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BACKGROUND: Cutaneous melanoma is an aggressive disease. S100beta is an established biomarker of disease progression; however,
the mechanism of its regulation in melanoma is undefined.
METHODS: Expression of HOXC11 and SRC-1 was examined by immunohistochemistry and immunofluorescence. Molecular and
cellular techniques were used to investigate regulation of S100beta, including, western blot, qPCR, ChIP and migration assays.
RESULTS: Expression levels of the transcription factor HOXC11 and its coactivator SRC-1 were significantly elevated in malignant
melanoma in comparison with benign nevi (Po0.001 and P¼ 0.017, respectively, n¼ 80), and expression of HOXC11 and SRC-1
in the malignant tissue associated with each other (Po0.001). HOXC11 recruitment to the promoter of S100beta was
observed in the primary melanoma cell line SKMel28. S100beta expression was found to be dependant on both HOXC11 and
SRC-1. Treatment with the Src/Abl inhibitor, dasatinib, reduced HOXC11–SRC-1 interaction and prevented recruitment of
HOXC11 to the S100beta promoter. Dasatinib inhibited both mRNA and protein levels of S100beta and reduced migration
of the metastatic cell line MeWo.
CONCLUSION: We have defined a signalling mechanism regulating S100beta in melanoma, which can be modulated by dasatinib.
Profiling patients for expression of key markers of this network has the potential to increase the efficacy of dasatinib treatment.
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Classic pathologic parameters such as tumour depth and lymph
node status are routinely used to predict clinical outcome in
cutaneous melanoma. However, a significant number of accurately
staged patients will develop an unpredictable pattern of disease
recurrence. With the current dearth of effective treatments for
advanced melanoma, it is increasingly recognised that elucidation
of the molecular mechanisms of tumour progression will inform
individualised therapy. Recently, serum levels of the calcium-
binding protein S100beta have been used as a marker of tumour
burden, response to treatment and prognosis. Though no
consensus exists on its implementation in the routine clinical
setting, recent meta analysis suggests that serum S100beta
detection has clinical value as an independent prognostic marker
in melanoma patients (Mocellin et al, 2008).
S100beta is a member of the S100 family, it can act as a

stimulator of proliferation and migration and an inhibitor of
apoptosis and differentiation (reviewed in Donato et al, 2009).
A mechanism by which activation of S100beta occurs is unclear.
A variety of signals modulates its release and/or expression,
including interferon gamma, interleukins, fibroblast growth
factor-2, glutamate, corticosterone and pregnisone (Modi and
Kanungo, 2010). In neuronal cells, forced expression of HOXC6
and HOXC11 has been shown to induce S100beta expression
(Zhang et al, 2007). More recently, in breast cancer, we have

reported a role for HOXC11 in conjunction with the transcriptional
activator SRC-1, in the regulation of S100beta (McIlroy et al, 2010).
Aberrant expression of SRC proteins has been associated with a
more aggressive phenotype in a number of cancers including
breast, thyroid and prostate. (Gregory et al, 2001; Redmond et al,
2009; Kavanagh et al, 2010). Recent studies provide evidence of a
specific role for SRC-1 in the development of metastases (Wang
et al, 2009). Activation of SRC-1 is through Src kinase, suggesting
that this is a signalling network that could be targeted by the
ATP-competitive dual Src/Abl inhibitor, dasatinib. Dasatinib is
used in the treatment of chronic myeloid leukaemia and is
currently in trials for the treatment of advanced melanoma (http://
www.clinicaltrials.gov). Though data from these trials are emerg-
ing only now, early analysis suggests that patient selection with
accurate biomarkers would have the potential to dramatically
improve response rates (Kluger et al, 2010).
A full understanding of the signalling mechanisms that are

targeted by emerging treatments will uncover biomarkers to enable
careful patient selection and provide new targets in this class.
In this study, we describe the transcriptional regulation of
S100beta in melanoma and show efficacy for dasatinib in
disrupting this signalling network.

MATERIALS AND METHODS

Cell culture

SKMel28 cells, derived from a primary cutaneous melanoma, and
MeWo cells, derived from a melanoma lymph node metastasis,
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were obtained from ATCC and were maintained in Eagle’s minimal
essential medium (MEM) (Invitrogen, CA, USA) supplemented with
2mM L-glutamine, 100mgml�1 penicillin, 100mgml�1 streptomycin
(Sigma-Aldrich, Ireland Ltd, Wicklow, Ireland) and 10% (v/v) FBS
(Gibco, Invitrogen). Primary cell cultures were prepared from
patients with malignant melanoma. Melanoma cells were dissociated
from the tumour mass using a digestion mixture (DMEM-F12, 10%
FBS, 10mgml�1 insulin, 100Uml�1 hyaluronidases and 200Uml�1

collagenases) and were cultured as above, n¼ 4.

Immunofluorescence

Following ethical approval from Beaumont Hospital, malignant
melanoma and benign nevi tissue were collected and embedded in
paraffin. Immunofluorescent staining on paraffin embedded tissue
and primary cultures was performed using chicken anti-HOXC11
(0.4mgml�1) and rabbit anti-SRC-1 (0.5mgml�1), followed by
the corresponding fluorescent-conjugated antibodies FITC anti-
chicken and TRITC anti-rabbit. Nuclei were counterstained with
40,6-diamidino-2-phenylindole. Staining was visualised using a
confocal microscope.

Coimmunoprecipitation and western blot

SKMel 28 and MeWo cell lines were treated with either vehicle or
dasatinib (100 nM) for 2 h. Protein (1mg) was extracted and
immunoprecipitated with rabbit anti-SRC-1 (SC-8995; Santa Cruz
Biotechnology, Inc., Santa Cruz, CA, USA). Resultant proteins were
subjected to SDS–PAGE and subsequently probed with either
rabbit anti-SRC-1 (SC-8995; Santa Cruz) or chicken anti-HOXC11
(15-288-22000F; GenWay Biotech, Inc., San Diego, CA, USA).
HSP70 or b-actin was used as a loading control.

Overexpression and knockdown of HOXC11

SKMel28 cells were transfected with control vector pDEST47
(400 ng) or pDEST47 HOXC11 (400 ng). Protein levels were
determined 24 h post transfection by western blot. Predesigned
and validated siRNA directed against HOXC11 (Qiagen Ltd,
Crawley, West Sussex, UK) and SRC-1 (Applied Biosystems/
Ambion, Warrington, UK) was used in the knockdown studies.
Protein and mRNA levels were assessed 24 h post-transfection.

PCR

Relative mRNA levels of S100beta were determined as described
(McIlroy et al, 2010).

ChIP

ChIP was performed as previously described (McIlroy et al, 2010).
Cells were treated with either vehicle or dasatinib (100 nM) for 2 h.
Chicken anti-HOXC11 (7 mg), or H4 antibody (7mg), was added to
the supernatant fraction of SKMel 28 cells and incubated overnight
at 41C with rotation. Proteins were un-crosslinked and primers
were used to amplify the DNA �424 to þ 24 of the S100beta
transcriptional start site.

Immunohistochemistry

Immunohistochemical staining for S100beta was performed using
mouse anti-S100beta (Ab8330; Abcam, Cambridge, UK, 2 mgml�1)
followed by the corresponding antibody; in benign naevus and
malignant melanoma; tissue was counterstained with haematox-
ylin. Images are representative of 64 separate melanoma tumours
and 20 benign nevi.

Migration assay

Cellomics Cell Motility Kit (Thermo Scientific/Fisher Scientific
Ireland, Dublin, Ireland, #K0800011) was used to assess individual
cell movement after 22 h. In short, 96-well plates were precoated
with collagen. Cells were seeded at 1� 104 cellsml�1 on a lawn of
blue fluorescent beads. The track area is proportional to the
magnitude of cell movement. Track areas were quantitatively
analysed using Olympus cellF imaging software. Student t-test was
used to compare mean migratory track areas. MeWo cells were
treated with vehicle or dasatinib (100 nM) and migration was
assessed using the standard scratch assay.

Proliferation assay

2000 SKMel28 and MeWo cells were plated in a 96-well plate and
incubated overnight at 371C and then treated with dasatinib (1 and
10 mM). Proliferation was assayed 72 h later by MTS CellTiter 96
(Promega, Madison, WI, USA) following the manufacturer’s
instructions.

RESULTS

HOXC11 and SRC-1 in malignant melanoma

Combined immunohistochemical and immunofluorescence was
used to assess the expression of HOXC11 and its coactivator
protein SRC-1 in benign nevi and malignant melanoma. In tissue
from 80 patients assessed, nuclear expression of both HOXC11 and
SRC-1 was significantly expressed more frequently in malignant
melanoma in comparison with benign nevi (Po0.001 and
P¼ 0.017, respectively), Table 1. Moreover, expression of HOXC11
and SRC-1 in the malignant tissue is significantly associated with
each other (Po0.001, Fisher’s exact test). HOXC11 and SRC-1 were
expressed predominantly in cytoplasm of cells in the nevi with no
detectable nuclear coassociation (Figure 1A). In the tumour tissue
and in primary cell cultures derived from patient tumours, both
HOXC11 and SRC-1 translocate to the nucleus with a high level of
coassociation (Figures 1A and B). Immunoprecipitation studies
confirmed HOXC11 and SRC-1 interaction in primary (SKMel28)
and malignant (MeWo) melanoma cell lines (Figure 1C). Greater
protein expression of both HOXC11 and SRC-1 were found in
metastatic melanoma cells in comparison with primary melanoma
cell lines (Figure 1D).

HOXC11 and SRC-1 cooperate to regulate S100beta in
melanoma cells

Using chromatin immunoprecipitation, we established HOXC11
recruitment to the promoter of S100beta in primary melanoma
cells (Figure 2A). Forced expression of HOXC11 enhanced protein
levels of S100beta in the SKMel28 cells (Figure 2B). Furthermore,
knockdown of either HOXC11 alone or in combination with SRC-1
significantly reduced S100beta expression at both the RNA and
protein level (Figures 2C and D). In addition, combined

Table 1 Associations of expression of HOXC11 and SRC-1 in malignant
melanoma and benign nevi from patients using Fisher’s exact test

HOXC11 n (%) SRC-1 n (%)

Nuclear Cytoplasmic Nuclear Cytoplasmic

Melanoma (n¼ 64) 34 (53.1) 19 (29.7) 30 (46.8) 21 (32.8)
Benign nevus (n¼ 20) 1 (5) 8 (40) 3 (15) 6 (30)
P-value o0.001 NS 0.017 NS

Abbreviation: NS¼Not significant.
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knockdown of HOXC11 and SRC-1 results in significantly
decreased migration of both SKMel28 and MeWo (Figure 2E). In
line with our observation of increased expression and interaction
between HOXC11 and SRC-1 in malignant melanoma versus
benign nevi, high expression levels of their putative target
S100beta were detected in melanoma tissue in comparison with
little or no expression in the naevus tissue (Figure 2F).

Dasatinib can inhibit S100beta production in melanoma

We investigated whether inhibition of the Src kinase signalling
network could have a role in disrupting the functional interaction
between HOXC11 and SRC-1 in melanoma cells. The ATP-
competitive dual Src/Abl inhibitor dasatinib reduced HOXC11–
SRC-1 interaction and prevented recruitment of HOXC11 to the
promoter region of S100beta (Figures 3A and B). Dasatinib had
little or no effect on the expression levels of SRC-1 or HOXC11 in
either SKMeL28 or MeWo cells (Figure 3C). Treatment with
dasatinib significantly reduced both protein and RNA expression
of S100beta in melanoma cell lines (Figures 3C and D). High levels
of dasatinib were required to reduce cell proliferation in both cell
lines (Figure 3E). In the metastatic melanoma cell line MeWo,
however, treatment with dasatinib at 100 nM was sufficient to
reduce cell migration over time (Figure 3F).

DISCUSSION

Cutaneous melanoma is characterised by an unpredictable disease
course. Studies now suggest that a particular signature emerges

during the vertical growth phase of the primary tumour that can
mark the emergence of the metastatic phenotype. Work from Riker
et al (2008) has found that the homeobox family of proteins are
among a group of six oncogenes that alter expression during the
metastatic transition. Aberrant homeobox gene expression has
been shown to promote tumourigenesis through a variety of
mechanisms (Samuel and Naora, 2005; Maeda et al, 2005; Shah
and Sukumar, 2010). The role of the homeobox genes in the
transcriptional regulation of S100beta in breast tumour and
neuronal tissue (Zhang et al, 2007; McIlroy et al, 2010) suggests
their potential for regulating this calcium-binding protein in
melanoma. We have previously reported that HOXC11 can utilise
the steroid receptor coactivator protein to drive tumour progres-
sion in breast cancer patients (McIlroy et al, 2010). In this study,
we used combined immunohistochemical and immunofluores-
cence to assess expression of HOXC11 and its coactivator protein
SRC-1 in benign nevi and malignant melanoma. We found high
levels of expression and coassociation of HOXC11 and SRC-1 in
malignant melanoma in comparison with benign nevi. Consistent
with this, greater expression levels and coassociation of the
transcription factor and coactivator were observed in the
metastatic MeWo cells relative to the primary SkMel28 melanoma
cell lines.
Recently, we and others have described a role for HOXC11 in the

transcriptional regulation of S100beta in breast cancer and
neuronal tissue (Zhang et al, 2007; McIlroy et al, 2010). The
calcium-binding protein S100beta is one of the most widely
researched biomarkers in melanoma and its serum expression has
been shown to correlate with both disease stage and response to
treatment (Mocellin et al, 2008). While there is substantial
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Figure 1 Immunofluorescent staining of HOXC11 and SRC-1 in (A) benign nevus and malignant melanoma tissue, � 100, and (B) in primary cell cultures
derived from melanoma patient tissue, � 200. (C) Interaction of HOXC11 and SRC-1 in melanoma cell lines shown by immunoprecipitation.
(D) Expression levels of HOXC11 and SRC-1 in primary (SKMel28) and metastatic (MeWo) melanoma cell lines by western blot. All blots are representative
of three separate experiments.
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evidence to support transcriptional regulation of S100beta
(Allore et al, 1990; Jiang et al, 1993; Zimmer et al, 1995),
little is definitively known about its regulators in melanoma. Here
we observed recruitment of HOXC11 to the S100beta promoter.
Using a variety of molecular and cellular techniques, we
established a role for both HOXC11 and SRC-1 in the regulation
of S100beta, uncovering a new mechanism of S100beta regulation
in melanoma.
Abnormalities in growth factor signalling pathways have an

intrinsic role in melanoma disease progression. Systems that
impede this signalling network, including those that target c-kit,
raf and p-Src are at the forefront in the development of new
therapeutic strategies to treat this disease. In vitro studies have
shown that coactivator function of SRC-1 is mediated at least in
part through p-Src (Shang and Brown, 2002; Shah and Rowan,
2005). We investigated whether inhibition of the Src kinase
signalling network could have a role in disrupting the functional
interaction between HOXC11 and SRC-1 in melanoma cells. The
ATP-competitive dual Src/Abl inhibitor dasatinib inhibited

HOXC11 and SRC-1 mediated S100beta production in malignant
melanoma cells. Furthermore, in the metastatic melanoma cell line
MeWo, treatment with dasatinib reduced cell migration. Dasatinib
targets BCR/ABL and c-Kit, and is the most potent Src kinase
inhibitor currently in clinical development. It has proven efficacy
in the treatment of chronic myelogenous leukaemia (Talpaz et al,
2006). It is currently in trial for the treatment of advanced
melanoma (http://www.clinicaltrial.gov). Though none of these
trials have completed, interim reports suggest that as a single
therapy, dasatinib has minimal activity in unselected patients
(Kluger et al, 2010). Moreover, recent in vitro studies in the breast
suggest that dasatinib may be more effective when combined with
other targeted therapies rather than as a single agent in the
treatment of solid tumours (Vallabhaneni et al, 2010).
In spite of recent advances in targeted therapy, no treatment has

managed to significantly prolong overall survival in patients with
advanced melanoma. Molecular interactions that link tumour
progression to developmental biology provide the ideal milieu for
a tumour to adapt and evade targeted therapies. Here, we describe
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a new HOX/SRC-1-S100beta signalling network that can be
inhibited by dasatinib. Though initial promise for the use of
dasatinib in the treatment of advanced melanoma may be
tempered by early clinical data, targeting with new molecular
markers has the potential to greatly increase the efficacy of this
kinase inhibitor.
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