
OPEN

ORIGINAL ARTICLE

From Waldenström’s macroglobulinemia to aggressive diffuse
large B-cell lymphoma: a whole-exome analysis of
abnormalities leading to transformation
C Jiménez1,5, S Alonso-Álvarez2,5, M Alcoceba1,3, GR Ordóñez4, M García-Álvarez1, MI Prieto-Conde1, MC Chillón1,3, A Balanzategui1,
R Corral1, LA Marín1,3, NC Gutiérrez1, N Puig1,3, ME Sarasquete1,3, M González1,3 and R García-Sanz1,3

Transformation of Waldenström’s macroglobulinemia (WM) to diffuse large B-cell lymphoma (DLBCL) occurs in up to 10% of
patients and is associated with an adverse outcome. Here we performed the first whole-exome sequencing study of WM patients
who evolved to DLBCL and report the genetic alterations that may drive this process. Our results demonstrate that transformation
depends on the frequency and specificity of acquired variants, rather than on the duration of its evolution. We did not find a
common pattern of mutations at diagnosis or transformation; however, there were certain abnormalities that were present in a
high proportion of clonal tumor cells and conserved during this transition, suggesting that they have a key role as early drivers. In
addition, recurrent mutations gained in some genes at transformation (for example, PIM1, FRYL and HNF1B) represent cooperating
events in the selection of the clones responsible for disease progression. Detailed comparison reveals the gene abnormalities at
diagnosis and transformation to be consistent with a branching model of evolution. Finally, the frequent mutation observed in the
CD79B gene in this specific subset of patients implies that it is a potential biomarker predicting transformation in WM.
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INTRODUCTION
Waldenström’s macroglobulinemia (WM) is a neoplastic disease
characterized by bone marrow infiltration with lymphoplasmacytic
lymphoma and the presence of an IgM monoclonal component.1

Most patients show an indolent clinical course, and survival
outcome has improved in recent years.2 However, this long-term
evolution has led to an inherent increased risk of developing other
malignancies including acute leukemia3 or non-Hodgkin
lymphoma.4 Transformation into more aggressive histologies, in
this case to diffuse large B-cell lymphoma (DLBCL), has been
reported in up to 10% of WM patients.5,6 Moreover, the prognosis
of these patients appears to be worse than that for patients with
de novo DLBCL and survival from the time of transformation is
usually poor (median survival of ~ 2 years).6–8

The biological process of transformation in follicular lymphoma
has been thoroughly studied.9–15 However, data from other
indolent B-cell lymphoproliferative disorders are limited. No
causes of WM transformation have yet been described, so
understanding this process would be of great interest and would
facilitate the development of new therapeutic strategies for
improving the outcome of these patients. Recent advances in
determining the WM mutational profile have revealed the
presence of recurrent mutations, such as those of MYD88, CXCR4
and ARID1A.16,17 However, it is not known whether they are part of
the mechanisms underlying the transformation to aggressive
lymphoma. This event is of particular interest, especially when it
involves such genetically distinct entities in appearance.

Accordingly, WM seems to be a very homogeneous disease with
a monotonous recurrent driver mutation (MYD88 L265P),18,19 and
infrequent secondary alterations.20 Conversely, DLBCL harbors a
wide range of diverse somatic mutations and genetic lesions that
affect numerous intracellular pathways, thus making it intrinsically
much more complex.21–23 However, the two entities share some
alterations, such as MYD88 L265P (observed in ~ 90% of WM and
in 29% of ABC-type DLBCL),18,19,21,24 CD79A/CD79B (15% WM and
10–15% DLBCL),17,20,21,23,25,26 or copy number variations affecting
6q (40–60% WM and 20–40% DLBCL).27–30

Transformation to DLBCL can occur at any time during the
course of WM: at diagnosis, before treatment, during therapy and
even 20 years after the initial diagnosis.6 In addition, no indicative
clinicopathological feature or risk factor for developing DLBCL has
so far been identified. No genomic studies of transformed WM
patients have been carried out, so nothing is known about the
biological signals that might explain particular susceptibilities. For
this reason, the identification of genetic changes driving
transformation is essential for a comprehensive understanding
of the transition from WM to DLBCL that could help in the
development of new diagnostic strategies and targeted therapies.
Against this background, we decided to perform the first whole-

exome sequencing study focused on WM patients who experi-
enced histological transformation. Integrating our new findings
into our existing knowledge about the transformation of indolent
lymphoproliferative syndromes to aggressive diseases should
enable a transformational biological model to be derived, help
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define the molecular risk criteria for monitoring the course of the
disease, and develop new preventive strategies. Our results
revealed a higher incidence of mutations in the CD79B gene than
in non-transformed WM patients, which could be interpreted as
being a potential mechanism contributing to transformation.
Finally, the comparison between diagnosis and transformation
allowed us to establish an evolutionary pattern associated with
the transforming event.

SUBJECTS AND METHODS
Subjects
Four patients diagnosed with transformed WM were included in the study.
In three of them (patients 1, 2 and 4), matched tumor samples from
diagnosis and transformation to DLBCL, as well as germline DNA were
available for comparative study. One extra sample from patient 2
(corresponding to an event of WM progression without transformation)
was also included. For patient 3, only DNA from germinal and transformed
tumor cells was available. Cases were diagnosed using standard WHO
classification criteria,31 including the new concepts that appear in the most
recent review.32 The study and all procedures were performed in
accordance with the Helsinki Declaration and were reviewed and approved
by the Institutional Review Board of the Research Biomedical Institute of
Salamanca. Informed consent was obtained from all patients.
The study group included one woman and three men, with a median

age of 76 years (range, 62–82 years). The median time from diagnosis of
WM to histological transformation was 52 months (range, 42–153 months).
As an uncommon fact in this short series, we have to remark that two of
the four patients had received treatment prior to histological transforma-
tion, and the other two (3 and 4) were chemo-naive. The complete patient
characteristics are shown in Table 1.

DNA extraction and quality assessment
The sample origins were as follows: (1) for WM tumor cells: bone marrow at
diagnosis in all patients; (2) for DLBCL cells: spleen (patient 1), inguinal
lymph node (patient 2) and bone marrow (patients 3 and 4) at
transformation; and (3) for germline cells: peripheral blood samples in
which no infiltration (o0.1%) was demonstrated by flow cytometry.

DNA was extracted by conventional methods: manually with the DNAzol
reagent (MRC, Cincinnati, OH, USA) or automatically with the Maxwell
system (Promega Corporation, Madison, WI, USA). Quantification and
quality control of DNA were evaluated before enrichment and library
preparation. DNA concentrations were measured using the Qubit
fluorometer (Thermo Fisher Scientific, Inc., Waltham, MA, USA). DNA
sample quality was assessed by gel electrophoresis. At least 1 μg of DNA
was required for library preparations.

Flow cytometry studies
Immunophenotypic evaluation was done by conventional methods, using
panels of monoclonal antibodies previously described by our group33 and
following the general recommendations of the EuroFlow group for the
immunophenotypic evaluation of hematological malignancies.34

Fluorescence in situ hybridization studies
Simple interphase fluorescence in situ hybridization was performed on cell
nuclei from whole bone marrow samples using our previously published
techniques.35 Del(6q), MYC and BCL6 translocations t(14;18) (q21; q32) and
del(17p) were analyzed with the probes Vysis CEP 6, LSI MYC Dual Color
Break Apart Rearrangement (8q24), LSI BCL6 Dual Color Break Apart
Rearrangement (3q27), Vysis IGH/BCL2 Dual Color Dual Fusion Transloca-
tion Probe t(14;18)(q32;q21) and LSI TP53 Probe (Abbott Molecular, Des
Plaines, IL, USA), respectively. At least 100 cells were analyzed in all patient
samples, applying Vysis scoring criteria. The cutoff point for the
identification of alteration was set at ⩾ 10% cells with abnormal signal.

V(D)J clonal rearrangements
V(D)J clonal rearrangements of WM and DLBCL matched samples were
amplified and sequenced as described by the BIOMED-2/Euroclonality
strategy.36

Whole-exome sequencing
All diagnostic and transformation samples, as well as those for normal DNA
matching, were sent for library construction and whole-exome sequencing
at Macrogen, Inc. (Seoul, South Korea). Enrichment and generation of
libraries were performed with SureSelectXT2 Human All Exon V5 of 51 MB

Table 1. Clinical characteristics of patients

Patient 1 2 3 4

WM
Age at diagnosis 62 (2009) 82 (2010) 81 (2003) 72 (2002)
Clinical symptoms
Anemia Yes Yes No Yes
Polyadenopathies Yes No No No
LDH elevation Yes No No No
Hyperviscosity No No Yes No
Others No No No No

BM infiltration (FCM) 12% 22% 16% 11%
Frontline therapy (year) R-VD (2009) R-CD (2010) None W&W
Therapies at relapse (year) FC (2011) FC (2013)RB (2013/2014)R-VD (2015) None None

Transformation to DLBCL
Time to transformation (years) 3 5 3 13
Clinical symptoms
Anemia Yes No Yes Yes
Polyadenopathies No Yes No No
LDH elevation Yes Yes Yes Yes
B symptoms Yes No Yes Yes
Others Splenomegaly

Tumor infiltration (FCM) 40% (Spleen) 50% (Adenopathy) 16% (BM)a 43% (BM)
DLBCL therapy None GemOx (2015) Ibrutinib (2016) None RCOP (2015) (reduced)
Status Dead Palliative care Dead Dead

Abbreviations: BM, bone marrow; DLBCL, diffuse large B-cell lymphoma; FC, fludarabine, cyclophosphamide; FCM, flow cytometry; GemOx, gemcitabine,
oxaliplatin; LDH, lactate dehydrogenase; RB, rituximab, bendamustine; R-CD, rituximab, cyclophosphamide, dexamethasone; RCOP, rituximab, cyclopho-
sphamide, vincristine, prednisone; R-VD, rituximab, bortezomid, dexamethasone; WM, Waldeström macroglobulinemia; W&W, watch and wait (observation).
aBM: 8% WM and 8% DLBCL.
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(Agilent Technologies, Santa Clara, CA, USA) that uses cRNA probes of 120
nt. Paired-end sequencing was carried out in the Illumina HiSeq 2000
platform (Illumina, Inc., San Diego, CA, USA). The number of reads was set
up according to each sample tumor infiltration defined by flow cytometry.
Germinal samples were sequenced with a mean depth of 100× and tumor
DNA with a depth of 150× or 200× , depending on whether the infiltration
was greater or less than 40%, respectively.

Sequencing data processing and bioinformatic analysis
DreamGenics (Oviedo, Spain) supervised the pre-processing and per-
formed the initial bioinformatics analysis using algorithms and non-
commercial pipelines to call variants, analyze and compare them. Briefly,
data generated by the sequencer were converted to FastQ with the
Illumina Consensus Assessment of Sequence and Variation version 1.8
software (https://support.illumina.com/sequencing/sequencing_software/
bcl2fastq-conversion-software.html) and aligned to the human reference
genome (Genome Reference Consortium human build 37, human genome
19) with BWA software.37 Variants were called using Atlas-SNP and Atlas-
indel,38 discarding those with suboptimal quality indexes according to the
pipeline criteria.

Interpretation of variants
Only non-synonymous protein-coding alterations were considered. Criteria
for filtering out single nucleotide polymorphisms were a frequency lower
than 2% in the germinal sample and a population allele frequency o1%
(according to the Human Gene Mutation Database).39 Some mutations
were excluded on the basis of their distance with respect to the Agilent V5
probes. All samples were analyzed in pairs, with their corresponding
germinal sample taken as reference.
Variant allele frequencies (VAFs) were corrected according to their tumor

content defined by flow cytometry, in order to better estimate the
percentage of tumor cells affected by each mutation. Variants with a
corrected VAF of o10% were not included in the analysis.

Enrichment analysis
Gene-set enrichment analysis was performed with the WEB-based GEne
SeT AnaLysis Toolkit (WebGestalt) (http://www.webgestalt.org/webgestalt_
2013/) to highlight categories and pathways present in the Gene Ontology
and Pathway Commons databases. The statistical method employed was
the hypergeometric test, with P-values adjusted by the Benjamini and
Hochberg (1995) method.40

RESULTS
Global non-synonymous variations
Overall, we found 421 non-synonymous variations (NSVs) at
diagnosis and transformation in the four patients, distributed
among 355 genes. Of these, only 39 were mutated exclusively in
WM (at diagnosis, n= 29; on progression, n= 10) and 49 were
present at the time of both events (diagnosis and transformation).
All other genes (n= 267) were mutated only in the DLBCL samples.

Variant allelic frequency and percentage of tumor cells
To understand the possible mechanisms leading to the transfor-
mation event, we compared the results in tumor cells of the two
events studied. First, we observed a much higher frequency of
mutated genes at transformation (median 85, range 49–165) than
at diagnosis (median 21, range 20–35) (Figure 1). Accordingly,
there was a median gain of 70 variants (range 29–144) per case
during the transition from WM to DLBCL. Interestingly, the number
of gains was not closely correlated with the interval between
diagnosis and transformation (R2 = 0.51). However, we noticed that
patients 1 and 3, who presented the fastest transformation (~3
years), contained more variants (165 and 98, respectively) than did
patient 2, who transformed in 5 years and had 72 mutations, and
patient 4, who exhibited the smoothest transformation, lasting 13
years, and acquired only 49 alterations (Figure 2).

NSV present at diagnosis and transformation
We found that the VAF was increased at transformation for almost
all these common mutations, but this was attributed to the higher
tumor infiltration present in the DLBCL compared with the
corresponding WM sample (1, 40 vs 12%; 2, 51.3 vs 22.4%; 4,
54.6 vs 11%). Thus, the corrected VAF using flow cytometry
showed the opposite pattern and VAFs were greater at diagnosis
than at transformation (Figure 3). This means that, although there
were more alterations at transformation, the percentage of tumor
cells affected by each alteration was usually lower. This was
confirmed using the globally corrected mean VAF for all NSVs
present at diagnosis and at transformation (Table 2).
Not all patients had the same number of potential early drivers.

Patients 2 and 4 had NSVs in 29 and 14 genes in common at
diagnosis and transformation, respectively. However, patient 1
only shared two variants at the time of both events: MYD88 and
TNIP1 (the latter having a higher VAF at diagnosis). This gene
codes for a TNFAIP3-interacting protein that plays a role in
regulating nuclear factor-κB activation, which is a frequent
mechanism of alteration of cell cycle control in all lymphoid
neoplasias.
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Figure 1. Frequency of mutations at diagnosis (WM) and transfor-
mation (DLBCL). Comparison of the median number of mutations of
the four patients at diagnosis (n= 21) and upon transformation
(n= 85).
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Figure 2. Representation of the total number of alterations at each
moment (diagnosis, progression and transformation) versus the
time to transformation. Patients 1 and 3 presented the fastest
transformation (~3 years) and the highest frequency of variants (165
and 98, respectively). Patient 2 transformed in 5 years and had 72
mutations. Patient 4 took 13 years to transform and acquired only 49
alterations.
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Recurrent NSV among different patients
MYD88 L265P was present in all patients at both times (3/3 at
diagnosis and 4/4 at transformation). The second most frequent
was CD79B Y196C/H, which was found in 3/4 patients at
transformation (75%) and in 2/3 at diagnosis (67%). VAFs of
CD79B mutations were half of the MYD88 in two patients and the
same as MYD88 in one patient, and kept that relation at baseline
and transformation. CELSR2, FAM135B, IGFN1 and ZFHX4 also had
recurrent variations (in at least two patients).
We then considered variants that could be detected at the

time of only one of the events, that is, exclusively at
diagnosis, progression or transformation (Supplementary Table
I). Variations exclusively detected at diagnosis were not present
in the lymphoma clone, implying that it does not provide any
evolutionary advantage (passenger mutations). In contrast,
recurrent variations exclusively present at the transformation

stage (or that appeared late in the Waldenström’s clone) may be
considered as temporally intermediate or late drivers that confer
some advantage to the tumor clone. Five genes had recurrent
NSVs acquired at the transformation stage: FRYL (MLL fusion
partner in lymphoid leukemia), HNF1B (transcription factor whose
expression is altered in some cancers), PER3 (checkpoint protein
that plays an important role in checkpoint activation, cell
proliferation and apoptosis), PIM1 (proto-oncogene with serine/
threonine kinase activity involved in the pathogenesis of
lymphoma) and PTPRD (tumor suppressor that contributes to
the development of multiple cancers). All these data analyzed
without inclusion of patient 3 are included in Supplementary
Table II.
At this point, we carried out gene-set enrichment analysis of the

genes modified at transformation (n= 314) to search for cellular
processes and the pathways affected. Genes were classified into

Figure 3. VAF of common mutations at diagnosis, progression and transformation for each patient. The percentage of tumor cells affected by
a mutation decreased from diagnosis to transformation in most of the cases.

Table 2. Mean VAF of common and exclusive mutations at diagnosis and transformation

Patient 1 Patient 2 Patient 4

Diagnosis Transformation Diagnosis Transformation Diagnosis Transformation

Mean VAF of common mutations 76% 78% 64% 37% 66% 38%
Mean VAF of exclusive mutations 68% 51% 30% 22% 45% 16%

Abbreviation: VAF, variant allele frequency.
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the following functional categories: histone modification (KMT2D,
HDAC9), chromatin modification (PAX5, UBR5), cell–cell adhesion
(CELSR2, TNIP1), cell development (WT1, CXCR4), cell differentiation
(KIT, EZR), protein modification (KMD5C, KMD1B), chromatin
organization (ARID1A, SOX1), protein autophosphorylation (PIM1,
PRKD1), chromosome organization (HIST1H2BC, TP53), transcrip-
tion regulation (RARB, PRDM1) and protein kinase activity (BCR,
TGFA). Focusing on pathways, those most significantly affected
were: insulin growth factor-1 pathway (CD79B, PPM1D),
interleukin-3-mediated signaling events (TGFBRAP1, IFNA14),
insulin pathway (COPA, CAD), vascular endothelial growth factor
and vascular endothelial growth factor receptor signaling network
(ACTN1, PELP1), and nectin adhesion pathway (ROBO1, NOS3).

Patterns of evolution from WM to DLBCL
As mentioned above, all patients shared some NSVs at both
stages, but some others were exclusively detected at diagnosis or
transformation. Accordingly, certain subclones present at diag-
nosis would have evolved by acquiring new mutations responsible
for the transformation event (or the progression), whereas others
would have been reduced (disappearing or becoming undetect-
able). Therefore, and despite both tumors (WM and DLBCL) having
the same V(D)J rearrangement and an identical CDR3 region,
suggesting a common progenitor cell, their evolution is consistent
with a branching model. These findings should be considered with
caution because of the low level of infiltration of diagnostic
samples, which may lead to the underdetection of variants that
are present at a low level in the tumor population.
This nonlinear evolutionary pattern was well illustrated by

patient 2, who had a symptomatic progression of WM before
transformation, and was studied at the time of all three events
(Figure 4). During the evolution of his condition, we found
mutations that were conserved from diagnosis to transformation
(n= 29). However, many other novel alterations not present at
diagnosis appeared at progression (n= 17) and transformation
(n= 38). Almost all of these were different, with five exceptions:
PPM1D, SBF2, TRAPPC9, TRPM7 and WT1. In the same way, some
mutations present at diagnosis or acquired at progression (that is,
two TP53 mutations) disappeared or became undetectable (at the
level of sensitivity used) by the time of disease transformation.

This would mean that the transformed final clone did not come
from the intermediate subclone responsible for progression, but
from a previous minor subclone that only grew after progression.

DISCUSSION
WM patients may eventually experience histological transforma-
tion to DLBCL (2.4% transformation rate at 10 years), being at risk
of poor outcome and short survival.6,7 Understanding the biology
and mechanisms underlying this process is important for
identifying susceptible patients and for developing therapeutic
strategies aimed at cancer control. In this study, we have carried
out for the first time a whole-exome sequencing study of four
cases with paired WM and transformed DLBCL samples in order to
evaluate the genetic basis of this transition and to find genomic
alterations and pathways that could be therapeutically targeted.
Maybe due to the small sample size, we could not find a unique

genetic event responsible for WM transformation to DLBCL. In fact,
our findings revealed extensive genetic heterogeneity with a large
number of aberrations affecting many genes and pathways,
reflecting the complexity associated with the transformation
process. Even asymptomatic and chemotherapy-naive patients,
such as patients 3 and 4, may develop an aggressive disease after
more than 12 years (in the case of patient 4) with an untreated
indolent WM. Many more alterations were associated with
aggressive lymphoma development, although the number was
inversely related to the time to transformation. Thus, patients
showing the fastest transition (1 and 3) presented the greatest
number of mutations. This could be explained by the onset of new
mutations conferring a proliferative advantage on the harboring
cell, leading to stronger competition during the evolution of the
cancer.41–43

However, not all the events would be of equal importance in
the pathogenesis of the disease. Mutations present at both events
are likely to be spread in nearly all clones and to remain stable
over time. In our WM cases, these variants had a higher VAF, so
targeting these presumed early genetic events could lead to the
elimination of all oncogenic clones. An example of these
mutations could be the MYD88 L265P, the only one present in
all patients and at all times, a mutation with a well established role
in both WM and DLBCL.16,24,44 However, as it is encountered in
over 90% of WM cases at diagnosis, and only a small proportion of
them will transform, no inference can be made about its role in
transformation. In patient 1, it was the only alteration, together
with TNIP1, recognized at both times. TNIP1 is an essential gene for
nuclear factor-κB activation, same as MYD88, which could high-
light the need of more than one alteration in the nuclear factor-κB
pathway to be significant for the transformation process, where
nuclear factor-κB signaling is known to be involved.12 Further-
more, this patient also showed other differences with respect to
the other cases, such as a much higher frequency of mutations at
transformation (n= 165), diffuse spleen infiltration by aggressive
lymphoma cells, and an unmutated CD79B.
Now considering CD79B, this B-cell receptor-associated gene

was frequently mutated, appearing in 2/3 cases (67%) at diagnosis
and in 3/4 cases (75%) at transformation. VAFs of this mutation in
relation to MYD88 indicated that it was present in half of the
tumor clone in two patients and in the whole clone in the other
patient, staying the same at both moments. This variant affects
the first tyrosine ITAM kinase domain of the receptor and has been
described in 12% of ABC-type DLBCLs,45 in connection with the
acquisition of the lymphoma phenotype. However, a limited
oncogenic potential has been associated with CD79B mutations,
since other alterations must occur in order to facilitate the
transition to the aggressive lymphoma.46–48 In conventional WM,
CD79B has been found to be mutated in ~ 10%,17,20,25,26 so the
high frequency reported here (3/4 of cases) is intriguing.
Accordingly, we suggest that CD79B mutations identify a

Figure 4. Evolution of WM in patient 2. This patient was diagnosed
with WM in 2010 and transformed to DLBCL in 2015, with a
symptomatic progression in 2013 before the transformation. We
observed 35 mutations at diagnosis, 47 at relapse and 72 at
transformation, including 29 alterations that were conserved at the
times of the three events. The PPM1D, SBF2, TRAPPC9, TRPM7 and
WT1 genes were mutated either at progression or transformation. By
contrast, the two mutations found in TP53 were seen at relapse but
were lost by the time of transformation. This implies that the
transformed final clone did not evolve from the same subclone as
was responsible for progression, but from a previous one that would
not yet have acquired the TP53 mutations (among others).
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subgroup of WM with aggressive clinical evolution and a high risk
of transformation.
With the exception of MYD88 and CD79B, we observed a

notable diversity in the mutational spectrum across samples, with
few recurrent genes. Only CELSR2 (growth factor), FAM135B, IGFN1
and ZFHX4 (transcription factor) were present in more than one
patient. This recurrence should be taken into account, since
another commonly mutated gene in WM (30% patients),
CXCR4,17,20 appeared in just one patient. Regardless of their
incidence, relevant mutations seem to be present in the initial WM
cell that will transform, suggesting that they may be involved in
tumor initiation. Conversely, genes exclusively involved in
transformation may represent cooperating events that interact
with these pathogenic mutations. The most frequently altered
genes were FRYL, HNF1B, PER3, PIM1 and PTPRD (50% of patients).
PIM1 could be targeted with the PIM kinase inhibitors that have
already shown activity in myeloma and acute myeloid
leukemia.49,50 However, some of the non-recurrent alterations
could have been randomly acquired and may not be causally
related to the pathogenesis of the disease.
Aberrations acquired at transformation probably cooperate with

early initiating events in the selection of tumor clones responsible
for disease progression. Nonetheless, considering the diversity of
the alterations, many of them will not confer any advantage on
the malignant cell. An illustrative case could be the presence of
mutations in TP53. Deletions and mutations of this gene have
been found to be related to poor prognosis in chronic
lymphocytic leukemia,51 multiple myeloma52 and probably in
WM.53 However, in our cases this gene appeared mutated at
transformation in patient 1 and at progression in patient 2.
Interestingly, this abnormality disappeared at transformation in
the latter case, suggesting the loss of any advantage. Therefore, it
is not easy to determine what prompts aggressive behavior: the
genes, the number of alterations, the clone in which they arise, the
pathway affected, the cell function deregulated or, most likely, a
combination of all of these factors. These matters should be
addressed in further studies with the ultimate aim of developing
therapeutic strategies that may disrupt these mechanisms,
thereby completely preventing transformation.
Finally, we observed that the transformation process seemed to

be consistent with part of a branching model of evolution in
which only clones containing driver mutations evolve to more
aggressive populations by acquiring new aberrations. Identical
scenarios have been reported in multiple myeloma,54 follicular
lymphoma,12 chronic lymphocytic leukemia,55 acute myeloid
leukemia,42 acute lymphoblastic leukemia56 and even solid
tumors.57 Nevertheless, this needs to be confirmed in further
analyses of single cells. Likewise, it would also be interesting to
establish whether there is a progenitor tumor cell that is common
to both diseases and that is responsible for their pathogenesis. In
this study, the analysis of the V(D)J rearrangement and CDR3
region of the immunoglobulin heavy chain gene in the WM and
their matched lymphoma samples, confirmed that they belonged
to the same clone. The concept of the tumor-initiating cell is
already established for leukemia58 and follicular lymphoma,59,60

and it would be supported in our case by the presence from the
outset of certain mutations that are shared by the entire tumor
population, as they remain clonally stable throughout the entire
course of the disease. DLBCL would then arise from these
precursors, showing a higher (as in patients 2 and 4) or lower
(patient 1) degree of genetic similarity to the WM clone.
In conclusion, although this is merely the first step and we were

not able to identify a unique genetic event responsible for WM
transformation to DLBCL, it appears that certain alterations may
contribute to the onset of aggressive disease. Those genes
frequently mutated at diagnosis in this subset of patients who
suffer disease transformation compared to conventional WM
(CD79B) may be considered as potential biomarkers for predicting

the risk of transformation in prospective studies. Additional
research is needed to better understand the biology of this
process and to facilitate the design of preventive therapies
targeted during the early evolutionary pathways that are
responsible for transformation. This knowledge will enable us to
improve the outcome of these patients.
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