Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Experimental Oncology
  • Published:

Tamoxifen metabolism: pharmacokinetic and in vitro study

Abstract

The qualitative and quantitative importance of tamoxifen (TMX) metabolism in vivo led us to investigate further the metabolic profile of this major anti-oestrogenic drug in a significant group of 81 breast cancer patients and to evaluate the respective in vitro activity of each metabolite. TMX and its four metabolites described until now (NDT, 4-OHT, Y, Z) were measured in blood (HPLC method) at the time of first drug intake and at the steady state. Between these two states, the unchanged drug relative proportion dropped from 65% to 27%. Demethylation was the major metabolic pathway. For 13 clinically evaluable patients, there was no significant difference in the distribution of serum levels of TMX and metabolites as a function of response to treatment. In vitro studies were performed on two human breast cancer cell lines: MCF-7, oestrogen receptor and progesterone receptor positive (ER+, PR+) and CAL-18 B (ER-, PR-). Cytostatic effects were evaluated by the tritiated thymidine incorporation test. TMX and all metabolites were active on these two cell lines, but the 50% inhibitory concentrations (IC50) were 4-250-fold higher in CAL-18 B than in MCF-7, depending on the metabolite considered. For the MCF-7 cells only, the antiproliferating activity was parallel to the relative binding affinity for ER. Moreover, for the MCF-7 cells only, the effects of these drugs were partially reversed by oestradiol (E2), the higher the metabolite affinity for ER, the lower the reversal efficacy. These compounds were tested in mixtures at proportions duplicating those found in patients after initial drug intake (mixture D1), and the steady state (mixture Css). The mixtures were also compared to the equimolar unchanged drug. No differences were seen among these three experimental conditions for either MCF-7 or CAL-18 B. A dose-effect relationship was noted. Overall, TMX and its metabolites exert a dual effect: when concentrations are below a threshold between 2 x 10(-6) and 10(-5) M, the drugs are mainly cytostatic; this effect is related to their affinity for ER. At higher relevant clinical concentrations, a cytotoxic activity is observed and it appears independent of the presence of ER.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Etienne, M., Milano, G., Fischel, J. et al. Tamoxifen metabolism: pharmacokinetic and in vitro study. Br J Cancer 60, 30–35 (1989). https://doi.org/10.1038/bjc.1989.214

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/bjc.1989.214

This article is cited by

Search

Quick links