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High somatic mutation and neoantigen burden are correlated
with decreased progression-free survival in multiple myeloma
A Miller1,2, Y Asmann3, L Cattaneo2, E Braggio4, J Keats5, D Auclair6, S Lonial7, The MMRF CoMMpass Network6, SJ Russell1,8

and AK Stewart2,4

Tumor-specific mutations can result in immunogenic neoantigens, both of which have been correlated with responsiveness to
immune checkpoint inhibitors in highly mutagenic cancers. However, early results of single-agent checkpoint inhibitors in multiple
myeloma (MM) have been underwhelming. Therefore, we sought to understand the relationship between mutation and neoantigen
landscape of MM patients and responsiveness to therapies. Somatic mutation burden, neoantigen load, and response to therapy were
determined using interim data from the MMRF CoMMpass study (NCT01454297) on 664 MM patients. In this population, the mean
somatic and missense mutation loads were 405.84(s=608.55) and 63.90(s=95.88) mutations per patient, respectively. There was a
positive linear relationship between mutation and neoantigen burdens (R2 = 0.862). The average predicted neoantigen load was 23.52
(s=52.14) neoantigens with an average of 9.40(s=26.97) expressed neoantigens. Survival analysis revealed significantly shorter
progression-free survival (PFS) in patients with greater than average somatic missense mutation load (N=163, 0.493 vs 0.726 2-year
PFS, P=0.0023) and predicted expressed neoantigen load (N=214, 0.555 vs 0.729 2-year PFS, P=0.0028). This pattern is maintained
when stratified by disease stage and cytogenetic abnormalities. Therefore, high mutation and neoantigen load are clinically relevant
risk factors that negatively impact survival of MM patients under current standards of care.
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INTRODUCTION
Multiple myeloma (MM) is characterized by the clonal expansion
of malignant plasma cells in the bone marrow, for which recent
therapeutic advances have extended overall survival (OS), but
most patients ultimately relapse.1,2 There is, however, variability in
response between patients and survival is known to vary with
prognostic factors, including disease stage at diagnosis and
cytogenetic abnormalities.3 Therefore, correlating prognostic
factors with biological function could underpin the development
of novel and targeted therapeutic classes.
One novel class of agents currently explored in clinical trials for

MM is immunotherapeutic checkpoint inhibitors. Single-agent
checkpoint inhibitors can reverse tumor-induced downregulation
of T-cell function by blocking the engagement of checkpoint
receptors like cytotoxic T-lymphocyte-associated protein 4 (CTLA-
-4) and programmed-death-1(PD-1) on the surface of T-cells with
their cognate ligands expressed on tumor cells.4–6 This allows
activation of the cytotoxic T-cell via engagement of the T-cell
receptor (TCR) with antigenic peptides presented in the class I
major histocompatibility complex (MHC) on tumor cells.
For this reason, the presence of tumor-specific antigenic

peptides, or neoantigens, is thought to enhance the efficacy of
cancer immunotherapy by providing endogenous tumor-specific
immune targets. Neoantigens have the potential to be loaded into
MHC class I molecules and presented to cytotoxic T-cells as
immunogenic targets that can generate an anti-tumor immune
response.7 Cytotoxic T-cells activated against tumor neoantigens

can kill tumor cells presenting mutagenic peptides and lead to
anti-tumor immunological memory that resists tumor recurrence.
Somatic mutations in coding regions of the genome have the
potential to generate neoantigens, thereby influencing patient
response to targeted immunotherapies. A patient’s neoantigen
burden can be predicted bioinformatically using algorithms to
predict MHC binding affinity of mutagenic peptides translated
from somatic mutations.8,9 Although mutational burden in cancer
is heterogeneous, tumor types are associated with a characteristic
mutational load.10 Within cancer populations, high somatic
mutation loads have been correlated with increased genomic
instability, resistance to therapy, and decreased overall
survival.11–13 Interestingly, somatic mutation load has also been
correlated with neoantigen load in many cancer types, and both
have been correlated with prolonged survival with checkpoint
inhibitors in highly mutagenic advanced melanoma and lung
cancer.14–16

However, correlation of survival with mutation and neoantigen
burden has not been reported for cancers of lower mutational
burden such as MM. Early results of single-agent checkpoint
inhibitors in MM are underwhelming. Single-agent nivolumab
(anti-PD-1 monoclonal antibody) had no objective responses in 27
MM patients,17 although some combination therapies of pem-
brolizumab (anti-PD-1 antibody) with lenalidomide and dexa-
methasone and with pomalidomide and dexamethasone have
shown potential with greater than expected progression-free
survival (PFS) and overall response rates respectively.18,19 Given
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the seeming lack of single-agent immune responsiveness in the
MM population, we sought to elucidate the underpinning reasons
by first defining baseline mutation and neoantigen burden in
patients, and assessing the association with time to progression
on current therapies using the data from the Multiple Myeloma
Research Foundation’s (MMRF) CoMMpass study (Relating Clinical
Outcomes in MM to Personal Assessment of Genetic profiles). This
observational study was designed to enroll 1000 newly diagnosed
MM patients and track them from initial diagnosis through
treatment for 5 years, including sequential tissue sampling and
molecular profiling to identify genomic and clinical characteristics
that define patient subsets and correlate with treatment response
(NCT01454297).20–22

Herein, we report mutational load and predicted expressed
neoantigen load in MM patients identified using exome sequencing
and HLA-binding predictions. Elevated mutation and neoantigen
load were found to correlate with significantly decreased PFS time
after induction therapy, indicating the need for better treatment
options for this subset of patients. This provides the basis for
optimizing personalized treatment approaches for MM patients
based on mutation and neoantigen load.

MATERIALS AND METHODS
The MMRF CoMMpass study and sequencing analysis
The data were obtained from the ongoing MMRF CoMMpass Trial
(NCT01454297), a longitudinal study in MM relating clinical outcomes to
genomic profiles of selected plasma cells (greater than 80% light chain
restricted, CD138+ plasma cells) from the bone marrow of newly
diagnosed patients. Patients were followed from initial diagnosis through
treatment and any following response, disease regression and retreatment.
Demographic information, induction and subsequent lines of therapy, and
survival events were recorded for correlative study applications.
At the time of this analysis, 912 patients had been accrued with the data

available for interim analysis. Of these patients, 664 patients had all the
necessary data available for analyzing mutation load, neoantigen
prediction, and survival analysis based on the IA8 trial release from the
MMRF researcher gateway portal (https://research.themmrf.org).20–22 The
study cohort therefore consisted of these 664 patients.
Samples were collected and processed as described on the researcher

portal. Briefly, tumor and constitutional samples obtained from all patients
were submitted to Translational Genomics Research Institute (TGen) in
Phoenix, Arizona from the MMRF CoMMpass Biobank at Van Andel
Research Insitute (VARI) in Grand Rapids, Michigan for all genetic studies.
Sequencing analysis was based on the GRCh37 reference genome and

gene annotations from Ensembl version 74, base reference genome hs37d5.
Whole-exome sequencing was aligned using the memmodule of BWAv0.7.8
and SAMTOOLSv0.1.19. Somatic events were identified using HAPLOTYPE
CALLER, SEURATv2.6, STRELKAv1.0.13, and MUTECTv1.1.4.23–29 RNA sequen-
cing reads were aligned using STAR 2.3.1z and SAMTOOLSv0.1.19.
Expression estimates were calculated using CUFFLINKSv2.2.1, and HT-
SEQv0.6.0.24,30–32 HLA genotyping was performed using the BWAkit and
Polysolver algorithms on exome sequencing data.23,33 The algorithms had
approximately 90% concordance (data not shown) therefore only results
from BWAkit were used in subsequent neoantigen predictions.

Binding affinity and neoantigen prediction
Somatic mutation load and neoantigen load are determined separately for
each patient based on mutation detection and HLA allelic prediction from
patient exome sequencing (supplemental methods). For patient-specific
neoantigen prediction, all somatic missense mutations in genes with
protein products greater than or equal to 8 amino acids in length,
excluding nonstop mutations, were used to produce peptide sequences of
8, 9 and 10 amino acids containing the mutation by tiling across the
peptide sequence containing each somatic missense mutation (up to 27
possible mutant peptides per somatic missense mutation). Patient-specific
MHC class I binding affinity (half maximal inhibitory concentration, IC50)
was predicted based on a neural network machine learning approach for
all possible combinations of each HLA allele with every 8-, 9-, or 10-mer
peptide generated from tiling mutant and corresponding wild-type
peptide sequences using netMHC(v4.0).9 Following accepted standards

of the field, IC50o500 nM was considered a predicted binder. Patient-
specific neoantigens were defined as any unique combination of peptide
sequence: HLA-allele with mutant peptide-binding affinity IC50o500 nM,
and corresponding wild-type peptide IC504500 nM. Expressed neoanti-
gens were considered any such neoantigens with RNAseq counts ⩾ 1.

Statistical considerations
Survival analysis and Cox-proportional hazard comparison was performed
using R package ‘Survival’ with log-rank test and hazard ratio statistical
tests for comparison.34,35 An ANOVA or Welch two sample t-test was used
for comparisons of continuous measures between prognostic risk groups.
Analyses were performed in R version 3.2.0.36

RESULTS
Mutation and Neoantigen Load
The interim data from the MMRF CoMMpass study (NCT 01454297)
were used to assess mutation burden and predicted neoantigen
load in a subset of 664 MM patients representative of the accrued
CoMMpass population in terms of age, sex, race, international
staging system (ISS) disease staging, and cytogenetic abnormality
profile (Table 1).
In order to define the predicted neoantigen burden, patient-

specific mutational load and MHC class I molecules must first be
determined. The human MHC class I molecules responsible for
presenting neoantigens are encoded by the extremely poly-
morphic HLA genes at the HLA-A, HLA-B and HLA-C loci. The
genomic sequencing data were used for in silico bioinformatic
determination of the six HLA alleles carried by each patient
(Supplementary Figure S1). All canonical variants reported in the
CoMMpass database were used to quantify patient-specific
somatic mutational load. There was an average of 405.84
(s= 608.55) canonical somatic mutations per patient, including
38 222 unique somatic missense mutations in 12 994 unique
genes across all patients. As expected, the most commonly
mutated genes included immunoglobulin heavy chain and light
chain genes, NRAS, KRAS and BRAF. Somatic missense mutations

Table 1. Demographics of complete and test cohort from interim
MMRF CoMMpass population

Demographics MMRF (IA8) Test Cohort

Number of Patients 912 664
Sex
Male 555, 60.86% 408, 61.45%
Female 357, 39.14% 256, 38.55%

Age
Average 64.08 63.95
Range 27,93 27,93

Ethnicity
Caucasian 693, 75.99% 506, 76.20%,
African American 156, 17.11% 110, 16.57%
Asian 18, 1.97% 13, 1.96%

ISS stage
Stage I 32.3% 32.1%
Stage II 34.3% 34.2%
Stage III 29.5% 29.8%
No stage/unreported 3.8% 3.9%

Cytogenetic abnormality (exome)
MAFB, MAF, WHSC1 13.38% 17.02%
Del17 or p53 7.89% 10.69%
None/unreported 23.68% (exome FISH) 3.92% (exome FISH)

26.32% (long insert) 8.58% (long insert)

Abbreviation: ISS, international staging system.
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accounted for an average of 92% of the quantified mutations in
each patient and were therefore used as a representative metric
for mutation burden (Figure 1a). The distribution of log-
transformed missense mutation count followed an approximately
normal distribution, allowing the cohort’s mean number of
missense mutations (63.90, s= 95.88) to serve as the threshold
to separate patients with low and high mutation burden
(Figure 1b).
The neoantigen load was predicted for all patients by

identifying mutant peptides predicted to bind class I MHC
molecules, thereby increasing the chance of antigenic presenta-
tion and T-cell activation, while the corresponding wild-type
peptide has relatively weak predicted binding affinity to reduce
the likelihood of immune tolerance. Comparison of mutant and
corresponding wild-type peptide-binding affinity revealed the
majority of binding affinities to be similar (Figure 2a). However,
there is a small subset of mutant peptides with predicted binding
affinity IC50o500 nM, widely accepted as the threshold for weak
epitope binding, while the wild-type peptides have predicted
binding affinity IC504500 nM (Figure 2b).37 This filtering process,
illustrated for a representative patient in Figures 2a and b, was
used to identify predicted neoantigens for all patients. Henceforth,
a predicted neoantigen is defined as any unique peptide:HLA
combination with mutant binding affinity IC50o500 nM and
consensus wild-type binding affinity IC504500 nM. Predicted
expressed neoantigens are neoantigens with evidence of expres-
sion (RNAseq count ⩾ 1). In this study population, the average
predicted neoantigen load was 23.52 (s= 52.14) neoantigens and
9.40 expressed neoantigens (s= 26.97). Importantly, comparison of
mutation burden and predicted neoantigen load revealed a
positive linear relationship (R2 = 0.862, Figures 2c and d). Of the
predicted neoantigens, very few are shared across the population.
The most common non-immunoglobulin-based neoantigen was
present in 10 patients. The approximately normal distribution of
log-transformed predicted neoantigens and expressed neoanti-
gen counts also allowed the mean neoantigen load to serve as a
threshold to separate patients with low and high neoantigen
burden (Figures 2e and f).

Mutation, neoantigen load, and survival
To determine the influence of mutation and neoantigen load on
MM survival, it was necessary to first understand the study cohort
survival. The 2-year OS rate and PFS rate for the study cohort was
0.806 and 0.667, respectively (Figures 3a and b). Due to the small
number of OS events, PFS was subsequently used to evaluate
impact of mutation and neoantigen load on MM survival.
Univariate survival analysis revealed patients with above average
(high) somatic missense mutations (N= 163) had significantly
shorter PFS (log-rank test, P= 0.002, Figure 3c). than those with
below average (low) somatic missense mutations, and a lower 2-
year survival rate relative to those with low mutation load and the
population as a whole (0.493 vs 0.726 and 0.667, respectively).
Similarly, patients with above average (high) predicted neoanti-

gens (N= 187) had shorter PFS than those with low neoantigen
load (0.557 vs 0.709 PFS at 2 years, log-rank test, P= 0.064,
Figure 3d). When neoantigens are limited to those with evidence
of expression, patients with high expressed neoantigen load
(N= 214) had significantly shorter PFS than those with low
expressed neoantigen load (log-rank test, P= 0.003, Figure 3e),
and a lower 2-year survival rate relative to those with low
expressed neoantigen loads and the population as a whole (0.555
vs 0.729 and 0.667, respectively). This relationship is maintained in
individuals with both high mutation and expressed neoantigen
load (N= 98); these patients had significantly shorter PFS than
patients without both high mutation and expressed neoantigen
load (0.488 vs 0.703 PFS at 2yrs, log-rank test, P= 0.001, Figure 3f).
Survival analysis was also performed excluding mutations and

neoantigens arising from immunoglobulin genes since immuno-
globulin genes are prone to high levels of mutagenesis, resulting
in differential processing for T-cell presentation and immune
tolerance.38,39 Accordingly, while mutations and predicted neoan-
tigens arising solely from immunoglobulin genes did not impact
survival, patients with high mutation and neoantigen loads
excluding immunoglobulin genes had significantly shorter PFS
and lower 2-year survival rates than patients with low mutation or
neoantigen loads excluding immunoglobulin genes (log-rank test
P= 0.003, 0.004, respectively, Supplementary Figure S2,
Supplementary Table S1).

Figure 1. Patient-specific mutational load. (a) Distribution of individual patient missense, nonsense, and frameshift somatic mutation counts
for the 664 patient cohort. Box represents 25–75% of patients. Bolded line marks the median mutation count. (b) Histogram of natural log-
transformed somatic missense mutation count shows log transformation normalizes the distribution of missense mutation frequency in
patients.
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Figure 2. Correlation between somatic missense mutation load and predicted neoantigen load. (a) Example of predicted neoantigen-binding
affinities relative to wild-type binding affinities in a patient with near average mutation load (missense mutation load= 64). Predicted binding
affinity (IC50) for every 8/9/10-mer peptide containing somatic missense mutation compared to the predicted binding affinity of the consensus
non-mutated peptide. (b) Predicted neoantigen-binding affinities relative to wild-type binding affinities for the same patient after limiting the
x axis to 500 nM. The red line indicates the accepted cutoff for potential neoantigens. Points above the red line are those with mutant peptide-
binding affinity IC50o500 nM and wild-type peptide-binding affinity IC504500 nM, and are considered potential neoantigens. (c) Missense
mutation load vs number of potential neoantigens with predicted binding affinity IC50o500 nM and consensus wild-type-binding affinity
IC504500 nM for all multiple myeloma test cohort patients (linear regression analysis R2= 0.862). (d) Magnified view of (c) using decreased x-
and y axis limits to show missense mutation vs predicted neoantigen load in test cohort. (e) Histogram of natural log-transformed predicted
neoantigen count (mutant peptide-binding affinity IC50o500 nM and wild-type peptide-binding affinity IC504500 nM) shows log
transformation normalizes the distribution of predicted neoantigen frequency in patients. (f) Histogram of natural log-transformed predicted
expressed neoantigen count (mutant peptide-binding affinity IC50o500 nM, wild-type peptide-binding affinity IC504500 nM, RNAseq counts
⩾ 1) shows log transformation normalizes the distribution of predicted expressed neoantigen frequency in patients.
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Figure 3. Survival in multiple myeloma patients stratified by mutation and neoantigen load. Kaplan–Meier survival curves for 664 multiple
myeloma test cohort patients showing (a) length of overall survival (days) and (b) length of progression-free survival (days) after induction
therapy. Univariate Kaplan–Meier survival comparison of progression-free survival (days) after induction therapy in multiple myeloma test
cohort patients with (c) below average (low) or above average (high) somatic mutation load, (d) below average (low) or above average (high)
neoantigens with predicted binding affinity IC50o500 nM and consensus wild-type binding affinity IC504500 nM, (e) below average (low) or
above average (high) expressed (RNAseq counts ≥ 1) neoantigens with predicted binding affinity IC50o500 nM and consensus wild-type
binding affinity IC504500 nM, and (f) both high somatic mutation load and high expressed neoantigen load vs those with either low somatic
mutation load, low expressed neoantigen load, or both. (g)Cox-proportional hazard rate and corresponding forest plot associated with
progression-free survival of multiple myeloma test cohort patients based on mutation burden and neoantigen burden thresholds as Cox
analysis variables.
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The Cox-proportional hazard model was used to determine
hazard rates associated with mutation-related covariates and
confirmed high mutation and expressed neoantigen load
significantly increase the risk of disease progression (Figure 3g).
Furthermore, the highest mutation and neoantigen burden is
associated with the greatest risk of disease progression; compar-
ison of hazard rates across incremental increases in mutation and
expressed neoantigen burden revealed progressively increasing
relative risk (Supplementary Figure S3). Survival analysis of
patients separated by mutation and neoantigen load quartiles
confirmed the shortest PFS occurs in patients with mutation and
neoantigen burden in the uppermost quartile (Supplementary
Figure S3).
To reduce possible influence of treatment type, survival was

also analyzed for population subsets comprising only patients
who received bortezomib and only patients who received
immunomodulatory drugs (IMIDS; lenalidomide, pomalidomide,
or thalidomide) as part of their induction therapy. Bortezomib-
treated patients with high mutation or neoantigen load main-
tained a significantly shorter PFS than those with low mutation or
neoantigen load (log-rank test, P= 0.004, P= 0.008, Figures 4a and
b). Similarly, IMID-treated patients with high mutation or
neoantigen load maintained a significantly shorter PFS than those
with low mutation or neoantigen load (log-rank test, P= 0.028,
P= 0.006, Figures 4c and d).

Mutation, neoantigen load, and multivariate survival analysis
We also aimed to determine the correlation between known MM
prognostic risk factors and the influence of mutation and
neoantigen load on survival. Disease stage, using ISS staging
based on beta 2-microglobulin and albumin levels in the blood
has been shown to be a reproducible predictor of MM survival.40

Therefore, ISS disease stage was used to determine any correlation
between disease stage, mutation burden, and PFS. The correlation
between advanced disease stage and poorer prognosis was
evident in this cohort. Patients with later stage disease had
significantly shorter PFS (log-rank test, Po0.001, Figure 5a) and
decreased 2-year survival rates (Supplementary Table S2) com-
pared to those with earlier stage disease. Mutation and neoanti-
gen load does not significantly differ between patients stratified
by disease stage (ANOVA P= 0.743, P= 0.544, respectively,
Figures 5b and c), showing that mutation accumulation is not
correlated with disease staging in this data set.
When survival analysis was performed on patients stratified by

disease stage and mutational burden, patients with high mutation
or neoantigen loads had significantly shorter PFS than those with
low mutation or neoantigen loads, regardless of disease stage
(log-rank test, Po0.001, Po0.001, respectively, Figures 5d and e,
respectively). Patients with high mutation or neoantigen load had
lower 2-year PFS rates than those with low mutation or
neoantigen load in each disease stage (Supplementary Table
S2). Additionally, the survival rates in patients stratified by disease

Figure 4. Survival in bortezomib-treated and IMID-treated multiple myeloma patients stratified by mutation and neoantigen load. Kaplan–
Meier survival curves for patients from test cohort receiving bortezomib as part of first-line therapy showing length of progression-free
survival (days) after induction therapy in patients with (a) below average (low) or above average (high) somatic mutation load, (b) below
average (low) or above average (high) expressed (RNAseq counts ⩾ 1) neoantigens with predicted binding affinity IC50o500 nM and
consensus wild-type-binding affinity IC504500 nM. Kaplan–Meier survival curves for patients from test cohort receiving IMIDs (lanalidomide,
pomalidomide, thalidomide) as part of first-line therapy showing length of progression-free survival (days) after induction therapy in patients
with (a) below average (low) or above average (high) somatic mutation load, (b) below average (low) or above average (high) expressed
(RNAseq counts X 1) neoantigens with predicted binding affinity IC50o500 nM and consensus wild-type-binding affinity IC504500 nM.
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stage alone are decreased when high mutation or neoantigen
load is considered, while the survival rate is increased when low
mutation or neoantigen load is considered (Supplementary Table
S2). Cox-proportional hazard modeling revealed disease stage is
significantly associated with increased risk of disease progression.
Knowledge of missense mutation and neoantigen load adds
significant benefit to predicting risk (ANOVA, P= 0.010, 0.004,
respectively), increasing risk of disease progression an additional
1.786- and 1.850-fold, respectively beyond the risk due to disease
stage alone (Figure 6).
Analysis of additional known MM prognostic factors, including

chromosome 1 amplification, elevated serum lactate dehydrogen-
ase (LDH), and age revealed the same pattern. The correlation
between each prognostic factor and decreased survival was
evidenced in this study. While there was no significant difference
in mutation or neoantigen load of patients with or without each
prognostic factor, patients with high mutation or neoantigen
loads had significantly shorter PFS and decreased 2-year survival
rates compared to those with low mutation or neoantigen loads
within each prognostic group (Supplementary Figures S4–S6,
Supplementary Table S4–S7). Cox-proportional hazard modeling
revealed all prognostic factors were significantly associated with
increased risk of disease progression. The added knowledge of
missense mutation and neoantigen load is significantly beneficial,
increasing predicted risk of disease progression at least 1.7-fold
beyond that predicted by known prognostic factors alone
(Supplementary Table S8).

Cytogenetic abnormalities are also associated with prognostic
value. Translocations t(4;14), t(14;16) and t(14;20), and deletion
17p (TP53) are associated high risk of MM progression and were
therefore used to separate patients into high-risk (those with one
or more of any high-risk cytogenetic abnormality) and low-risk
(those without any high-risk cytogenetic abnormality) groups.41,42

In the current cohort, there was no significant correlation between
high-risk cytogenetic abnormalities and PFS (log-rank test,
P= 0.522, Figure 7a), and patients with high-risk cytogenetics
had slightly higher mutation and neoantigen load than low-risk
individuals (Welch two sample t-test P= 0.005, P= 0.018, respec-
tively, Figures 7b and c). However, consistent with other
prognostic factors, when patients were stratified by cytogenetic
risk and mutational burden, patients with high mutation or
neoantigen loads had significantly shorter PFS (log-rank test
P= 0.005, P= 0.030, respectively, Figures 7d and e) and lower 2-
year survival rates than those with low mutation or neoantigen
load in each cytogenetic risk group (Supplementary Table S3).
Cox-proportional hazard modeling confirmed that mutation and
neoantigen load were more beneficial in predicting risk of MM
progression than cytogenetic abnormality alone (ANOVA
P= 0.005, 0.005, respectively, Figure 6).

DISCUSSION
Developing curative treatments for MM will require the ability to
characterize and understand the implications of prognostic risk
factors on patient response to therapy. Here we characterized

Figure 5. Relationship between somatic missense mutation burden, predicted neoantigen load, ISS stage and survival. (a) Kaplan–Meier
survival curves showing length of progression-free survival (days) after induction therapy in multiple myeloma test cohort patients separated
by ISS disease stage. Boxplots showing distribution of (b) missense mutation load and (c) predicted expressed neoantigen load in patients
with ISS stage I, stage II, or stage III disease. (d) Kaplan–Meier survival curves showing length of progression-free survival (days) after induction
therapy in multiple myeloma test cohort patients separated by ISS disease stage and below average (low) or above average (high) somatic
missense mutation burden. (e) Kaplan–Meier survival curves showing length of progression-free survival (days) after induction therapy in
multiple myeloma test cohort patients separated by ISS disease stage and below average (low) or above average (high) expressed
neoantigen load.
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mutation and neoantigen load in 664 MM patient cohort. We have
shown that mutation load and neoantigen load are positively
correlated to each other, and above average mutation or
neoantigen load is a significant prognostic factor associated with
increased risk of disease progression. This finding will be useful in
developing targeted and individualized treatment plans that
harness the immunological potential of patient mutation and
neoantigen load.
Although mutation and neoantigen load have previously been

correlated with response to targeted immunotherapies in highly
mutated solid tumors, similar correlations have not previously
been reported for cancers with characteristically lower mutation
frequency, including MM.14–16 The lower mutational burden
associated with MM relative to other cancer types was confirmed
here. The average number of missense mutations in our study
population, 63.9, was comparable to other MM populations.10

Mutational load in this population correlated positively with
predicted neoantigen load, which averaged 23.52 neoantigens per
patient. This study is the first to confirm the correlation of
missense mutations with predicted neoantigens observed in other
cancer types in the MM population, even with the more stringent
neoantigen identification used here. Identification of predicted
neoantigens here considered both mutant peptide and consensus
wild-type-binding affinity and evidence of transcript expression to
increase biological relevance in terms inducing an immune
response and avoiding immune tolerance.43,44 This filtering may
eliminate functional neoepitopes of lower binding affinity or those
where wild-type peptides are capable of binding but recognized
differently by TCRs. As the field of T-cell immune tolerance
advances, this definition of neoantigens may be modified to
better predict tumor-specific immunological peptides.

A potential neoantigen was also defined as any unique mutant
peptide:HLA allele combination. HLA determination using bioin-
formatic algorithms continue to be limited by the extreme
polymorphic nature of the HLA loci; however, bioinformatic
capabilities have improved with new prediction algorithms
reporting overall accuracy near 97%.33 Further, binding affinity
prediction algorithms do not yet support all alleles due to lack of
sufficient training data.8,9,45 The neoantigens predicted here are
only those bound to HLA types supported by netMHC4.0. The
combination of these filters provides an accurate and thorough
depiction of predicted expressed neoantigens achievable with
current bioinformatic technology. While we chose to restrict our
current neoantigen prediction to missense mutations with
evidence of expression, as missense mutations accounted for
the majority of somatic mutations identified, future work can be
extended to include expressed neoantigens that have the
potential to arise from other types of mutations such as frame
shifts or insertions and deletions. Future experimental validation
of predicted neoantigen ability to elicit immune responses is also
warranted in order to apply this prognostic factor to immunother-
apy development.
With recent advances in MM treatment options, the 2-year OS

rate in our study population was high. For this reason, PFS after
induction therapy was used as an indicator of survival outcome.
Survival analysis revealed mutation and expressed neoantigen
load are both significantly correlated with time to disease
progression on induction therapy regardless of other prognostic
risk factors. Multivariate analysis showed knowledge of disease
stage, chromosome 1 amplification status, serum LDH levels, age,
and mutation and neoantigen burden all significantly contribute
to risk of disease progression. Knowing mutational load adds
beneficial information beyond that gained by knowing other

Figure 6. Cox-proportional hazard rate and corresponding forest plot associated with progression-free survival of multiple myeloma test
cohort patients based on univariate and multivariate comparisons of disease stage, cytogenetic abnormality, and mutation and neoantigen
burden as Cox analysis variables.
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prognostic factors alone, increasing risk by at least 1.7-fold. While
this cohort revealed no significant difference in survival between
patients with high- and low-risk cytogenetic abnormalities, which
we attribute to the limited sample of patients with the cytogenetic
data and short follow-up time, multivariate analysis revealed the
addition of mutation and neoantigen burden allowed differences
in risk of disease progression to be predicted. Therefore, mutation
and neoantigen load add significant benefit to prediction of
disease risk beyond that of standard MM prognostic risk factors. It
is possible that mutation and neoantigen load may be used in
combination with other prognostic factors to improve predictive
power such as the combination of prognostic factors in the new
revised-ISS staging that combines disease stage and cytogenetic
abnormalities with greater prognostic power for MM patients.46

We hypothesize that standard MM treatment options do not
effectively generate an immune response which leverages the
immunotherapeutic potential of mutation and neoantigen bur-
den. For instance, IMIDs used for MM treatment work through
anti-proliferative and anti-inflammatory but have not shown
evidence of direct T-cell stimulation in vitro.47 Bortezomib is
known to reduce expression of MHC class I molecules, thereby
reducing the presentation of neoantigens.48 Indeed, analysis
showed patients with above average mutation and neoantigen
load treated with bortezomib or IMIDs still had significantly
shorter PFS than those with below average mutational loads. We

hypothesize the lack of response in MM patients to single-agent
immune checkpoint blockade in early trials may be the result of
inadequate patient selection and suggest high neoantigen tumors
could be enriched in future studies. The association of neoantigen
load with decreased survival on standard induction therapy does
not preclude the role of genomic instability, DNA repair, MM
clonal heterogeneity, or reduced MHC expression could have on
clinical outcome and the function of neoantigens. Previous work
with next-generation sequencing of MM has identified patterns in
somatic mutations and differential patterns in clonal evolution
that contribute to the progression of malignant MM.49–51 There-
fore, future work will be necessary to investigate relationships
between predicted neoantigens, functional immunogenicity of
the neoantigens, and genomic instability on MM outcome.
Nonetheless, these results identify mutation and neoantigen load
as therapeutically targetable prognostic factors previously
unrecognized in MM.
While mutation and neoantigen load have been correlated with

prolonged survival on targeted immunotherapies in highly
mutated cancers, we demonstrate a negative correlation between
mutation, neoantigen load and PFS after induction therapy in MM.
This identifies high mutation and neoantigen load as a clinically
relevant risk factor that negatively impacts survival of myeloma
patients under current standard of care. We hypothesize that
current therapies are less successful for these patients because

Figure 7. Relationship between somatic missense mutation burden, predicted neoantigen load, cytogenetic MM subtype, and survival. (a)
Kaplan–Meier survival curves showing length of progression-free survival (days) after induction therapy in multiple myeloma test cohort
patients with high-risk (t(4:14), t(14:16), t(14:20) translocations, or deletion 17p) or low-risk cytogenetic abnormalities. Boxplots showing
distribution of (b) missense mutation load (P= 0.005) and (c) predicted expressed neoantigen load in patients with high-risk or low-risk
cytogenetic abnormalities (P= 0.018). (d) Kaplan–Meier survival curves showing length of progression-free survival (days) after induction
therapy in multiple myeloma test cohort patients with low-risk or high-risk cytogenetic abnormalities and below average (low) or above
average (high) somatic missense mutation burden. (e) Kaplan–Meier survival curves showing length of progression-free survival (days) after
induction therapy in multiple myeloma test cohort patients low-risk or high-risk cytogenetic abnormalities with below average (low) or above
average (high) expressed neoantigen load.
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they fail to recruit T-cell immunity necessary to exploit tumor
neoantigens fundamental to immune-mediated killing of cancer
cells. Not only does this support the use of mutational load and
neoantigen load as another MM prognostic factor, it identifies a
potential unique MM subpopulation that may be targetable with
immunotherapies designed to stimulate T-cell response and
should be investigated in the future. This work presents an
encouraging basis for pursuing targeted and personalized
therapies optimized for MM patient-specific risk factors.
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