Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Experimental Oncology
  • Published:

Combined effect of clinically relevant doses of emitefur, a new 5-fluorouracil derivative, and radiation in murine tumours

Abstract

We investigated the combined effect of radiation and clinically relevant doses of emitefur (BOF-A2), a newly developed anti-cancer agent consisting of a masked form of 5-fluorouracil (5-FU) and a potent inhibitor of 5-FU degradation, in two types of murine tumours. In preliminary pharmacokinetic studies, the area under the curve for 5-FU in plasma, after administration of 12.5 mg kg-1 and 25 mg kg-1 emitefur in mice, appeared to be similar to that obtained on the first day and that on the seventh day, respectively, after starting administration of 400-600 mg day-1 in humans. These doses (12.5 and 25 mg kg-1) of emitefur were evaluated either alone or in combination with single (15 Gy), five-fraction (4 Gy each) or ten-fraction (2.8 Gy each) irradiation using a tumour growth delay assay for SCCVII tumours and in combination with four-fraction (5 Gy each) irradiation using an in vivo-in vitro assay for EMT6 tumours. The anti-tumour and radiation-enhancing effects of 12.5 mg kg-1 emitefur were not significant in any except the ten-fraction experiment. On the other hand, multiple doses of 25 mg kg-1 emitefur given either alone or in combination with radiation produced marked effects. The mean tumour growth delay time (the time to double in volume for treated tumours minus that for untreated tumours) was 8.1 days for five administrations of 25 mg kg-1 emitefur. 10.4 days for five fractions of 4 Gy and 22.1 days for five treatments with the combination of the two. Thus, the increase in growth delay afforded by this combination was at least additive. The effect of four fractions of 5 Gy with 25 mg kg-1 emitefur in EMT6 tumours was lower than that of four fractions of 7.5 Gy, but the effect of five fractions of 4 Gy with this dose of emitefur in SCCVII tumours was similar to the effect of five fractions of 6 Gy, and the effect of ten fractions of 2.8 Gy with 25 mg kg-1 emitefur was much higher than that of ten fractions of 4.2 Gy. In conclusion, emitefur given either alone or in combination with radiation appears to have a significant anti-tumour effect even at clinically relevant dose levels, although a threshold dose exists between 12.5 and 25 mg kg-1. Further clinical studies of this compound are warranted.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shibamoto, Y., Murata, R., Miyauchi, S. et al. Combined effect of clinically relevant doses of emitefur, a new 5-fluorouracil derivative, and radiation in murine tumours. Br J Cancer 74, 1709–1713 (1996). https://doi.org/10.1038/bjc.1996.619

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/bjc.1996.619

Search

Quick links