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Targeting MCL-1 sensitizes FLT3-ITD-positive leukemias to
cytotoxic therapies
S Kasper1, F Breitenbuecher1, F Heidel2, S Hoffarth1, B Markova1, M Schuler1 and T Fischer2

Patients suffering from acute myeloid leukemias (AML) bearing FMS-like tyrosine kinase-3-internal tandem duplications
(FLT3-ITD) have poor outcomes following cytarabine- and anthracyclin-based induction therapy. To a major part this is
attributed to drug resistance of FLT3-ITD-positive leukemic cells. Against this background, we have devised an antibody array
approach to identify proteins, which are differentially expressed by hematopoietic cells in relation to activated FLT3 signaling.
Selective upregulation of antiapoptotic myeloid cell leukemia-1 (MCL-1) was found in FLT3-ITD-positive cell lines and primary
mononuclear cells from AML patients as compared with FLT3-wild-type controls. Upregulation of MCL-1 was dependent on
FLT3 signaling as confirmed by its reversion upon pharmacological inhibition of FLT3 activity by the kinase inhibitor PKC412
as well as siRNA-mediated suppression of FLT3. Heterologously expressed MCL-1 substituted for FLT3 signaling by conferring
resistance of hematopoietic cells to antileukemia drugs such as cytarabine and daunorubicin, and to the proapoptotic BH3
mimetic ABT-737. Conversely, suppression of endogenous MCL-1 by siRNA or by flavopiridol treatment sensitized FLT3-ITD-
expressing hematopoietic cells to cytotoxic and targeted therapeutics. In conclusion, MCL-1 is an essential effector of
FLT3-ITD-mediated drug resistance. Therapeutic targeting of MCL-1 is a promising strategy to overcome drug resistance in
FLT3-ITD-positive AML.
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INTRODUCTION
Activating mutation of the FMS-like tyrosine kinase-3 receptor
(FLT3) occurs in 30--40% of patients with acute myeloid leukemia
(AML).1,2 Two different types of mutations have been described:
internal tandem duplications (ITD) within the juxtamembrane
domain and tyrosine kinase domain 1, and point mutations within
the tyrosine kinase domain 1.3 -- 6 Both types of mutations cause
constitutive activation of the FLT3 receptor resulting in constitu-
tive downstream signaling via the mitogen-activated protein
kinase/extracellular signal-regulated kinase (MAPK/ERK) and the
phosphatidylinositol-3 kinase/AKT (PI3K/AKT) pathways. This may
lead to enhanced cellular proliferation, reduced apoptosis and a
block in the differentiation of hematopoietic blasts.7 -- 9 In addition
to canonical FLT3 downstream signaling, activation of further
pathways has been described in FLT3-ITD-positive cells. Activation
of signal transducer and activator of transcription 5 (STAT5) by
FLT3-ITD is associated with increased expression of the anti-
apoptotic protein BCL-XL, as compared with FLT3-WT-expressing
cells or cells harboring mutations of the FLT3 kinase domain.10

AML patients bearing FLT3-ITD mutations have a poor
prognosis due to increased relapse rates following induction
chemotherapy. This translates into reduced progression-free and
overall survival rates as compared with the AML patients without
ITD mutations.4,11,12 Functionally, FLT3-ITD-expressing leukemic
cells are more resistant to cytotoxic drugs and residual blasts or at
least FLT3-ITD-positive leukemic stem cells are thought to
contribute to the higher relapse rate and the dismal outcome of
FLT3-ITD-positive AML. Hence, targeting the aberrant FLT3-ITD

receptor using specific tyrosine kinase inhibitors (TKIs) is a
promising therapeutic approach.13,14 Several small molecule TKIs
targeting FLT3 have been investigated in phase 1/2 clinical trials.
Clinical responses have been observed with, midostaurin
(PKC412), lestaurtinib (CEP-701), tandutinib (MLN-518) and
SU11248, respectively, in chemotherapy refractory patients or
patients not eligible for standard chemotherapy.15 -- 20 Further-
more, FLT3-TKIs seem to resensitize FLT3-ITD-positive leukemic
blasts to cytotoxic antileukemic drugs. Currently, combination
therapies are under clinical investigation to translate these
findings into clinical practice.20 -- 24 However, primary and second-
ary resistance mechanisms such as gatekeeper mutations inter-
fering with drug target interaction or rewired signaling of the FLT3
receptor were observed in patients treated with FLT3 TKIs, which
might interfere with this direct therapeutic strategy.25,26

Inhibition of aberrantly activated antiapoptotic pathways is one
mechanism of action of FLT3-TKIs. This can result in direct
induction of apoptotic death of FLT3-ITD-dependent leukemic
cells. Further, this may lead to resensitization of FLT3-ITD-positive
blasts and leukemic stem cells to conventional antileukemic drugs.
In particular, upregulation of antiapoptotic members of the BCL-2
family has been described in FLT3-ITD-expressing cells.14,27,28

BCL-2 family proteins are the main regulators of the ‘mitochondrial’
apoptosis pathway. They consist of anti- and proapoptotic
proteins that determine the balance between survival and
programmed cells death.29 The antiapoptotic family members
BCL-2, BCL-XL, myeloid cell leukemia-1 (MCL-1), BCL-W and
A1 counteract the apoptotic effector proteins BAX, BAK, and
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possibly BOK, to prevent their activation and mitochondrial outer
membrane permeabilization leading to release of cytochrome c
and subsequent caspase activation.30 Proapoptotic BH3 proteins,
such as BAD, BIM, BIK, NOXA and PUMA, enable activation of BAX
and BAK either by neutralizing antiapoptotic BCL-2 family proteins
or by direct action.29 In many cancer types, the balance between
pro- and antiapoptotic BCL-2 family members is disturbed.
Frequently, this occurs as a consequence of aberrant activation
of MEK/ERK, PI3K/AKT and/or STAT5 pathways.29,31

Here, we have identified upregulation of the antiapoptotic
BCL-2 family member MCL-1 in FLT3-ITD-expressing cell lines
and primary AML blasts as compared to FLT3-WT cells. Elevated
MCL-1 RNA expression in FLT3-ITD-positive leukemic cells was
suppressed by siRNA-mediated downregulation of the mutant
receptor as well as by inhibitory concentrations of the protein
kinase inhibitor PKC412. MCL-1 functionally contributed to the
resistance phenotype of FLT3-ITD-positive leukemic cells. Suppres-
sion of endogenous MCL-1 by siRNA or by flavopiridol treatment
sensitized FLT3-ITD cells to antileukemic therapies. These findings
provide a rational basis for combination therapy strategies in
FLT3-ITD-positive AML to eliminate residual leukemic blasts and
stem cells after induction chemotherapy to overcome the poor
prognosis of these patients.

MATERIALS AND METHODS
Cell models
Murine 32D cells were kindly provided by T Skorski (Philadelphia, PA, USA)
and were maintained in RPMI 1640 with 10% fetal calf serum, 20mM

HEPES, pH 7.3, 50mM b-mercaptoethanol, 2mM L-glutamine and 10%
WEHI-3B-conditioned medium as a source of interleukin-3. The human
AML cell lines MV4;11 and Molm-13 harboring a FLT3-ITD mutation and
the human acute lymphoblastic leukemia cell line RS4;11 harboring the
FLT3-WT receptor (all obtained from the DSMZ, Braunschweig, Germany)
were maintained in RPMI 1640 with 10% fetal calf serum, 20mM HEPES,
pH 7.3, 50mM b-mercaptoethanol and 2mM L-glutamine. All cells were
grown at 37 1C, in a 5% CO2-humidified incubator.32

Isolation of primary AML blasts and FLT3-ITD mutation screening
Heparin-treated peripheral blood samples (20ml) were obtained from 12
AML patients at the time of diagnosis or relapse. Informed consent was
obtained in accordance with the Declaration of Helsinki. Mononuclear cells
enriched in AML leukemic blasts were isolated as described.5 Genomic
DNA from mononuclear cells was extracted using the QIAamp DNA Blood
Mini Kit (QIAGEN, Hilden, Germany). ITD mutation screening by PCR was
performed as described.5

Plasmids, antibodies and reagents
The human FLT3-WT and a human FLT3-ITD construct, both subcloned into
the pAL expression vector under control of the 50 long terminal repeat of
the Moloney murine sarcoma virus (MoMSV) and the plasmid pMAM/BSD,
were used as described previously and were a kind gift from H Serve
(University of Frankfurt, Germany).5 This ITD allele (36 bp/12 amino acids
(aa)) integrates between codons 598 and 599 in the JM domain of FLT3.
The FLT3-ITD627E construct was subcloned into the pAL vector as
described.25 The ITD627E allele (93 bp/31 aa) integrates at codon 627 in
the b2 sheet of the tyrosine kinase domain 1 of FLT3 and leads to an
amino-acid exchange at codon 627 (alanine to glutamate).6 The p3xFLAG-
CMV10 vector containing the coding sequence of murine Mcl-1 under
control of a CMV promotor was kindly provided by H Schulze-Bergkamen
(National Center for Tumor Diseases, Heidelberg, Germany). All vector
constructs were verified by nucleotide sequencing.

Flavopiridol was purchased from Sigma Aldrich (Munich, Germany),
PKC412 was kindly provided by Novartis (Basel, Swizerland), ABT-737 was
kindly provided by Abbott (Abott Park, IL, USA); cytarabine and
daunorubicin were purchased from the Hospital Pharmacy of the
University Hospital Essen, Germany.

The following primary antibodies were used: antiphospho-FLT3 (Y591),
antiphospho-extracellular signal-related kinase 1/2 (ERK1/2; T202/Y204),
anti-ERK1/2, antiphospho-S6 protein (S240/S244) and anti-S6 protein (all
from Cell Signaling Technology, Danvers, MA, USA); anti-FLT3, anti-MCL-1,
anti-BCL-XL (H5), anti-BCL-2 (C2) (all from Santa Cruz, Heidelberg,
Germany), anti-Actin (MP Biomedicals, Aurora, OH, USA), anti-FLAG (M2)
(Sigma Aldrich). Recombinant human interleukin-3 (IL3) was purchased
from Miltenyi Biotec (Bergisch Gladbach, Germany), FLT3 ligand (FL) was
purchased from R&D-Systems (Minneapolis, MN, USA).

Transfections
Transfection of 32D cells with different FLT3-DNA constructs was
performed as described previously.5 Functional receptor expression was
confirmed by immunoblotting and FACS analyses as described previously.5

32D FLT3-ITD mMCL-1 cells and RS4;11 mMCL-1 cells, ectopically over-
expressing MCL-1, were generated by transfection of 32D FLT3-ITD or
RS4;11 cells with 20mg p3xFLAG-CMV10 vector containing the coding
sequence of murine Mcl-1 by electroporation. Cells were selected with
0.5mg/ml G418 and polyclonal cell lines were used for experiments.

Protein extract preparation and immunoblotting
Cells were serum starved for 5 h before treatment. 32D FLT3-WT and
RS4;11 were treated with 100 ng/ml FL for 30min. 32D FLT3-ITD, MV4;11
and Molm-13 cells were treated with flavopiridol or PKC412 in the
indicated concentrations. Protein lysates were prepared for immunoblot-
ting analyses as described previously.22

Apoptosis assays
The percentage of apoptotic cells was determined by measuring the sub-
G1 fraction upon propidium iodide incorporation using flow cytometry as
described.33

Drug combination index calculation
For calculation of combination indices (CI), cells were treated with
flavopiridol, cytarabine, daunorubicin, ABT-737 and combinations of
flavopiridol with the different drugs. Apoptotic cell death (fractional effect)
was measured by flow cytometry. Pharmacological interaction of
flavopiridol with cytarabine, daunorubicin and ABT-737 was analyzed
using the CalcuSyn software (Biosoft, Cambridge, UK). CI ranging from 0.1
to 0.85 indicate strong to moderate synergism, indices from 0.85 to 0.9
slight synergism, indices from 0.9 to 1.1 nearly additive interaction and
indices from 1.1 to 10 slight to strong antagonism, respectively.34

Gene suppression by siRNA
MV4;11 2� 106 were transfected by electroporation with h-FLT3 (siGEN-
OME SMARTpool, M-003137-01; Dharmacon, Lafayette, CO, USA), h-MCL-1
(sc-35 877, Santa Cruz) specific siRNAs. siRNAs were dissolved to a final
concentration of 20mM stock solution and for each transfection 10ml siRNA
stock solution was used. As a negative control, an equivalent concentration
of AllStars Negative Control siRNA (QIAGEN) was used. For verification of
effective gene suppression, protein lysates were prepared after 24 h and
target protein expression was assayed by immunoblotting. For assessment
of apoptosis, cells were left to recover from the transfection for 6 h and
were then treated with or without cytarabine. Percentage of apoptotic cells
was assessed following 24 h and 48 h incubation.

Proteomic analyses
32D FLT3-WT and FLT3-ITD were serum starved for 5 h. Cellular protein
lysates of FL stimulated 32D FLT3-WT (100 ng/ml for 30min) and non-
stimulated 32D FLT3-ITD cells were prepared using lysis buffer, supple-
mented with protease and phosphatase inhibitors, supplied by Kinexus
Bioinformatics (Vancouver, BC, Canada). Dye labeling, hybridization and
analysis of the Kinex antibody array were done by Kinexus. Data obtained
from the antibody array was filtered as follows: (1) Flag 0, this means spot
quality is acceptable based on morphology and background; (2) change
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from control (CFC) 420% or o -- 20% CFC, the percentage change from
control is a measure of the change in normalized signal intensity averages
between the experimental sample (32D FLT3-ITD) and the control sample
(32D FLT3-WTþ FL); (3) total error range: o 30%. The total error range is
the sum of ‘% error range’ from the experimental and control samples; and
(4) signal to noise (s/n) ratio: 41.5. The s/n-ratio is the ratio between the
measurement of the spot intensity and the spot’s local background.

Gene expression analysis
Cells were serum starved for 5 h before treatment with growth factors and
inhibitors for the indicated time points. Total RNA was isolated using the
High Pure RNA Isolation Kit protocol (Roche Diagnostics, Mannheim,
Germany) and cDNA synthesis was performed according to the protocol of
Transcription High Fidelity cDNA Synthesis Kit (Roche Diagnostics). An
amount of 1 --5 mg was transcribed with anchored-oligo(dT)18 primer. qRT-
PCR was performed according to the protocol of SYBRE Green 1 Master
(Roche Diagnostics). The following primers were used for murine Mcl-1:
50-TGTCAAACAAAGAGGCTGGGATGG-30 and 50-ATTTCTGATGCCGCCTTCTA
GGTC-30 , human MCL-1: 50-AGAAAGCTGCATCGAACCAT-30 and 50-CCAGC
TCCTACTCCAGCAAC-30 , human actin: 50-TCAGCTGTGGGGTCCTGT-30 and
50-GAAGGGACAGGCAGTGAG-30 , and GAPDH: 50-CGTCCCACCACCATGGAGA-30

and 50-CGGCCATCACGCCACAGTTT-3‘.

RESULTS
Drug resistance of FLT3-ITD-expressing cells correlates with
differential expression of antiapoptotic proteins
Leukemic cells expressing a mutant FLT3-ITD receptor were
described to be resistant to chemotherapeutic drugs.13,14 In
agreement, the FLT3-ITD-positive human leukemic cell line MV4;11
was more resistant to cytarabine-induced apoptosis as compared
with the FLT3-WT cell line RS4;11 (data not shown). We
hypothesized that activation of signal transduction pathways in
FLT3-ITD-expressing cells accounted for this phenotype. To dissect
differential protein expression and phosphorylation profiles in
response to FLT3-ITD, we performed antibody array analyses
(Kinex, Kinexus Bioinformatics) of the murine 32D cell line
transfected with a wild-type human FLT3 (FLT3-WT 32D cells) or
a mutant human FLT3-ITD receptor (FLT3-ITD 32D cells) con-
struct.5,22 Profiling was performed in FL-stimulated FLT3-WT 32D
cells and in untreated FLT3-ITD 32D cells using the Kinex platform,
which allowed parallel analysis of expression and phosphorylation
status of 615 different proteins (Figure 1a). We identified 85
differentially expressed/phosphorylated proteins in protein lysates
from FLT3-WT 32D cells as compared with FLT3-ITD 32D cells
(Supplementary Tables 1A and B). A major proportion of these
proteins was known to be involved in growth factor signal
transduction. Based on the drug-resistant phenotype conferred by
FLT3-ITD, we focused on proteins implied in the regulation of
drug-induced apoptosis, such as the BCL-2 protein family.35,36

Antibody array analysis of the major antiapoptotic BCL-2 family
proteins revealed a slight downregulation of BCL-2 (approximately
20%) and a robust upregulation of BCL-XL (by 40%) in FLT3-ITD
32D cells (Supplementary Table 1). Antibody array analysis of
differential expression of MCL-1 was not feasible due to a low
signal-to-noise ratio (data not shown). To confirm these results
and determine MCL-1 expression levels, we performed immuno-
blot analyses of protein lysates generated from FLT3-WT RS4;11
cells stimulated with FL, and from unstimulated FLT3-ITD MV4;11
cells, which supported the results concerning BCL-2 and BCL-XL
obtained by the antibody array (Figures 1b and c). Interestingly, a
significant upregulation of MCL-1 was observed in both FLT3-ITD
models, MV4;11 cells and FLT3-ITD 32D cells, as compared to the
respective FLT3-WT controls or to parental 32D cells (Figure 1d).
Interleukin-3 stimulation of parental 32D cells strongly induced
MCL-1 protein expression (Figure 1d). In keeping, qRT-PCR analysis
revealed more than fivefold higher MCL-1 transcript levels in

FLT3-ITD-expressing MV4;11 and 32D cells as compared to FLT3-
WT RS4;11 and 32D cells (Figure 1e and data not shown). In
addition to leukemic cell lines, we investigated MCL-1 protein
levels in primary mononuclear cells from 12 AML patients. A
pronounced MCL-1 expression was detected in all six patients
harboring a FLT3-ITD mutation, whereas MCL-1 was only
expressed in two out of six samples from FLT3-WT patients
(Figure 1f).

MCL-1 is a downstream target of FLT3 receptor signaling
To study whether FLT3-mediated signal transduction leads to
activation of MCL-1, we stimulated FLT3-WT RS4;11 and 32D cells
with FL and analyzed MCL-1 RNA transcript levels and protein
expression. MCL-1 transcript and protein levels were induced
within 5 h of FL stimulation (Figures 2a and b). Conversely, RNAi-
mediated suppression of the endogenous, constitutively active
FLT3-ITD receptor in MV4;11 cells resulted in significant down-
regulation of MCL-1 protein expression (Figure 2c). Taken together
MCL-1 appears to be a direct downstream target of FL-stimulated
FLT3 signaling as well as aberrantly activated FLT3-ITD in
hematopoietic cells.

MCL-1 is an essential effector of FLT3-ITD-mediated drug
resistance
To study the consequences of FLT3 inhibition at a functional level,
we applied PKC412, a protein kinase inhibitor with activity against
FLT3-ITD.37 Incubation of FLT3-ITD-expressing MV4;11 and 32D
cells with PKC412 at a concentration of 100 nM led to depho-
sphorylation of the FLT3-ITD receptor and of S6 protein, a
downstream target of FLT3-activated signaling (Figure 2d). This
was accompanied by significant downregulation of MCL-1 in a
time-dependent manner and induction of apoptosis (Figure 2d
and data not shown). As expected, expression of a FLAG-tagged
murine Mcl-1 cDNA (FLAG-Mcl-1) from a heterologous promotor in
FLT3-ITD 32D cells was not affected by PKC412. PKC412 activity
was evidenced by dephosphorylation of S6 protein (Figure 2e).
Accordingly, FLT3-ITD 32D cells expressing FLAG-MCL-1 were
significantly protected against PKC412-induced apoptosis
(Figure 2f). Enforced FLAG-MCL-1 expression also conferred
resistance to the cytotoxic agents cytarabine and daunorubicin,
which are the mainstay of AML-induction therapy (Figures 2g
and h).
Based on these findings MCL-1 constitutes a rational target for

combination therapies overcoming drug resistance in FLT3-ITD-
positive AML. To further explore this hypothesis, we devised siRNA
specifically suppressing endogenous MCL-1 in FLT3-ITD-positive
MV4;11 cells (Figure 3a). MCL-1 suppression was associated with
enhanced spontaneous apoptosis and sensitization to cytarabine
(Figure 3b). To confirm these findings in a clinically more
applicable model, we used flavopiridol that has been described
to inhibit MCL-1 transcription by disturbing the STAT3/DNA
interaction.38 In phase I clinical trials in hematological diseases
plasma levels up to 1.57 mM of flavopiridol could be achieved by a
bolus-infusion schedule.39 Therefore, concentrations ranging from
50nM to 10mM were used for further experiments. A dose-dependent
downregulation of MCL-1 transcript levels by flavopiridol was
achieved in FLT3-ITD-expressing MV4;11 cells and in an additional
FLT3-ITD-positive leukemia model, Molm-13 (Figure 4a). In both
models, suppression of MCL-1 transcript levels was associated with
reduced MCL-1 protein expression (Figures 4b and c). To exclude
non-specific downregulation of several BCL-2 family members by
flavopiridol, we also analyzed the protein expression of BCL-2 and
BCL-XL, which both remained unchanged (Figure 4c and data not
shown). MCL-1 expression levels were reported to be regulated
by MAPK signaling.40 Analyzing the basal phosphorylation levels
of ERK1/2 by immunoblots using a phospho-specific antibody,
we could not observe different MAPK pathway activation in
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FLT3-ITD-positive MV4;11 cells and FLT3-WT RS4;11. The phos-
phorylation status of ERK1/2 of MV4;11 and RS4;11 cells was not
decreased by the presence or absence of flavopiridol (Figure 4d).
This confirmed that flavopiridol had no impact on constitutive
MAPK activation, an alternative mechanism of MCL-1 upregula-
tion. To exclude interference of flavopiridol with FLT3 kinase
activity, FLT3-ITD-positive MV4;11 cells were incubated with
flavopiridol and PKC412 as positive control. No significant
suppression of FLT3 receptor phosphorylation by flavopiridol
was observed at concentrations as high as 10 mM, whereas MCL-1
was completely suppressed by flavopiridol at concentrations of

200 nM and above (Figure 4e). Dephosphorylation of FLT3 by
PKC412 was also associated with a reduction of MCL-1 protein
level (Figure 4e).

Pharmacological targeting of MCL-1 in FLT3-ITD-positive AML
We hypothesized that downregulation of MCL-1 by flavopiridol
could lead to enhanced apoptosis in FLT3-ITD-positive cells. Cell
cycle analyses were performed in MV4;11, FLT3-ITD 32D and
Molm-13 cells following incubation with increasing concentrations
of flavopiridol. A dose-dependent induction of apoptosis was

Figure 1. Differential expression of antiapoptotic BCL-2 family members in FLT3-ITD-positive cell lines and primary AML blasts. (a) Antibody
array analyzing expression and/or phosphorylation of 615 proteins in duplicates using lysates from FL stimulated 32D FLT3-WT (100 ng/ml for
30min) and non-stimulated 32D FLT3-ITD cells. Data obtained from the antibody array was filtered as described. (b--d) FLT3-ITD-expressing
cells show upregulation of BCL-XL and MCL-1, but not BCL-2, as compared with FLT3-WT-expressing cells or cells without FLT3 receptor
expression. Whole-cell lysates from non-stimulated FLT3-ITD harboring MV4;11 and 32D cells, from FL stimulated (100 ng/ml for 30min)
FLT3-WT-harboring RS4;11 and 32D cells and IL3 stimulated parental 32D cells were analyzed by immunoblotting using specific antibodies for
BCL-2 (b), BCL-XL (c) and MCL-1 (d). To control equal loading, the blots were reprobed with an antibody recognizing Actin. (e) MCL-1 RNA is
upregulated in FLT3-ITD-positive cells. qRT-PCR analysis of FLT3-ITD-positive MV4;11 cells and FLT3-WT RS4;11 cells using specific primers for
MCL-1. Expression levels of MCL-1 were normalized to the housekeeping gene Beta-Actin and related to the basal transcription level in MV4;11
cells. (f ) MCL-1 is upregulated in primary FLT3-ITD-positive AML blasts. Mononuclear cells from 12 AML patients were separated by Ficoll-
Hypaque density-gradient centrifugation at the time of diagnosis or relapse. Whole-cell lysates were analyzed by immunoblotting using
specific antibodies for MCL-1. To control equal loading, the blot was reprobed with an antibody recognizing Actin. Note that MCL-1 protein
level was detected in all six patients harboring a FLT3-ITD mutation, whereas MCL-1 was only detected in two out of six patients harboring
FLT3-WT.
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observed in all FLT3-ITD-positive cell lines (Figure 5a). Interest-
ingly, flavopiridol also induced strong apoptosis in 32D cells
expressing a non-JM FLT3-ITD receptor with an additional point
mutation at position 627: These cells were shown to be resistant to
PKC412 due to a differential signal transduction originating from
an unusual FLT3-ITD receptor leading to upregulation of MCL-1
(Figure 5a).25 ABT-737 is a pharmacological BH3 mimetic that can
induce apoptosis by neutralizing BCL-2 and BCL-XL.

35,41 To study

whether flavopiridol-mediated suppression of MCL-1 sensitized
FLT3-ITD-positive MV4;11 and Molm-13 cells to ABT-737, we
treated cells with ABT-737, flavopiridol or combinations of both.
Although ABT-737 or flavopiridol alone were only moderately
toxic, combination therapy was effectively inducing apoptosis in
FLT3-ITD-expressing cell lines (Figures 5b and c and data not
shown). To elucidate possible synergism between the two
compounds, we calculated CI for a broad range of flavopiridol

Figure 2. MCL-1 upregulation is dependent on FLT3 receptor signaling. (a) MCL-1 RNA is upregulated in FLT3-WT cells following stimulation
with FL. Semiquantitative RT-PCR analysis of FL (100 ng/ml for 5 h)-stimulated FLT3-WT expressing 32D cells using specific primers for murine
Mcl-1. Expression was normalized to the housekeeping gene GAPDH. (b) MCL-1 is upregulated upon FL stimulation of FLT3-WT cells. Whole-cell
lysates from FLT3-WT RS4;11 cells were analyzed by immunoblotting using a specific antibody for MCL-1 after stimulation with FL (100 ng/ml
for 5 h). Reprobing with anti-Actin served as loading control. (c, d) Knockdown of the FLT3-ITD receptor by siRNA (c) or receptor tyrosine kinase
inhibition by PKC412 (d) led to time dependent downregulation of MCL-1. FLT3 and MCL-1 expression was assessed in MV4;11 cells by
immunoblotting 24 h after siRNA-mediated knockdown of FLT3 (c). 32D FLT3-ITD cells and MV4;11 cells were incubated with the FLT3-TKI
PKC412 at a concentration of 100 nM for the indicated time periods. Whole-cell lysates were analyzed by immunoblotting using primary
antibodies against phospho-FLT3, FLT3, phospho-S6 and MCL-1 (d). Blots were reprobed for Actin expression to ensure equal protein loading.
(e) Stable expression of a FLAG-tagged murine Mcl-1 cDNA (FLAG-MCL-1) led to sustained transgene expression in the presence of PKC412.
Whole-cell lysates were obtained from FLAG-MCL-1-32D FLT3-ITD cells following incubation with PKC412 at different concentrations for 7 h,
and were analyzed by immunoblotting using the indicated primary antibodies. (f ) Expression of FLAG-MCL-1 confers resistance to PKC412.
FLAG-MCL-1 32D FLT3-ITD cells were incubated with the indicated concentrations of PKC412 for 24 h. The percentage of apoptotic cells with
subgenomic DNA was flow cytometrically assessed. Asterisks denote statistically significant (Po0.05, t-test). (g, h) Expression of FLAG-MCL-1
confers resistance to cytarabine and daunorubicin. FLAG-MCL-1 32D FLT3-ITD cells were incubated for 24 h at the indicated drug con-
centrations. The percentage of apoptotic cells with subgenomic DNA was flow cytometrically assessed. Asterisks denote statistically significant
(Po0.05, t-test).
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concentrations when combined with effective concentrations of
ABT-737 (25 and 50 nM). A moderate to strong synergism was
revealed for all combinations indicated by CI-values below 1
(Figure 5c and Table 1a). Next, we investigated whether

flavopiridol-induced downregulation of MCL-1 sensitized FLT3-
ITD-expressing cells to conventional cytotoxic drugs. FLT3-ITD 32D
cells were incubated for 24 h with flavopiridol in combination with
cytarabine or daunorubicin, respectively. Flavopiridol effectively
sensitized FLT3-ITD-expressing cells to cytarabine- and dauno-
rubicin-mediated apoptosis (Figures 6a-d). CI for flavopiridol and
cytarabine (3 mM) or daunorubicin (100 nM) revealed moderate
to strong synergism for all combinations (Figures 6b, d and
Table 1b). To further establish downregulation of MCL-1 as the
major mechanism of flavopiridol-induced cytotoxicity in FLT3-ITD-
positive cells, we stably expressed FLAG-MCL-1 in FLT3-ITD 32D
cells. At flavopiridol concentrations effectively suppressing en-
dogenous MCL-1, heterologous FLAG-MCL-1 was still present in
these double transgenic cell populations (Figure 7a). Interestingly,
sustained expression of FLAG-MCL-1 mediated resistance to the
proapoptotic effects of flavopiridol (Figure 7b). Additionally, FLAG-
MCL-1-expressing cells were less susceptible to flavopiridol-
mediated sensitization to cytarabine- or daunorubicin-induced
apoptosis (Figures 7c to f). Only the highest concentration of
flavopiridol synergized with cytarabine or daunorubicin (CIo1),
whereas all other combinations revealed only additive or even
antagonistic effects (CI: 0.9 --1.1 or CI41.1) (Figures 7d, f and
Table 1b). Collectively these findings support the functional
importance for MCL-1 in FLT3-ITD-mediated resistance of leuke-
mia cells. Consequently, we proposed that MCL-1 could be
targeted as an ‘Achilles’ heel’ in FLT3-ITD-driven AML.

Figure 3. Suppression of MCL-1 by siRNA sensitizes FLT3-ITD-posi-
tive cells to cytotoxic drugs. (a) MV4,11 cells were transfected with
MCL-1-specific siRNA or scrambled control. Whole-cell lysates were
analyzed for protein expression of MCL-1 and Actin (as loading
control). (b) MV4,11 cells treated as in (a) were incubated with or
without cytarabine (5 mM) for 24 h, and the fraction of apoptotic cells
with subgenomic DNA was quantified by flow cytometry. Asterisks
denote statistically significant (Po0.05, t-test).

Figure 4. Flavopiridol suppresses MCL-1 in FLT3-ITD-positive cells. (a) Flavopiridol suppresses MCL-1 RNA expression in FLT3-ITD-positive cells.
MV4;11 and Molm13 cells were incubated for 5 h with flavopiridol at several concentrations, followed by RNA extraction and reverse
transcription. Expression of MCL-1 and Beta-Actin was measured by qRT-PCR; MCL-1 levels were normalized to Beta-Actin. Values were related
to the untreated medium control. (b) Dose-dependent suppression of MCL-1 protein expression in FLT3-ITD-positive cells by flavopiridol.
MV4;11 cells were incubated for 5 h with flavopiridol at incremental concentrations. Whole-cell lysates were analyzed for MCL-1 and Actin
expression (as loading control) by immunoblotting. (c) Flavopiridol suppresses MCL-1 but not BCL-2 in FLT3-ITD-positive cells. MV4;11 and
Molm-13 cells were incubated for 5 h with flavopiridol at incremental concentrations as indicated. Whole-cell lysates were analyzed for
expression of MCL-1, BCL-2 and Actin (as loading control) by immunoblotting. Flavopiridol used at MCL-1-suppressing concentrations does
not act on MAPK activation (d) or FLT3 autophosphorylation (e). MV4;11 and RS4;11 cells were incubated for 5 h with flavopiridol at
incremental concentrations or PKC412 100 nM, respectively. Whole-cell lysates were analyzed by immunoblotting for expression of p-ERK, ERK
and Actin (d) or p-FLT3, FLT3, MCL-1 and Actin (e).
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DISCUSSION
Here, we identify the antiapoptotic protein MCL-1 as promising
target in FLT3-ITD-positive leukemia. MCL-1 expression was found
to be increased in FLT3-ITD-positive leukemic cell lines and
primary AML blasts compared with FLT3 wild-type controls and
was strictly dependent on FLT3 signaling as confirmed by its
reversion upon pharmacological inhibition of FLT3 activity as well
as siRNA-mediated suppression of FLT3. As patients harboring
FLT3-ITD mutations have a worse prognosis with higher relapse
rates, reduced disease-free and overall survival rates compared to
patients harboring wild-type FLT3, we assume that MCL-1
contributes to chemotherapy resistance of residual FLT3-ITD-
positive blasts and/or leukemic stem cells.4,11,12 In fact, we and
others observed a reduced sensitivity to the cytotoxic drug
cytarabine in myeloid leukemic cells transfected with a FLT3-ITD
receptor.13,42 Heterologously expressed MCL-1 substituted for
FLT3 signaling by conferring resistance of hematopoietic cells to
antileukemia drugs such as cytarabine and daunorubicin, and to
the proapoptotic BH3 mimetic ABT-737. Conversely, suppression
of endogenous MCL-1 by siRNA or by flavopiridol treatment
sensitized FLT3-ITD-expressing hematopoietic cells to chemother-
apy and targeted therapeutics.
Even though we observed increased MCL-1 RNA transcript

and protein levels in our FLT3-ITD-positive cells, the exact
mechanism how MCL-1 overexpression is linked to activation of
FLT3 has to be clarified at this point. Recently, Yoshimoto et al.14

observed a FLT3-ITD-dependent upregulation of MCL-1 in primary
leukemic stem cells via activation of STAT5. In our cell models
a STAT5-dependent upregulation of MCL-1 seems unlikely
because FL stimulation of wild-type FLT3-expressing cells also
enhanced MCL-1 RNA transcription and protein levels, while
STAT5 is not known to be activated by the wild-type FL-stimulated
FLT3 receptor.5,43 Using siRNA approaches or the MEK/ERK
inhibitor U0126, we recently demonstrated that suppression of
STAT3 or inhibition of the MAPK/ERK pathway had no impact on
MCL-1 expression in FLT3-ITD_627E cells,25 making this mode
of action questionable in the present models of FLT3-ITD-positive
hematopoietic cells. However, even though the exact mechanisms
how deregulated MCL-1 expression is linked to activation
of FLT3 needs to be determined, inhibition of overexpressed
MCL-1 might be a promising therapeutic approach to sensitize
residual blasts or leukemic stem cells to chemotherapy and to
overcome the poor prognosis of FLT3-ITD-positive AML patients.
This could be achieved by ‘non-targeted’ agents, like the
semisynthetic flavonoid flavopiridol, which is derived from the
indigenous Indian plant Dysoxylum binectariferum. Originally being
described as an inhibitor of cyclin-dependent kinases, flavopiridol
was shown here to be a potent inhibitor of RNA and protein
expression of MCL-1, but not BCL-2 or BCL-XL, in FLT3-ITD-positive
cells. Flavopiridol was described to disrupt the STAT3/DNA-
binding, leading to reduced transcription of STAT3-induced
genes.38 As suppression of STAT3 had no impact on MCL-1
expression, though in FLT3-ITD_627E cells presumably showing a
different signaling, this mode of action might not apply to our
present models.25 Additionally, we excluded inhibition of the
MAPK/ERK-pathway, which reportedly can be involved in MCL-1
upregulation, as well as a direct inhibition of the FLT3 receptor
kinase by flavopiridol.40 However, flavopiridol sensitized FLT3-ITD-
expressing cells to the cytotoxic drugs cytarabine and daunor-
ubicin and to targeted therapies like the BH3-mimetic drug
ABT-737, which was described to be ineffective in MCL-1-over-
expressing cells.35,41 Although at this point the exact mechanism
for MCL-1 suppression by flavopiridol remains to be clarified, the
compound could serve as a model for the development of more
specific MCL-1-targeting agents to eliminate residual FLT3-ITD
leukemic blasts and stem cells that are resistant to cytotoxic
agents.

Figure 5. Activity of flavopiridol monotherapy and in combination
with anticancer agents in FLT3-ITD-positive cells. (a) MV4;11, Molm-13,
32D FLT3-ITD and 32D FLT3-ITD_627E cells were incubated with
flavopiridol at the indicated concentrations for 24 h (MV4;11 and
32D) or 48 h (Molm-13). The percentage of apoptotic cells with
subgenomic DNA was assessed by flow cytometry. (b) MV4;11 cells
were incubated for 48 h with flavopiridol (FP), ABT-737 or combi-
nations thereof, and the percentage of apoptotic cells with sub-
genomic DNA was assessed by flow cytometry. (c) MV4;11 cells were
incubated for 48 h with flavopiridol (25, 50, 100, 200 and 500 nM) or
ABT-737 (10, 25, 50, 100, 200 and 500 nM). In addition, cells were
incubated with flavopiridol (25, 50, 100 and 200 nM) in combination
with ABT-737 (25 or 50 nM). Percentage of apoptotic cells with
subgenomic DNA (fractional effect) was assessed by flow cytometry.
Combination indices were calculated using the CalcuSyn software;
normalized isobolograms are represented. The actual combination
indices for all treatments are listed in Table 1a. Combination indices
ranging from 0.1 to 0.85 indicate strong to moderate synergism,
indices from 0.85 to 0.9 slight synergism, indices from 0.9 to 1.1
nearly additive interaction and indices from 1.1 to 10 slight to strong
antagonism, respectively.
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Table 1. Combination index (CI) for flavopiridol and ABT-737 flavopiridol and cytarabine or daunorubicin

FP [nM] ABT-737 [nM] CI MV4;11

25 25 0.346
50 25 0.290
100 25 0.418
200 25 0.705
25 50 0.288
50 50 0.327
100 50 0.543
200 50 0.872

FP [nM] Ara-C [mM] CI 32D FLT3-ITD CI 32D FLT3-ITD MCL-1/FLAG

25 3 0.563 4.668
50 3 0.378 2.789
100 3 0.780 4.486
200 3 0.421 0.507

FP [nM] DNR [nM] CI 32D FLT3-ITD CI 32D FLT3-ITD MCL-1/FLAG

25 100 0.583 1.046
50 100 0.415 0.936
100 100 0.409 1.011
200 100 0.904 0.778

Abbreviations: Ara-C, cytarabine; DNR, daunorubicin; FP, flavopiridol. Combination indices ranging from 0.1 to 0.3 indicate strong synergism, indices from
0.3 to 0.7 indicate synergism, indices from 0.7 to 0.85 indicate moderate synergism, indices from 0.85 to 0.9 slight synergism, indices from 0.9 to 1.1
nearly additive interaction, indices from 1.1 to 1.2 slight antagonism, indices from 1.2 to 1.45 moderate antagonism, indices from 1.45 to 3.3 antagonism
and from 3.3 to 10 strong antagonism, respectively.

Figure 6. Activity of flavopiridol in combination with cytotoxic drugs in FLT3-ITD-positive cells. 32D FLT3-ITD-positive cells were incubated for
24h with flavopiridol (FP), cytarabine (Ara-C) (a), daunorubicin (DNR) (c) or combinations thereof. The percentage of apoptotic cells with subgenomic
DNAwas assessed by flow cytometry. (b, d) 32D FLT3-ITD cells were incubated for 24h with flavopiridol (25, 50, 100, 200 and 500nM), cytarabine (1, 2, 3,
5, 10 and 20mM) or daunorubicin (25, 50, 100, 150, 200 and 500nM). In addition, cells were incubated with flavopiridol (25, 50, 100 and 200nM) in
combination with cytarabine (3mM) (b) or daunorubicin (100nM) (d). Percentage of apoptotic cells with subgenomic DNA (fractional effect) was assessed
by flow cytometry. Combination indices were calculated using the CalcuSyn software; normalized isobolograms are represented. The actual combination
indices for all treatments are listed in Table 1b. Combination indices ranging from 0.1 to 0.85 indicate strong to moderate synergism, indices from 0.85
to 0.9 slight synergism, indices from 0.9 to 1.1 nearly additive interaction and indices from 1.1 to 10 slight to strong antagonism, respectively.
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