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BACKGROUND: Patients with high-grade gliomas are treated with surgery followed by chemoradiation. The risk factors and implications
of neurological side effects are not known.
METHODS: Acute and late X grade 3 neurological toxicities (NTs) were analysed among 2761 patients from 14 RTOG trials accrued
from 1983 to 2003. The association between acute and late toxicity was analysed using a stepwise logistic regression model. The
association between the occurrence of acute NT and survival was analysed as an independent variable.
RESULTS: There were 2610 analysable patients (86% glioblastoma, 10% anaplastic astrocytoma). All received a systemic agent during
radiation (83% chemotherapy, 17% biological agents). Median radiation dose was 60Gy. There were 182 acute and 83 late NT
events. On univariate analysis, older age, poor performance status, aggressive surgery, pre-existing neurological dysfunction, poor
mental status and twice-daily radiation were associated with increased acute NT. In a stepwise logistic regression model the
occurrence of acute NT was significantly associated with late NT (OR¼ 2.40; 95% CI¼ 1.2–4.8; P¼ 0.014). The occurrence of acute
NT predicted poorer overall survival, independent of recursive partitioning analysis class (median 7.8 vs 11.8 months).
INTERPRETATION: Acute NT is significantly associated with both late NT and overall survival.
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Second to meningioma, high-grade gliomas (WHO grade 3, 4) are
the most frequent type of primary brain tumours in adults.
Treatment consists of maximal safe resection followed by partial
brain radiation. Following the introduction of concomitant and
adjuvant temozolomide, long-term survival for grade 4 gliomas
(glioblastoma, GBM) has improved, with almost 10% of subjects
now living 5 years (Stupp et al, 2009). The long-term toxicity of
treatment is, therefore, of increasing importance.
Patients with high-grade glioma undergoing chemoradiation

experience various side effects, including dermatological, endo-
crine, systemic and neurological events. Dermatological side
effects such as radiation dermatitis and alopecia occur early and
are generally transient, although alopecia may take several months
to reverse. These rarely interfere with functional independence, but
may contribute significantly to a reduction in quality of life
because of a diminution in self-worth. Endocrine side effects are
usually delayed by several months to years, are gradual in onset
and often subtle, in terms of clinical presentation, and hence are

underdiagnosed; they are more frequent in children than adults
(Cross and Glantz, 2003). Systemic side effects such as myelosup-
pression and diarrhoea are generally attributable to chemotherapy.
Neurological side effects occur both early and late. Acute effects

(within 90 days of the commencement of therapy) are often
transient and include fatigue, headache, nausea, motor/sensory
disturbances, raised intracranial pressure, cranial nerve palsies,
visual disturbances, seizures and subtle changes in short-term
memory. Late side effects (more than 90 days after the
commencement of therapy) include many of the same symptoms,
with the addition of cognitive decline (Taphoorn and Klein, 2004),
cerebellar dysfunction and the consequences of white matter
atrophy such as normal pressure hydrocephalus; these are rarely
reversible.
It is often impossible to determine whether such neurological

symptoms are side effects of radiation therapy (RT), surgery,
chemotherapy, medications (e.g., anti-epileptics), an effect of the
tumour itself or a combination of the above. The pathophysiology
of radiation-induced neurological damage is complex and
imperfectly understood; it is thought to involve (1) an increase
in permeability of the blood–brain barrier, (2) death of
oligodendroglial precursor cells leading to demyelination,
(3) subtle changes in neuronal activity and vascular damage
leading to frank radiation necrosis and (4) loss of radio-sensitive
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stem cell compartments, which under the inflammatory stress,
induced by radiation, preferentially undergo gliogenic maturation,
as opposed to participating in neurogenesis (Mizumatsu et al,
2003; Soussain et al, 2009).
A recent review across a wide range of tumour types suggested

that risk factors for radiation-induced neurological toxicity (NT)
include both treatment variables (radiation dose, fraction size,
conformality index, volume treated, overall treatment time,
chemotherapy use) and patient variables (older age, diabetes
mellitus) (Lawrence et al, 2010). We are not aware of any large
studies that have specifically examined the NT of radiation
treatment in subjects with high-grade gliomas, with a view to
identifying risk factors and associations between acute and late
toxicity, and eventual survival.

Purpose

By performing a retrospective analysis of RTOG high-grade glioma
studies we sought to answer the following questions:

(1) What is the incidence of acute and late NT following RT for
high-grade glioma?

(2) What are the risk factors for acute and late NT following RT
for high-grade glioma?

(3) Is there an association between acute and late NT?
(4) What are the long-term implications of acute NT?

MATERIALS AND METHODS

Patient data was pooled from 14 RTOG high-grade glioma trials
that accrued a total of 2761 subjects (Table 1). Eligibility criteria
were consistent in all of the studies: histologically confirmed
supratentorial malignant glioma; age of at least 18 years; normal

hepatic, renal and bone marrow function; and an interval of
6 weeks or less from surgery to initiation of radiotherapy.
Ineligibility criteria included previous malignancies (except skin
carcinomas), previous chemotherapy, or head and neck irradia-
tion. All the trials combined RT with systemic anti-tumour
therapy.

Definition of acute and late neurological toxicity

‘Acute toxicity’ is defined as adverse events that occurred within
3 months of commencing therapy; events occurring after this were
classified as ‘late’. RTOG Acute Morbidity Scoring Criteria and
RTOG/EORTC Late Radiation Morbidity Scoring Schema were
used for the following studies: 8302, 8409, 9006, 9305, 9411, 9417,
9513, 9602 and 9710. NCI – CTC version 2.0 and RTOG/EORTC
Late Radiation Morbidity Scoring Schema were used for the
following studies: 9803, 9806, 0013, 0021 and 0023. For the
purposes of this report, we only considered NTs of grade 3 or
greater, without regard to attribution. Owing to the database’s
design we were unable to scrutinise details of the NTs.
The trials analysed used a range of doses and fractionation

schemes. The effects of different fractionation schemes on the
normal brain were compared by calculating the biological-
equivalent dose (BED) (Fowler, 1989) using a normal tissue
alpha/beta ratio of 3 (Lee et al, 1998). The RTOG trial 9305
combined fractionated therapy (60 Gy, BED 100) with a single-
fraction radiosurgical boost. Although there is no accepted way to
convert this into a BED, we considered the BED to be ‘above 120’
for the purposes of statistical analysis.

Statistical methods

Frequency distributions of patient survival time (survive X3
month vs survive o3 months) for two groups (acute NT vs no

Table 1 Clinical trial data analysed

Study Phase Study question
BID
RT

Concurrent
systemic
agent

Number of
analysable
subjects BED

Acute
neurological

toxicity

Late
neurological
toxicity

Overall
toxicity Survival Ref.

8302 I/II Hyperfractionated RT,
dose escalation

Y BCNU 756 73.6–114.2 86 9 Acceptable HC (Curran et al, 1992)

8409 I/II Role of AZQ N AZQ 54 74–95 11 0 NR HC (1998)
9006 III (R) Conventional vs

hyperfractionated RT
Y/N BCNU 693 100–100.8 28 15 NR HC (Scott et al, 1998a)

9305 III (R) Radiosurgical boost N BCNU 187 100, 4120 6 4 Acceptable HC (Souhami et al,
2004)

9411 II Dose escalation for
small tumours

Y BCNU 105 98.1–108 5 3 Acceptable HC (Coughlin et al,
2000)

9417 II Role of tirapazamine N Tirapazamine 122 100 3 1 More toxicities
at higher dose

HC (Del Rowe et al,
2000)

9513 II Role of topotecan N Topotecan 84 100 4 3 Significant
haematological
toxicity

HC (Fisher et al, 2002)

9602 II Role of paclitaxel N Paclitaxel 61 100 1 4 Acceptable HC (Langer et al, 2001)
9710 II Role of beta-interferon N Beta-interferon 55 100 1 2 Acceptable HC (Colman et al, 2006)
9803 I/II Conventional

fractionation, dose
escalation

N BCNU 203 110–140 10 13 Acceptable HC (Tsien et al, 2009)

9806 II Role of thalidomide N Thalidomide 125 100 19 12 Acceptable Slightly
better
than HC

(Yung et al, 2001)

0013 II Intra-tumoral bleomycin N Bleomycin 14 100 1 4 —a —a —a

0021 II Role of tamoxifen N Tamoxifen 75 100 2 4 Acceptable HC (Robins et al, 2006)
0023 II Role of stereotactic

RT boost
N BCNU 76 172 5 9 Acceptable HC (Cardinale et al,

2006)

Abbreviations: AZQ¼ diaziquone; BCNU¼ carmustine; BED¼ biological-equivalent dose; BID¼ twice daily radiation; HC¼ historical controls; N¼ no; NR¼ not reported;
R¼ randomised; RT¼ radiation therapy; Y¼ yes. aSmall study, never published.
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acute NT) were compared using w2-tests. McNemar’s test was used
to test the difference between two correlated proportions –
occurrence/no occurrence of acute and late NTs. Logistic
regression was used to assess the relationship between acute and
late NTs. It was also used to assess the relationship between pre-
treatment characteristics, treatment options and the occurrence of
acute NTs. For the survival end point, the Kaplan–Meier method
was used to estimate the rates, and the log-rank test was used to
compare them between the two patient groups (acute NT vs no
acute NT). The Cox proportional hazards (PH) model was used to
estimate the hazard ratio (HR) associated with overall survival
while adjusting patient-specific factors. A two-sided test was used
at a significance level of 0.05 for all the evaluations.
Patients dying within 3 months of RT are by definition not able

to develop late NT; they were therefore excluded from analyses of
late toxicity.

RESULTS

A total of 2761 patients were accrued; 151 patients (5%) were
excluded from the analysis because of being ineligible, no protocol
treatment or withdrawal of consent leaving 2610 patients. Baseline
characteristics are listed in Table 2.
Median follow-up of all subjects was 11.2 months; median

follow-up of the 279 patients censored subjects who were still alive
at last follow-up was 57.3 months (this difference in length of
follow-up between all subjects (censored and uncensored) and
censored subjects reflects the fact that the risk of dying apparently
decreases after living up to a certain time). The 265 patients who
lived less than 3 months were excluded from analyses of late
toxicity. A total of 182 cases (7.0%, crude rate) of acute NT and 83
cases (3.5%, crude rate) of late NT were reported.
Pretreatment characteristics and treatment options were

assessed in logistic regression models to predict the occurrence
of acute CNS toxicities. Table 3 lists the results, based on the
univariate logistic regression analyses. Histology, chemotherapy
and BED were considered as non-statistically significant at the
significance level of 0.1 and not included in the further multi-
variate logistic regression analysis. In a stepwise logistic regression
model considering the remaining six variables, Zubrod perfor-
mance status, previous surgery type, neurological function, mental
status and twice-daily (BID) radiation were significantly associated
with acute NT (Table 3).
Pretreatment characteristics, treatment-related variables and the

occurrence of acute NT were assessed in logistic regression models to
predict the occurrence of late CNS toxicities. The following variables
were considered in the univariate logistic regression analysis: age at
diagnosis (o50 vs X50), surgery type (biopsy vs partial/total
resection), neurological dysfunction (no dysfunction/minor vs
moderate/severe), mental status (normal function vs minor/confu-
sion), once-daily radiation (yes vs no), Zubrod performance status (0
vs 1/2/3), histology (GBM vs anaplastic astrocytoma), chemotherapy
(yes vs no), BED (p120 vs 4120) and acute CNS toxicities (yes vs
no). Age, Zubrod performance status, type of surgery, neurological
function, mental status and histology were considered non-statisti-
cally significant at a significance level of 0.1 and not included in
further multivariate logistic regression analysis. In a stepwise logistic
regression model considering the four remaining variables, once-
daily radiation, BED and previous occurrence of acute NT were all
statistically associated with late NT (Table 4).
The association between acute and late toxicity amongst subjects

who survived at least 3 months was examined by means of
McNemar’s test. Among the 148 patients experiencing acute NT, 10
(7%) patients experienced late NT; among the 2197 patients not
experiencing acute NT, only 73 (3%) patients experienced late NT,
Po0.0001, suggesting that acute CNS toxicities are statistically
associated with late CNS toxicities.

When the two patient groups (patients with and without acute
NT) were compared with regard to overall survival, based on the
log-rank test, a statistical difference was found (HR¼ 1.77; 95%
CI¼ 1.52–2.06; Po0.0001). The median survival times were 7.8
and 11.8 months, respectively. The Kaplan–Meier curve is
presented in Figure 1. Subjects with acute CNS toxicities were
more likely to die within 3 months of treatment. Approximately
19% of patients with acute CNS toxicities died within 3 months,
whereas 10% of patients without acute CNS toxicities died within
3 months, Po0.001.
Recursive partitioning analysis (RPA) class (a combination

of age, histology, Zubrod performance status, mental status,
neurological function, symptom time and previous surgery) has

Table 2 Pretreatment characteristics, (n¼ 2610)

N %

Age
o50 907 34
p50 1691 65
Unknown/missing 12 o1

Zubrod
0 1294 50
1, 2, 3 1304 50
Unknown/missing 12 o1

Surgery
Biopsy 650 25
Partial/total resection 1900 73
Other/unknown/missing 70 2

Neurological dysfunction
None/minor 1631 62
Moderate/severe 961 36
Unknown/missing 18 1

Mental status
Normal function 1725 66
Minor, gross confusion 706 27
Unknown/missing 179 7

RPA class
I, II 183 7
III 410 16
IV 1043 40
V, VI 844 33
Unknown 130 5

Histology
GBM 2233 86
AA 250 10
Other 127 5

Twice-daily RT
No 1397 54
Yes 1213 46

Chemotherapy
No 431 17
Yes 2179 83

Biological drug
No 2179 83
Yes 431 17

Biological-equivalent dose
p120 2344 90
4120 266 10

Abbreviations: AA¼ anaplastic astrocytoma; GBM¼ glioblastoma; RPA¼ recursive
partitioning analysis; RT¼ radiation therapy.
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been robustly established as a prognostic scale for patients with
newly diagnosed high-grade glioma (Curran et al, 1993; Scott et al,
1998b; Mirimanoff et al, 2006). Recursive partitioning analysis
class, BID radiation (yes vs no), chemotherapy (yes vs no), BED
(p120 vs4120) and the occurrence of acute NT were assessed in a
PH Cox model for overall survival (Table 5, Figure 2). Twice-daily
radiation and BED were considered non-statistically significant
and were not included in the multivariate Cox analysis. In a
stepwise multivariate Cox model considering RPA class,
chemotherapy and acute CNS toxicities, only RPA class and acute
NT remained statistically associated with the overall survival
(HR¼ 1.43; 95% CI¼ 1.2–1.7; Po0.0001) after adjusting for the
RPA classes (Table 5).

DISCUSSION

We performed an analysis of the RTOG database to understand the
risk factors and consequences of acute NT in patients with high-
grade gliomas undergoing RT.
We found that both early and late toxicity are comparatively

rare (3–7%) – in agreement with published experience (Dinapoli
et al, 1993; Stupp et al, 2005; Keime-Guibert et al, 2007). Risk
factors for acute NT that remained significant in the multivariate
analysis were both patient (functional status, neurological func-
tion, mental status) and treatment (biopsy only, BID radiation)
related. These findings, though novel in the field of brain tumours,
are in keeping with the general oncology literature that frail
patients experience more toxicity (Brian et al, 1995; Artz et al,
2006; Kumar Pal et al, 2010). The lack of association between
chemotherapy and toxicity differs with the findings of the pivotal
EORTC/NCIC phase III trial that established temozolomide and

radiation as the standard of care. In that trial, in-field acute grade 3
and 4 toxicities (dermatological, infection and vision and nausea/
vomiting) occurred in 7 and 14% of subjects in the control and
temozolomide arms, respectively, (Stupp et al, 2005). This
difference may reflect the type and extended duration of
chemotherapy in the EORTC/NCIC trial. Conversely the rate of
late toxicity reported by us (3.5%) is much higher than that
reported in each arm of the EORTC/NCIC trial (o1%), it is not
clear whether this is due to differences in treatment, population
(the EORTC trial excluded older patients) or reporting practices.
An important difference is that the statistics from the Stupp trial
refer to any non-haematological toxic event, whereas the data
presented here are specifically for NT.
Risk factors for late toxicity, significant in multivariate analysis,

were once-daily radiation, high total radiation dose and previous
acute NT. It is interesting to compare our findings with the
recently published QUANTEC meta-analysis of the tolerance of the
normal brain to irradiation, which investigated risk factors for late
brain toxicity (Lawrence et al, 2010). Many of the studies analysed
by the QUANTEC team involved the treatment of non-primary
brain tumours (e.g., brain metastases and nasopharyngeal
carcinoma). The QUANTEC authors demonstrated a sharp
incidence in radiation necrosis when the BED rose above 120.
Although the end points are not identical, in the current study
we likewise found that a BED above 120, doubled the risk of
late toxicity.
The association between acute and late toxicity has not

previously been reported, and challenges the classic teaching that
acute toxicity is fully reversible. A possible explanation is that
these acute toxicities were so severe that healing was not possible;
alternatively this may reflect a predisposition to toxicity amongst

Table 3 Univariate and multivariate analyses/logistic regression for acute neurological toxicities (n¼ 2610)

Univariate analysis Multivariate analysisb

Variable Comparison OR (95% CI)a P-value OR (95% CI)a P-value

Age o50 —

X50 1.59 (1.1, 2.2) 0.008 — —

Zubrod 0 —

1, 2, 3 2.72 (1.9, 3.8) o0.0001 1.77 (1.1, 2.7) 0.010

Surgery Partial/total resection — —

Biopsy 1.63 (1.2, 2.2) 0.0029 1.43 (1.0, 2.0) 0.038

Neurological dysfunction None/minor — —

Moderate/severe 2.91 (2.1, 4.0) o0.0001 1.80 (1.2, 2.7) 0.0054

Mental status Normal function — —

Minor/gross confusion 2.48 (1.8, 3.4) o0.0001 1.69 (1.2, 2.4) 0.0025

Twice-daily RT No — —

Yes 1.79 (1.32, 2.43) 0.0002 1.67 (1.2, 2.3) 0.0025

Histology AA —

GBM 0.95 (0.6, 1.6) 0.84 — —

Chemotherapy No —

Yes 0.79 (0.5, 1.2) 0.22 — —

Biological-equivalent dose p120 —

4120 0.84 (0.5, 1.4) 0.52 — —

Abbreviations: AA¼ anaplastic astrocytoma; BED¼ biological-equivalent dose; CI¼ confidence interval; GBM¼ glioblastoma; OR¼ odds ratio; RT¼ radiation therapy. aOdds
ratio: the odds ratio of 1 indicates no difference between the two subgroups. bMultivariate model derived from stepwise selection. Variable(s) not included in final model: age
(dropped out during the stepwise selection process). Variable(s) dropped from modelling as not significant with reference variables: histology, chemotherapy, BED (not significant
during the univariate setting).
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certain patients, possibly related to either tumour location (e.g.,
close to critical structures) or genetic makeup.
The relationship between acute NT and overall survival was

unexpected. Patients who did not experience acute NT were found
to have a 4 month longer median survival than those who
experienced NT (of at least grade 3). This survival advantage was
independent of RPA class. Although we lack a complete
explanation, this may demonstrate the importance of normal
tissue damage in determining long-term survival. A recent
study likewise demonstrated that GBM patients who acquired
motor or language deficits post-operatively had poorer overall
survival than those who remained neurologically intact (Shinoda
et al, 2001).
Our findings are in contrast with the association between

pseudo-progression and improved prognosis in high-grade
gliomas (Gerstner et al, 2009). Pseudoprogression is generally
defined as radiological progression (oedema and sometimes
contrast enhancement on MRI) soon after the completion of RT
in patients with malignant gliomas, which is followed by

spontaneous recovery and stabilisation (Brandsma et al, 2008).
Pathologically it is thought to represent a mild form of radiation
necrosis. Possible explanations for the difference between our
findings and those associating pseudoprogression with a good
prognosis are (1) pseudoprogression is especially associated with
the use of temozolomide (Chamberlain et al, 2007; Brandsma et al,
2008). None of the patients in our study received this agent; rather
the most frequently used systemic agent was BCNU, which appears
to be much less potent. (2) Our patients were universally
symptomatic, whereas most patients with pseudoprogression are
asymptomatic. Hence, whereas pseudoprogression may be a form
of intra-tumour necrosis, we suspect that the ‘acute toxicity’ cases
described here represent damage to surrounding normal tissues.
A more thorough understanding would require a case-by-case
review of imaging, which unfortunately is not possible.

Table 4 Univariate and multivariate analyses/logistic regression for late
neurological toxicities

Univariate analysis Multivariate analysisb

Variable Comparison OR (95% CI)a P-value OR (95% CI)a P-value

Age o50 — — —

X50 0.95 (0.6, 1.5) 0.81 — —

Zubrod 0 — — —

1, 2, 3 0.93 (0.6, 1.4) 0.75 — —

Surgery Partial/total
resection

— — —

Biopsy 1.09 (0.7, 1.8) 0.73 — —

Neurological
dysfunction

None/minor — — —

Moderate/
severe

0.76 (0.5, 1.2) 0.26 — —

Mental status Normal
function

— — —

Minor/gross
confusion

0.86 (0.5, 1.5) 0.62 — —

Twice-daily RT No — — —

Yes 0.37 (0.2, 0.6) 0.0001 0.42 (0.2, 0.7) 0.002

Histology AA — — —

GBM 1.76 (0.7, 4.4) 0.23 — —

Chemotherapy No — — —

Yes 0.64 (0.4, 1.1) 0.09 — —

BED p120 — — —

4120 2.83 (1.7, 4.8) o0.0001 1.98 (1.1, 3.4) 0.016

Acute CNS No — — —

Yes 2.11 (1.1, 4.2) 0.03 2.40 (1.2, 4.8) 0.014

Abbreviations: AA¼ anaplastic astrocytoma; BED¼ biological-equivalent dose;
CI¼ confidence interval; CNS¼ central nervous system; GBM¼ glioblastoma;
OR¼ odds ratio; RT¼ radiation therapy. aOdds ratio: The odds ratio of 1 indicates
no difference between the two subgroups, less than 1 indicates a protective effect.
bMultivariate model derived from stepwise selection. Variable(s) not included in final
model: chemotherapy (dropped out during the stepwise selection process).
Variable(s) dropped from modelling as not significant with reference variables: age,
Zubrod performance status, surgery, neurologic function, mental status, histology (not
significant during the univariate setting).
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Figure 1 Overall survival, stratified by the presence/absence of acute
neurological toxicity.

Table 5 Univariate and multivariate analysis/cox proportional hazards
model for overall survival

Variable Comparison HR (95% CI) P-value HR (95% CI) P-value

RPA I, II —

III 3.24 (2.6, 4.1) o0.0001 3.27 (2.6, 4.1) o0.0001

IV 5.41 (4.4, 6.7) o0.0001 5.41 (4.4, 6.7) o0.0001

V, VI 10.10 (8.1, 12.6) o0.0001 9.92 (7.9, 12.4) o0.0001

Twice-daily RT No —

Yes 0.93 (0.9, 1.0) 0.09

Chemotherapy No —

Yes 0.78 (0.7, 0.9) o0.0001

BED p120 —

4120 0.99 (0.9, 1.1) 0.86

Acute CNS No —

Yes 1.77 (1.5, 2.1) o0.0001 1.43 (1.2, 1.7) o0.0001

Abbreviations: BED¼ biological-equivalent dose; CI¼ confidence interval;
CNS¼ central nervous system; HR¼ hazards ratio; RPA¼ recursive partitioning
analysis; RT¼ radiation therapy. Multivariate model derived from stepwise selection.
Variable(s) not included in final model: twice-daily RT and chemotherapy (dropped
out during the stepwise selection process). Variable dropped from modelling as not
significant with reference variables: BED (not significant during the univariate setting).
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Despite the fact that our study dates from the pre-temozolomide
era, we found that the use of chemotherapy was associated with
increased survival (Figure 2). Of those who received chemo-
therapy, 93% received BCNU. As this association was only found
on univariate, but not in multivariate analysis, its significance is
unclear. Nevertheless, the association is in agreement with
previous meta-analyses that have likewise identified methylating
agents to be effective radiosensitsers in this disease (Chang et al,
1983; Fine et al, 1993; Spiegel et al, 2007).
A weakness of this retrospective study is our inability to assess

completeness of reporting, and accurate attribution of neurological
events. The definition of NT varied between the studies depending
on the toxicity scale used; further we do not have descriptions of
these events. A possible explanation of our findings associating
acute NT with long-term survival is ‘misclassification bias’, that is,
the treating physicians had difficulty distinguishing treatment-
related side effects from tumour symptoms, and that what was
reported as ‘acute toxicity’ was in fact early tumour progression.
A close reading of our results however, supports the fact that these
were indeed true treatment-related side effects: (1) We found that
compared with once-daily radiation, BID radiation produced
increased acute toxicity, but decreased late toxicity. This is entirely
in keeping with classic radiobiology teaching of normal tissue
damage. The lack of impact of fractionation scheme on overall
survival (Table 5) further supports the supposition that this is related
to normal tissue injury and not tumour control. (2) Conversely,
histology (GBM vs anaplastic astrocytoma) had no impact on either

acute or late toxicity, despite the more aggressive nature of GBM. If
‘NT’ was in fact a measure of ‘tumour progression’, a correlation
would have been expected. (3) This ‘misclassification’ bias would be
expected to especially affect subjects whose tumours progressed very
early. Nevertheless, if patients who died within the first 3 months are
excluded from the analysis, the survival benefit associated with lack
of acute toxicity remains (HR¼ 1.69; 95% CI¼ 1.43–2.01; Po0.0001,
Supplementary Figure).
A further weakness of our study is the small number of patients

encountering toxicity. Although we analysed 2610 subjects, there
were only 182 acute toxic events and 83 late toxic events.
Confirmatory studies from other large databases, or population-
based cohorts are therefore needed to validate our findings.
In conclusion we have elucidated the risk factors for NT

amongst patients with high-grade glioma undergoing RT. These
should be considered when designing eligibility criteria for clinical
trials. The finding that acute NT predicts for both late NT and poor
overall survival in patients not receiving temozolomide is
provocative and requires validation. This phenomenon appears
to be distinct to the ‘pseudoprogression’ seen when temozolomide
is combined with RT.
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