Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Experimental Oncology
  • Published:

Mechanism of cytotoxicity of 5,10-dideazatetrahydrofolic acid in human ovarian carcinoma cells in vitro and modulation of the drug activity by folic or folinic acid

Abstract

Inhibition of clonogenic potential by the glycinamideribonucleosyl transformylase inhibitor 5,10-dideazatetrahydrofolic acid (DDATHF, Lometrexol) was evaluated in vitro in a human ovarian carcinoma cell line, SW626. Drug-induced inhibition of clonogenic potential is a function of the dose and time of exposure and is independent of the formation of DNA single-strand breaks or de novo synthesis of protein. Simultaneous treatment with 100 microM hypoxanthine completely prevented the inhibition of clonogenic potential caused by 0.5 microM DDATHF. DDATHF blocked cells in the early-middle S-phases of the cell cycle, and there was a corresponding marked reduction in the rate of DNA synthesis after drug withdrawal. The cytotoxic potential of DDATHF was modulated by the folic acid concentration present in the medium. In a medium containing 0.22 microM folic acid, DDATHF cytotoxicity was at least 100 times that in a regular medium containing 2.22 microM folic acid, levels which, however, are about 100 times those found in human plasma. DDATHF cytotoxicity differed moderately when folic acid concentrations varied between 0.22 and 0 microM, suggesting that folic acid does not necessarily antagonise DDATHF anti-tumour activity. Folinic acid at a concentration as low as 0.1 microM can completely rescue cells when given simultaneously with 0.5 microM DDATHF. When folinic acid was given 24 h after DDATHF, a reversal of cytotoxicity was observed at 0.5 and 1 microM, but to a much lesser extent than simultaneous treatment. When folinic acid was added after 48 or 72 h of DDATHF washout, even at a high concentration and for a long time, no reduction in DDATHF cytotoxicity was found. In conclusion, the study highlights the modulation of DDATHF cytotoxicity by folic acid or by folinic acid and provides further rationale for in vivo clinical investigation with these combinations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erba, E., Sen, S., Sessa, C. et al. Mechanism of cytotoxicity of 5,10-dideazatetrahydrofolic acid in human ovarian carcinoma cells in vitro and modulation of the drug activity by folic or folinic acid. Br J Cancer 69, 205–211 (1994). https://doi.org/10.1038/bjc.1994.40

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/bjc.1994.40

This article is cited by

Search

Quick links