Taqman array data

Statistical analysis was performed using SPSS (version 12; IBM,
Portsmouth, UK) on samples that showed a CT ofo35 for both 18S
and PBGD. Taqman array data were converted to normalised
expression ratios using two methods; the first method was the
Applied Biosystems recommended method (2�DDCT) and the
second was a method that allows for variation of amplification
efficiency (Pfaffl method). Both methods were used to corroborate
any findings by two independent analyses. First, the 2�DDCT

method (Bio-Rad, 2006) was used followed by normalisation to
PBGD and Ln (natural log) transformation. A Student’s t-test was
then performed to check for significant differences between the
two groups. Second, the Pfaffl method was used (see equation in
Supplementary Information, Supplementary Table 2), which takes
into account the amplification efficiencies of the genes and
normalises to a reference gene (PBGD) (Bio-Rad, 2006). This data
conversion was also followed by Ln transformation and Student’s
t-test analysis. For both t-tests, genes showing differential
expression between the indolent and aggressive groups (Po0.05)
were considered for further analysis. Genes found to be
significantly different were then assessed for correlations before
logistic regression to build a model of PCa progression. Correlat-
ing variables can confound models as it is difficult to ascertain,
which variable makes the greater contribution (Kinnear and Gray,
2007). Logistic regression enables the calculation of the natural log
(Ln) of the odds of having a more aggressive/indolent disease.
From this, the Ln (odds) can be used as a predictor of indolent/
aggressive disease. An ROC (receiver operator characteristic) curve
was drawn from these values to assess the ability of the model to
predict PCa progression and to identify an appropriate cut-off point
to distinguish between the two groups.

RESULTS

RNA and cDNA quantification and quality

Quantification (absorbance at 260 nm), purity (260/280 and
260/230 nm) and integrity (sighting shot experiment) for each
sample are presented in the Supplementary Information (Supple-
mentary Table 3). RNA purity is poorer in those samples with
lower quantity, but once reverse transcribed to cDNA, the purity of
the samples was improved. Triplicate PBGD expression was then
used as a measure of cDNA quality. A PBGD CT o40 was taken
as an indication of adequate quality cDNA. If no amplification
was detectable within 40 cycles, it was assumed that there was
insufficient starting material.
Following these initial RNA and cDNA analyses, samples were

taken forward to be used in the large scale Taqman array study. As a
CT of o35 is traditionally thought of as optimal, samples that had a
CT of 435 were loaded onto the Taqman array at 600ngml–1 rather
than at 300ngml–1 to increase the starting material present. Variation
of cDNA starting quantity did not pose a problem as quantification
was relative to the amplification of PBGD from the same sample.

Intra- and inter-assay variation

Amplification of cDNA from each sample was performed without
replication because of low RNA yield. Therefore, to assess

intra- and inter-assay variation, a pooled sample (a mixture of
equal volumes of all the samples) was amplified in triplicate at the
beginning and end of this research trial. The initial amplification
graph of the pooled sample was used to set the threshold
fluorescence, above which each amplicon is classed as having
‘come up’ (visible fluorescent signal). The threshold was set at
0.5 so that it was above background noise but still within the
exponential phase of amplification (ABI, 2006). A standard curve
plate was also included in the trial and consisted of varying
concentrations (75, 150, 300 and 600 ng ml – 1) of the pooled sample
and from this the amplification efficiency and R2 values were
calculated.
An optimised qPCR assay should have an efficiency of between

90% and 105% and an R2 of 40.98 (Bio-Rad, 2006). Of the
reference genes included; 18S was within the correct range for
amplification efficiency, SDHA and TBP were within the correct
range for R2 and HPRT1 and PBGD fell outside those ranges for
both values (R2¼ 0.235 and 0.802, respectively, amplification
efficiencies¼ 363.9 and 59.7, respectively). A further measure of
qPCR accuracy and reproducibility is the variation between
replicates and between different Taqman arrays. Coefficient of
variation (CV) was calculated from replicate values within the
replicate plates and mean values between replicate plates (Kinnear
and Gray, 2007). In order to calculate CVs, CT values were
converted to actual quantities using the absolute quantification
method (see equation in Supplementary Information, Supplemen-
tary Table 4). This method uses standard curves of known starting
material concentrations to calculate quantity of cDNA. Absolute
quantification was used in this calculation to remove the need to
normalise to PBGD enabling the assessment of PBGD reproduci-
bility concurrently. Intra-assay variation was lowest for SDHA and
18S, but inter assay variation was lowest for PBGD.

Quantitative real-time PCR

Initial analysis of qPCR data for reference gene expression showed
that only 29 of the initial 41 samples had amplifiable cDNA.
Student’s t-tests were carried out on these 29 samples in both the
2DDCT and Pfaffl (see equation in Supplementary Information,
Supplementary Table 2) normalised data sets and identified 10
genes that were significantly different between groups divided
according to Gleason score (Table 1). Preoperative PSA was also
assessed as a predictor of Gleason score. ANPEP and EFNA1 were
significantly different in both data sets with 99% confidence, the
remaining genes were significant to 95% confidence. All genes
showed a significant reduction in expression in aggressive disease
compared with indolent disease.
A more accurate method of studying progression of disease is to

compare gene expression of patients who have suffered recurrent
disease, biochemically or with evidence of distant metastasis, with
those who have not. Levels of PSA should be undetectable within
4 weeks of radical prostatectomy (Stephenson et al, 2006), so
biochemical recurrence was determined by a rising PSA following
radical prostatectomy. Evidence of distant metastasis was taken
from bone scans. Disease recurrence in all cases was advised by
our collaborating clinicians. In this study, between 2 and 5 years
clinical follow-up was available for patients. This data analysis
identified three genes, ANPEP, INMT and TRIP13; the expression
of which was significantly different between patients using both
data conversion methods (Table 2). INMT and ANPEP expression
showed a significant decrease (to 99% and 95% confidence,
respectively) in recurrent disease while TRIP13 expression
was significantly increased (to 95% confidence) in recurrent
disease. Preoperative PSA and Gleason score were also assessed as
predictors of recurrence. Gleason score was subjected to a Mann–
Whitney U-test rather than a Gleason as the data are ordinal.
Genes found to be differentially expressed were then subject to

correlation analysis before logistic regression. Correlation analysis
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was used to identify genes with correlating expression levels as
these could not be included in the same logistic regression models.
In addition, correlation analysis was performed for gene express-
ion and PSA level before radical prostatectomy and, in the
recurrence analysis, Gleason score. Briefly, most genes correlated
with each other in the Pfaffl data set, with the exception of EFNA1,

ABL1, GPM6A and PSCA. Further, INMT correlated with PSA.
The 2�DDCT data set showed fewer correlating genes, so most genes
could be included in multiple logistic regression analyses.
However, INMT and HSPB1 were found to correlate with PSA
and ANPEP to correlate with Gleason score. Correlation analysis of
the genes from the recurrence groupings found that expression
levels do correlate across all three genes in both data sets, except
INMT and TRIP13 in the 2�DDCT data set.
Logistic regression was initially carried out for each gene

individually and with PSA and Gleason score (where applicable).
The genes with the highest ‘percentage predicted correctly’ were
combined to find the best model from the data sets. Table 3 shows
the logistic regression data for both data sets divided by Gleason
score and recurrence. Analysis of the 2�DDCT data set identified
EFNA1 and ABL1 as good single markers to predict Gleason
grouping, a combined model utilising ANPEP and ABL1 as
predictors of Gleason grouping and INMT as a predictor of
recurrence. Analysis of INMT and TRIP13 expression combined as
a model of recurrence did not significantly improve the prediction
capability over using INMT alone. However, combining TRIP13
with PSA or Gleason score greatly improved the prediction
capability of the model. Studying the Pfaffl data set found HSPB1
to be a good single marker and ANPEP and PSCA or CD9 and PSA
combined to predict Gleason grouping, whereas ANPEP alone or a
combined model of TRIP13, PSA and Gleason score were identified
as the most accurate predictors of recurrence.
Receiver operator characteristic curves were drawn for the single

and combination markers listed in Table 3. Receiver operator
characteristic curves are a further manner of investigating
significance and are also used to identify appropriate levels for
assigning subjects to one group or another. ROC curves are
presented in Figure 1. A good ROC curve is indicated by an ‘area
under the curve’ (AUC) of close to one. The coordinates used to
produce the ROC curve were used to identify the appropriate gene
expression value, which would be used to assign subjects into a
particular disease grouping. The cut point is identified as the point
at which the sensitivity and specificity are highest and patients
with a value below the cut point are more likely to have aggressive
disease. The values and the corresponding sensitivity and
specificity are detailed in Table 4.
An ideal ROC curve should have high sensitivity and specificity

(or low 1-specificity), which means a low probability of false
negatives and a low probability of false positives (Kinnear and
Gray, 2007). The best ROC curves were produced by the two
models using combined expression of two genes, ANPEP and ABL1
(AUC¼ 0.889) in the 2�DDCT data set and ANPEP and PSCA
(AUC¼ 0.869) in the Pfaffl data set, for prediction of Gleason score
grouping. A combined model using TRIP13, PSA and Gleason
score in the Pfaffl data set was also very good at predicting
recurrence (AUC¼ 0.888).
Within the 2�DDCT data set, the best predictive model was a

combined gene expression model of ANPEP and ABL1. This model
could correctly assign 89.7% of patients to indolent or aggressive
disease groups based on Gleason score. Using a cutoff of �0.16,
patients with a higher score could be identified as indolent with
82% sensitivity and 94% specificity. Patients with lower expression
of ANPEP and ABL1 could be at risk of potentially aggressive
disease. Similarly, the best predictive model within the Pfaffl data
set was a combined model of ANPEP and PSCA, which could
correctly assign 86.2% of patients to indolent and aggressive
groupings based on Gleason score. A cutoff of –0.25 could predict
indolent or aggressive disease groupings with 82% sensitivity and
94% specificity. Again, a score below this cutoff would be
indicative of a more aggressive phenotype. Finally, a good
predictive model was also found from the Pfaffl data set, a
combined model of TRIP13 with pre-operative PSA and Gleason
score of radical was able to correctly assign recurrence in 85.7% of
patients. A cutoff of 0.14 could predict recurrence with 87.5%

Table 2 Genes found to be differentially expressed between patients
with and without recurrent disease

Mean

Gene
2�DDCT

(P-value)
No

recurrence Recurrence
Fold

change

ANPEP 0.041 0.48 �1.70 4.58
INMT 0.010 �0.56 �1.95 3.48
TRIP13 0.031 �3.11 �1.70 1.83

Pfaffl
(P-value)

No
recurrence Recurrence

Fold
change

INMT 0.006 0.14 �1.80 13.64
ANPEP 0.03 �0.71 �2.80 3.97
TRIP13 0.03 �16.92 7.73 3.19
PSA 0.195 6.81 9.07 1.33
Gleason score 0.051* 6.55 7.10 —

Abbreviation: PSA¼ prostate specific antigen. *P-value calculated by Mann–Whitney
U-test. qPCR data were converted using the 2�DDCT and Pfaffl conversion methods
and then statistically analysed using Student’s t-tests. Genes are ordered by
descending fold change. Preoperative PSA and Gleason score data have been
included for comparison.

Table 1 Genes found to be significantly differentially expressed between
Gleason groups o7 and X7 PCa

Mean

Gene
2�DDCT

(P-value)
Gleason
group o7

Gleason
group X7

Fold
change

INMT 0.015 �0.29 �1.42 4.90
PSCA 0.024 �0.75 �2.78 3.71
ITGB4 0.021 0.47 �0.90 2.91
NELL2 0.018 �0.96 �2.29 2.39
ANPEP 0.005 1.36 �1.16 2.17
EFNA1 0.006 2.29 1.18 1.94
ABL1 0.037 2.05 1.12 1.83
HSPB1 0.025 2.18 1.45 1.50
GPM6A 0.015 �2.54 �3.54 1.39
CD9 0.028 3.47 2.87 1.21

Pfaffl
(P-value)

Gleason
group o7

Gleason
group X7

Fold
change

PSCA 0.044 0.01 �2.08 209.00
ANPEP 0.011 0.19 �2.30 13.11
GPM6A 0.043 1.70 0.27 6.30
ABL1 0.028 0.99 �0.30 3.30
CD9 0.018 0.69 �0.28 3.46
INMT 0.031 0.57 �1.09 2.91
EFNA1 0.004 0.55 �0.93 2.69
HSPB1 0.037 0.68 �0.47 2.45
ITGB4 0.017 0.88 �0.61 2.44
NELL2 0.015 0.84 �0.59 2.42
PSA 0.346 6.53 8.06 1.23

Abbreviations: PCa¼ prostate cancer; PSA= prostate specific antigen. qPCR data
were converted using the 2�DDCT and Pfaffl conversion methods and then statistically
analysed using Student’s t-tests. Genes are ordered by descending fold change.
Preoperative PSA data have been included for comparison.
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sensitivity and 90% specificity. A score above this cutoff would be
indicative of a high chance of recurrence.
Single gene models identified EFNA1, ABL1 and HSPB1 as

predictors of Gleason score grouping, and INMT and ANPEP as
predictors of recurrence grouping. Both EFNA1 and ABL1 (using
the 2�DDCT data set) had the ability to predict 79.3% of patients
as having indolent or aggressive disease. EFNA1, with a cut point
of �0.40, could predict aggressivity of disease with 82% sensitivity
and 83% specificity and ABL1, with a cut point of �0.30, could
predict aggressivity of disease with 73% sensitivity and 79%
specificity. INMT, identified using the 2�DDCT data set, could
predict recurrence of disease in 72.4% of patients and had a
sensitivity and specificity of 89% and 65%, respectively, with a cut
point of �1.16. Using the Pfaffl data set, HSPB1 could accurately
assign patients into aggressive grouping by Gleason score in 82.8%
of cases and using a cut point of �0.54 had a sensitivity and
specificity of 64% and 94%, respectively. ANPEP could assign
patients into recurrence grouping in 79.3% of cases and with a cut
point of 0.31 could predict recurrence with 78% sensitivity and
70% specificity. As with the combined gene models, a score lower
than the cut point is indicative of aggressive disease.

DISCUSSION

This study highlights that, because of the complexity of cancer,
many genes and proteins are likely to be differentially regulated,
and underpins the difficulty of biomarker discovery. Many
biomarkers (both diagnostic and prognostic) are identified by
researchers but few result in clinically viable tests. Biomarkers that
are not significantly better than current testing methods, such as
PSA, are unlikely to be embraced by clinicians and, so far, none of
the biomarkers discovered have the sensitivity or specificity to
replace PSA. Owing to the complexity of PCa (and cancer in
general), it is perhaps naive to imagine that a single gene or
protein marker will indeed be able to fulfil all of the ‘ideal
biomarker’ criteria. This is a ‘proof of concept’ study that
highlights the utility of an informed approach when searching
for disease biomarkers. Garfield (2000) mentions that sample
number is generally limited by resources available for sample
collection and sample analysis. For a ‘proof of concept’ study lower

sample numbers are generally acceptable, but findings would need
to be validated in a larger set of specimens. If validated, the use of
these markers could enable clinicians to distinguish between
indolent and aggressive forms of the disease and offer informed
clinical management options.
Taqman arrays customised for potential PCa progression

markers were used to study gene expression in a pilot series of
29 patients. By a variety of data analysis methods, 10 genes were
identified, 6 of which could be accurately used to predict PCa
progression (defined by Gleason or recurrence) in up to 89.7% of
cases. The six genes that were best used to model PCa progression
included: ANPEP, EFNA1, ABL1, INMT, HSPB1 and PSCA. TRIP13
was also an accurate predictor of recurrence when used in
conjunction with preoperative PSA and Gleason score.
Aminopeptidase N, or CD13 (ANPEP) is a zinc-dependent

matrix metallopeptidase that is membrane bound and thought to
have an important role in angiogenesis (Shim et al, 2008). Studies
of mRNA and protein expression of ANPEP in malignancy
are conflicting, with some suggesting an overexpression as an
indicator of cancer presence (Razvi et al, 2007) and a role for
ANPEP in invasion and metastasis (Ishii et al, 2001) whereas
others propose that reduced expression is associated with cancer
(Bogenrieder et al, 1997; Wiese et al, 2007). A study by Bhagwat
et al (2001) examined the effect of tumour microenvironment-like
conditions on primary endothelial cells and ANPEP production.
They found ANPEP to be upregulated in response to hypoxia and
increased concentrations of growth factors at both the mRNA and
protein level. There are some papers that have studied ANPEP
expression in PCa cell lines and suggest that ANPEP shows
reduced expression in cancer cells (Dall’Era et al, 2007) and that
there is a significant reduction in expression between LNCaP and
PC3 (which have a more aggressive phenotype) cells (Dozmorov
et al, 2009). However, there are no studies into ANPEP expression
in varying Gleason score PCa tissue so the association of ANPEP
with Gleason score is novel. It is tempting to suggest that, as
angiogenesis is a feature of early-to-mid stage tumourigenesis,
perhaps proangiogenic molecules are downregulated in established
poorly differentiated tumours such as Gleason score 7–10 PCa.
The tyrosine kinase, c-Abl, is a protein belonging to the Src

family of non-receptor tyrosine kinases that has been implicated in
the intrinsic apoptosis pathway, triggered in response to DNA

Table 3 Logistic regression analysis of the best progression models

Data set Groups Single/combined Gene(s)
OR

(95% CI) P-value
% Predicted
correctly

2�DDCT Gleason o7 or X7 Single EFNA1 4.89 (1.32–18.09) 0.018 79.3
Single ABL1 5.49 (1.24–24.27) 0.025 79.3
Combined ANPEP 1.80 (1.09–2.98) 0.022

89.7
ABL1 5.82 (1.117–30.34) 0.036

Recurrence Single INMT 0.39 (0.15–1.00) 0.050 72.4
Combined TRIP13 1.82 (0.94–3.53) 0.078

82.1
PSA 1.14 (0.90–1.45) 0.269

Combined TRIP13 2.31 (1.02–5.22) 0.044
82.8

Gleason score 4.97 (1.09–22.77) 0.033

Pfaffl Gleason o7 or X7 Single HSPB1 2.11 (1.03–4.29) 0.04 82.8
Combined ANPEP 1.69 (1.04–2.74) 0.036

86.2
PSCA 1.39 (0.93–2.07) 0.111

Combined CD9 2.17 (1.00–4.71) 0.051
82.1

PSA 0.90 (0.72–1.12) 0.339
Recurrence Single ANPEP 0.652 (0.43–1.00) 0.048 79.3

Combined TRIP13 1.06 (1.00–1.12) 0.036
85.7

PSA 1.23 (0.90–1.69) 0.200
Gleason score 6.31 (1.06–37.52) 0.043

Abbreviations: CI¼ confidence interval; OR¼ odds ratio; PSCA¼ prostate stem cell antigen; PSA¼ prostate specific antigen. Single and combined marker models were assessed
using logistic regression for both 2�DDCT and Pfaffl data in Gleason and recurrence divided groupings. OR are given (with 95% CIs) of an individual having a higher chance of
indolent disease with a lower gene expression level.
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damage (Yamaguchi et al, 2010). c-Abl is encoded by the ABL1
gene whose translocation to the BCR gene results in the BCR–Abl
fusion protein, known to be involved in the development of some
leukaemias (Sirvent et al, 2008). In cancers that do not have the
BCR–Abl translocation, ABL1 seems to show reduced expression.
A study of bladder transitional cell carcinoma found a significant

reduction in ABL1 expression in cancerous compared with normal
tissue (Amira et al, 2004). In PCa progression, we found ABL1 to
be downregulated. During carcinogenesis, one of the proposed
hallmarks is that a cancer cell must evade apoptosis (Hanahan and
Weinberg, 2000). By being able to downregulate proapoptotic
molecules, such as c-abl, cells can evade apoptosis and continue to
proliferate.
Prostate stem cell antigen is a cell surface antigen belonging to

the Ly6 family of glycosyl phosphatidylinositol anchored proteins.
The Ly6 family consist of at least nine proteins thought to be
involved in haematopoietic stem cell development and lymphocyte
activation. PSCA shows 30% homology to stem cell antigen 2,
which has a putative role in prostate development (Moore et al,
2008). Generally, PSCA over-expression has been shown to be
associated with PCa presence and progression (Han et al, 2004;
Zhigang and Wenlv, 2004; Lam et al, 2005). However, a study by
(Schmidt et al, 2006) found no relationship between PSCA RNA or
protein expression and PCa presence or increasing Gleason score.
Another study utilising qPCR to study common PCa markers
found a reduction of PSCA RNA expression in malignant
compared with benign tissue (Fuessel et al, 2003). Further, Moore
et al (2008) performed a study of tumour development and
progression in TRAMP (transgenic adenocarcinoma of the mouse
prostate) mice with wild-type PSCA and heterozygous and
homozygous knockout for PSCA. They found at autopsy that a
much higher percentage of heterozygous and homozygous PSCA
knockout mice had metastatic disease. They postulated that PSCA
may have a ‘context-dependent function’ with a dual role in PCa
progression. Our results support their finding and suggest a role
for PSCA in aggressive PCa. Perhaps PSCA under-expression is
associated with the metastatic progression of PCa whereas the
over-expression is a feature of the early stages of cellular
carcinogenesis.
A variety of developmental processes are implicated in cancer

development and progression. Therefore, it is perhaps unsurpris-
ing that Ephs and ephrins, which have a role in developmental
pathways, are found to be deregulated in carcinogenesis (Fox et al,
2006). EFNA1 (ephrin A1) is a ligand that is generally associated
with the eph A2 transmembrane receptor and has a putative
inhibitory role in angiogenesis and cell growth (Nakamura et al,
2005). Over-expression of eph A2 has been shown to be a
significant prognostic indicator (Wu et al, 2004; Han et al, 2005;
Nakamura et al, 2005). However, Nakamura et al (2005) report a
negative correlation of eph a2 and EFNA1 expression, with EFNA1
involved in eph a2 degradation and negatively affecting tumour
growth (Abraham et al, 2006) and VEGF-associated angiogenesis
(Ojima et al, 2006). Therefore, a decreased level of EFNA1 would
be expected to promote cell growth and angiogenesis associated
with higher grade PCa. This is in contrast to the findings of
ANPEP, a pro-angiogenic molecule. However, both showed
decreased expression in this study suggesting that they may be
involved in different angiogenic pathways.
Heat shock proteins are expressed ubiquitously in all cells and

tissues (Kurahashi et al, 2007). HSPB1 (HSP27) is a heat shock
protein thought to be involved in cell survival and has been linked
to stress-induced apoptosis and invasion in colorectal cell lines
(Garrido et al, 1997). Our findings of a decrease in HSPB1 mRNA
expression associated with a more aggressive PCa phenotype is in
contrast to studies of protein level expression of HSPB1 in PCa
(Cornford et al, 2000; Kurahashi et al, 2007) and breast, ovarian
and head and neck cancer (O’Callaghan-Sunol et al, 2007).
However, a study of oral squamous cell carcinoma found the
reverse to be true (Lo Muzio et al, 2006). It has been suggested that
HSPB1 has a role in the stress response and apoptosis evasion
(Huang et al, 2007). The results of our study could be merely due
to the utilisation of a transcriptomic rather than a proteomic
approach suggesting regulation of HSPB1 may be post-trans-
lational rather than at the level of transcription. Studies into the
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Figure 1 Receiver operator characteristic curves of gene expression as a
predictor of PCa progression based on Gleason score and recurrence
using the (A) 2�DDCT data set and the (B) Pfaffl data set. The AUC of each
curve is included in the bottom right hand corner of each chart. An ideal
AUC should be close to 1.
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correlation of RNA and protein expression in PCa suggest no
significant relationship, or even an inverse relationship, between
the two molecular levels (Chen et al, 2002).
Indolethylamine N-methyltransferase (INMT) is a methylation

catalyst involved in the methylation of tryptamine during the
production of N N-dimethyltryptamine (Jacob and Presti, 2005).
This pathway is normally associated with brain activity and
psychosis but some studies have found a link between INMT
expression and cancer. Lian et al (2006) studied PTEN activity in
endometrial cancer and found deregulated expression of INMT
associated with PTEN loss. In another study into non-small cell
lung cancer (NSCLC), decreased expression of INMT was
associated with cancerous tissue when compared with normal
lung (Kopantzev et al, 2008). Similarly, qPCR data from this study
found decreased expression of INMT in the more aggressive PCa
cases. The implication of the downregulation of INMT in
association with the progression of PCa is unclear.
TRIP13 is a thyroid receptor interacting protein (Lee et al, 1995)

whose gene shows copy number changes in 68% of 19 early stage
NSCLC tumour samples (Kang et al, 2008). TRIP13 has also been
implicated as a marker of early disease related mortality in
multiple myeloma as part of a 70-gene model. Further multivariate
analysis identified a subset of 17 genes that had a similar predictive
power, but TRIP13 did not feature in this smaller panel
(Shaughnessy et al, 2007). TRIP13 has been found to interact with
CMT2 (Stelzl et al, 2005), a key player in the mitosis spindle
checkpoint, and is required for cell cycle progression (Habu et al,
2002). It is interesting that TRIP13 (by its interaction with CMT2)
is implicated in cancer progression as spindle checkpoint defects
are known to contribute to loss of chromosome integrity, which
can lead to aneuploidy, a common feature of cancer cells
(Bharadwaj and Yu, 2004).
The use of multiple biomarkers showed a greater ability to

correctly identify aggressive disease than single biomarkers alone
and therefore, multivariate analysis may be preferable to univariate
analysis. This is unsurprising as cancer is a temporally and
spatially complex disease that occurs as a result of several
mutations to genes involved in a variety of biochemical pathways.
Moreover, carcinogenic mutations may not be identical for each
individual. It may be inappropriate to expect a single marker to be
able to identify progressive disease with a great deal of accuracy as
has been suggested in this study and others (Cheville et al, 2008;
Kosari et al, 2008).
Quantitative real-time PCR has become one of the most widely

utilised methods of gene expression analysis in disease onset and
progression. Many studies have utilised this technique to validate
microarray data. Partheen et al (2008) utilised qPCR to validate a
panel of seven genes identified via microarray analysis as
prognostic factors in ovarian adenocarcinoma. The study yielded
four genes as potential biomarkers from a sample of only

19 patients. These data were then verified by looking at protein
level expression in a larger cohort. Studies into PCa have also
utilised qPCR to study gene expression. Research into a panel
of eight putative diagnostic markers identified one gene as a
significant predictor of PCa (Rizzi et al, 2008), whereas another
study began with a panel of nine PCa markers and identified one as
diagnostic, but a further three that were indicative of organ-
confined disease (Schmidt et al, 2006). By using Taqman arrays to
study gene expression, it is possible to study larger panels of
putative markers than was possible for these studies.
The design of this study may have resulted in potential sample

bias as only radical prostatectomy samples were used. Radical
prostatectomy tends only to be performed with organ-confined
lower grade disease so there is a bias towards low recurrence risk
disease. Perhaps a further study of biopsy specimens would
overcome any potential bias. An alternative approach might have
been to utilise mass spectrometry methods to identify putative
protein markers and then design a Taqman array accordingly, but
this would be a more biased approach. Additional characterisation
could take place at the protein level by immunohistochemical
methods and analysis of serum expression via western blotting or
ELISA.
In conclusion, this ‘proof of concept’ study presents a putative

gene panel of PCa progression. In order to verify any signature, a
further study on a large ‘test sample set’ is warranted to investigate
disease recurrence or survival and would verify and validate any
potential prognostic indicators. Interestingly, these markers were
assessed in the mRNA expression data produced by Taylor et al
(2010) and ANPEP and TRIP13 found to be significantly
differentially expressed in terms of Gleason score and biochemical
and metastatic recurrence, respectively (Supplementary Data
Table 4). ABL1 was not found to be significant but was
approaching significance. Several other genes identified from this
study were also verified by Taylor et al (2010) as putative markers
of PCa progression so should be considered for further study.
Taken together, our new data and that within the literature show
significant complementarity and will help further our biomarker
targeting for the future.
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Table 4 ROC curve cut points as determined by logistic regression analysis

Data set Groupings Gene(s) Cut point Sensitivity Specificity

2�DDCT Gleason EFNA1 �0.4028 0.818 0.833
ABL1 �0.3006 0.727 0.788
ANPEP + ABL1 �0.1612 0.818 0.944

Recurrence INMT �1.1561 0.889 0.650
TRIP13 + Gleason score �0.1524 0.778 0.850
TRIP13 + PSA �0.4036 0.625 0.900

Pfaffl Gleason HSPB1 �0.535 0.636 0.944
ANPEP + PSCA �0.2453 0.818 0.944
CD9 + PSA 0.0015 0.636 0.941

Recurrence ANPEP 0.3083 0.778 0.700
TRIP13 + PSA +Gleason score 0.1390 0.875 0.900

Abbreviations: PCa¼ prostate cancer; PSCA¼ prostate stem cell antigen; ROC¼ receiver operator characteristic. Sensitivity and specificity values for each ROC curve cut point
are also included for each model of PCa progression.
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