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The use of selective inhibitors targeting Bcr-Abl kinase is now
established as a standard protocol in the treatment of chronic
myelogenous leukemia; however, the acquisition of drug
resistance is a major obstacle limiting the treatment efficacy.
To elucidate the molecular mechanism of drug resistance, we
established K562 cell line models resistant to nilotinib and
imatinib. Microarray-based transcriptome profiling of resistant
cells revealed that nilotinib- and imatinib-resistant cells showed
the upregulation of kinase-encoding genes (AURKC, FYN, SYK,
BTK and YES1). Among them, the upregulation of AURKC and
FYN was observed both in nilotinib- and imatinib-resistant cells
irrespective of exposure doses, while SYK, BTK and YES1
showed dose-dependent upregulation of expression. Upregula-
tion of EGF and JAG1 oncogenes as well as genes encoding
ATP-dependent drug efflux pump proteins such as ABCB1 was
also observed in the resistant cells, which may confer
alternative survival benefits. Functional gene set analysis
revealed that molecular categories of ‘ATPase activity’,
‘cell adhesion’ or ‘tyrosine kinase activity’ were commonly
activated in the resistant clones. Taken together, the trans-
criptome analysis of tyrosine kinase inhibitors (TKI)-resistant
clones provides the insights into the mechanism of drug
resistance, which can facilitate the development of an effective
screening method as well as therapeutic intervention to deal
with TKI resistance.
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Introduction

Chronic myelogenous leukemia (CML) comprises B15%
of adult-onset leukemia cases.1 The most obvious karyo-
typic change of the disease is a reciprocal translocation
t(9;22)(q34;q11) that gives rise to the Philadelphia chromosome
(Ph) and the chimeric BCR-ABL gene. This fusion gene encodes
Bcr-Abl oncoprotein with constitutively activated tyrosine
kinase activity, which is responsible for uncontrolled cellular

proliferation and development of CML and Phþ ALL.2 As the
first commercially available inhibitor of Bcr-Abl tyrosine kinase,
imatinib mesylate (Gleevec, STI571) has been used as a frontline
therapeutic choice for newly diagnosed CML cases.3 The
remarkable rate of cytological remission has been shown in
initial clinical surveys and recent follow-up studies.4,5

One major concern in the first-line imatinib treatment is the
drug resistance, the patients often fail to acquire complete
cytogenetic response at initial treatment (intrinsic resistance)
or fail to maintain the responses during treatment (acquired
resistance). Previous studies showed that somatic point muta-
tions involving the kinase domain of Bcr-Abl protein seem to be
the primary cause of resistance in clinical cases.6 Genomic
amplification and transcriptional activation of the BCR-ABL loci
have been also suspected as possible cause of the resistance.7

Other putative mechanisms independent of Bcr-Abl kinase
pathway have been also reported, for example, the activation of
Src family kinases such as Lyn or Hck,8 transporters involved in
drug efflux9 and the antiapoptotic roles conferred by extra-
cellular matrix.10

Increasing the dose of imatinib is one alternative to deal with
resistant patients, but it is still controversial whether the
resistance can be overcome with the dose escalation.11,12 More
potent second-line tyrosine kinase inhibitors (TKI) such as
nilotinib (Tasigna, AMN107) and dasatinib (Sprycel) offer a
treatment option for CML patients showing failure or suboptimal
response to first-line imatinib treatment.13–15 However, the
patients treated with the second-line TKI also often experience
intolerance16 or resistance, which may require the modulation
of drug regiments.17,18

The elucidation of the molecular mechanism of TKI resistance
has broad clinical implications such as the early identification of
resistant cases, personalized modulation of drug regimens and
facilitating the screening of new targets for therapeutic
intervention. In this study, we established TKI-resistant in vitro
cell line models by exposing K562 cell lines to nilotinib (doses
of 50 and 250nM) and imatinib (a dose of 800 nM). The
expression profiles of TKI-resistant sublines and susceptible
K562 parental cell lines were obtained using high-throughput
oligonucleotide microarray. We identified gene candidates
whose activation may provide survival benefits when endo-
genous Bcr-Abl oncoprotein becomes inactivated by TKI,
and thereby lead to the acquisition of resistance phenotype.
Pathway analysis also identified a number of molecular
functions activated in the resistant clones, which may provide
additional clues about the molecular changes in resistant clones.
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of the mechanisms behind TKI-resistance and facilitate the
development of effective diagnostic and therapeutic strategies.

Materials and methods

Cell lines resistant to TKI
Among the Bcr-Abl-positive cell lines, we selected erythroid
leukemic K562 cell lines that do not show Bcr-Abl over-
expression accompanying the acquisition of imatinib resis-
tance.19 To construct TKI-resistant K562 sublines, the K562 cell
lines were exposed to three conditions, 50 and 250nM of
nilotinib and 800nM of imatinib. The culture conditions and
related experimental protocols are described elsewhere.20 To
rule out the mutation-based resistance acquisition, the BCR-ABL
loci of three resistant K562 sublines were screened by nucleotide
sequencing, and the absence of major clinically relevant point
mutations including T315I was confirmed for all three sublines.6

The expression level of BCR-ABL kinase was also checked using
real-time reverse transcriptase PCRs to rule out the resistance by
transcriptional upregulation as described previously.20

Microarray analysis
RNA was extracted from parental and TKI-resistant K562 cells
using Trizol (Invitrogen, Carlsbad, CA, USA) according to
manufacturer’s instructions. We used Bioanalyzer 2100 (Agilent
Technologies, Waldbronn, Germany) to assess the quantity and
quality of extracted RNA. For high-throughput expression
profiling, we used Applied Biosystems Human Genome Survey
Microarray Version 2.0 (Applied Biosystems, Foster, CA, USA)
representing 28 000 human genes. For hybridization, digoxi-
genin-UTP-labeled cRNA was generated and linearly amplified
from 5mg of total RNA using Applied Biosystems Chemilumi-
nescent RT-IVT Labeling Kit V2.0. Array hybridization, chemi-
luminescence detection and image acquisition were performed
using Applied Biosystems Chemiluminescence Detection Kit

Table 1 Primers for RT-qPCR

Gene Amplicon
size (bp)

Sequence

AURKC 180 Sense 50-AATGTGTACCTGGCT
CGGCTCAAG-30

Anti-sense 50-CCGGCGTGCATCAT
GGAAATAGTT-30

BTK 146 Sense 50-AAAGCAGTTCCTTCA
CCGAGACCT-30

Anti-sense 50-ACCGGACTGGAAA
TTTGGAGCCTA-30

FYN 128 Sense 50-AGCAAGACAAGGTGC
AAAGTTCCC-30

Anti-sense 50-TTCCTTTGGTGA
CCAGCTCTGTGA-30

SYK 147 Sense 50-ATGGAAAGTTCCTGAT
CCGAGCCA-30

Anti-sense 50-AGAGCGTGTCGAACT
TCTTTCCCT-30

YES1 157 Sense 50-AAGCTGCACTGTATG
GTCGGTTTA-30

Anti-sense 50-GGGCACGGCATCCT
GTATCCTC-30

GAPDH 301 Sense 50-GCGGGGCTCTCCAG
AACATCA-30

Anti-sense 50-CCAGCCCCAGCGT
CAAAGGTG-30

Abbreviation: RT-qPCR, real-time quantitative PCR.

Figure 1 Unsupervised hierarchical clustering of the 455 genes,
which showed differential expression between TKI-resistant K562
sublines and TKI-susceptible parental K562.
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and Applied Biosystems 1700 Chemiluminescent Microarray
Analyzer according to manufacturer’s protocol. The hybridiza-
tion was performed three times per sample. Images of each
array hybridization were collected using the AB 1700
Analyzer equipped with high resolution, large-format CCD
camera, including two short chemiluminescence images with
5 s exposure length for gene expression analysis. Two fluor-
escent images were obtained for feature finding and processed
for spot normalization. Images were auto-gridded and the

chemiluminescent signals were quantified. After the background
subtraction, spot intensity data were quantile normalized.

Analysis of expression profiles
Using the signal values corrected for background intensities, the
probes were filtered out and 15 000 genes were used for the
subsequent analysis. For clustering, we performed one-way
analysis of variance (ANOVA) and selected the genes under the

Figure 2 Gene expression patterns of 12 gene clusters categorized from the 455 differentially expressed genes.

Expression signatures of in vitro resistance to nilotinib and imatinib
T-M Kim et al

3

Blood Cancer Journal



P-value o0.10. According to the expression similarities, 12 K-
means gene clusters were grouped using the software of Cluster
and Treeview.21 For pathway analysis, we collected functional
gene sets from three public databases, GO, KEGG and
GenMAPP.22–24 Too large (4200 genes) or small gene sets
(o10 genes) were excluded, and a total of 642 functional gene
sets were used for subsequent enrichment analysis. The
significance of enrichment was calculated using parametric
gene set enrichment analysis (PAGE) based on z-statistics.25 To
apply PAGE, the signal-to-noise ratio was calculated for all
15 000 genes in the comparison of TKI-resistant versus
TKI-susceptible K562 cell lines. For regulatory motif gene sets
representing the potential gene targets of known transcription
factors, we downloaded 615 gene sets from MSigDB Ver2.5
(c3 symbol set).26 The drug perturbation-related gene sets were
obtained from Connectivity Map as described previously.27 In
brief, expression log2 ratio was calculated for individual genes,
and ordered gene rank list was constructed for each of 281
batches (perturbagen versus vehicle pairs). In the rank list, top-
ranking 100 genes (upregulated) and 100 genes at the bottom
(downregulated) were selected comprising 562 drug perturba-
tion-related gene sets.

Quantitative RT-PCR
Total RNA extracted from the three TKI-resistant K562 sublines
and parental cell lines were used for RT-quantitative PCR (qPCR)
analysis for five kinase genes (AURKC, FYN, SYK, BTK and YES1).
GAPDH was used as internal control. The first-strand cDNA was
synthesized using oligo-dT primer and superscript II reverse
transcriptase (Invitrogen), and used for subsequent amplification
reaction. RT-qPCR analysis was performed using M� 3000P
system, and analysis was done using the software of M� Pro 3.00
(Stratagene, La Jolla, CA, USA). The reaction mixture of 20ml
contains 10ng of cDNA, 1� SYBR Green Tbr polymerase
mixture (Finnzymes, Vantaa, Finland), 0.5�ROX and 20pmol
primer pairs. The thermal cycling was as follows: 10min at 95 1C,
followed by 40 cycles of 10 s at 94 1C, 30 s at 55–60 1C and 30 s
at 72 1C. To verify the specific amplification, melting curve
analysis was performed (55–95 1C, 0.5 1C/s). Relative quantifica-
tion was performed by the DDCT method. The sequence
information of primers used for RT-qPCR is available in Table 1.

Results

Identification of genes associated with TKI resistance
To identify the genes associated with TKI resistance, we
compared the gene expression profiles of TKI-resistant K562

sublines versus TKI-susceptible parental K562 control and
selected 455 differently expressed genes showing Po0.10
(one-way ANOVA). Unsupervised hierarchical clustering of
the 455 genes is illustrated in Figure 1. To categorize the 455
genes according to the expression changes, we performed
K-means clustering (n¼ 12). The expression patterns and
detailed information of 12 gene clusters are available in Figure 2
and Supplementary Table 1, respectively. Among the clusters,
we selected five gene clusters showing relative upregulation in
TKI-resistant sublines; three clusters with nilotinib-specific
upregulation (Cluster 1, 4 and 8; Figure 3a) and the other two

Figure 3 Gene clusters with transcriptional upregulation in TKI-resistant K562 sublines. (a) Three gene clusters show the upregulation in two
nilotinib-resistant sublines as compared with imatinb-resistant or parental K562 sublines. (b) The transcriptional upregulation in both nilotinib- and
Imatinib-treated sublines is observed in two gene clusters (Cluster 2 and 9).

Table 2 Five gene clusters showing transcriptional upregulation in
TKI-resistant K562 sublines

Upregulation Cluster Gene symbols

Nilotinib 1 TMEM51, PLA2G4A, KIF1A, C2orf14,
OSBPL6, LOC152078, ENTPD3, ENC1,
MAP7, LAMB1, CD36, ABCB1, C9orf125,
CASP4, HMGA2, NTS, TRHDE,
LOC144766, TEX9, ZNF447, AURKC,
FAM9B, NXF5, NXF2, SSX3

4 IL1R1, COLEC11, ZNF354A, C6orf85,
SPTAN1, KCNMB4, ARHGDIB,
MGC16044, FAM9A, VCY, VCY1B

8 ARHGAP15, COBLL1, ANTXR1, ITGA4,
FMNL2, TNFSF10, FLJ31033, APIN,
ZDHHC11, SLCO4C1, CD109, ZNF462,
CHST3, MRPS16, MS4A4A, PAK1,
DACH1, DCT, STRA6, BC036928, ASB9

Nilotinib and
Imatinib

2 SERINC2, KYNU, GAD1, ANKRD20B,
CTDSPL, FLJ20647, SNCA, PPP3CA,
ELOVL7, PANK3, SLC12A7, TAP1, HEY1,
RGS20, ZFHX4, LOC441395, C10orf38,
AKR1CL2, C10orf71, CD44, IFITM3,
PTPRR, SPRY2, MGAT2, PRKCH,
C14orf39, COTL1, PMP22, ZNF420,
ZNF85, ZNF567, LILRB1, ZNF626,
SYTL4, SSX6, TCEAL4

9 AIM2, PTPRC, FAM5C, TNFRSF9,
NR5A2, CD1D, CDC42EP3, MEIS1,
IFIH1, GCA, PTX3, BOMB, EGF, DAB2,
LOC493869, LAMA4, TPBG, SYK, TLE4,
SFXN3, MCAM, ADM, MLSTD1, LRMP,
NIN, CHES1, ABCA8, ZNF527, HKR1,
JAG1, CPXM, SLC35E4, COVA1

Abbreviation: TKI, tyrosine kinase inhibitors.
The five gene clusters are selected among 12 K-means clusters and
illustrated with genes. Three clusters (Cluster 1, 4 and 8; upper)
contain genes upregulated in nilotinib-resistant cell lines and two other
clusters (Cluster 2 and 9; below) contain genes showing upregulation
in both nilotinib- and imatinib-resistant cell lines.
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clusters showing the upregulation both in nilotinib- and
imatinib-resistant sublines (Cluster 2 and 9; Figure 3b). The
genes belonging to these five clusters are listed in Table 2.
We observed a number of kinase-encoding genes that are

upregulated in TKI-resistant cell lines, which include AURKC
(Cluster 1), PRKCH (Cluster 2), PAK1 (Cluster 8) and SYK
(Cluster 9). It is notable that the upregulation of different types of
kinases may confer alternative survival benefits in place of the
Bcr-Abl oncoprotein, which is suppressed by TKI. The mole-
cules whose altered cellular activities may lead to increased cell
survival are also observed. For example, we observed that a
number of cancer-related genes such as EGF, JAG1 and
CDC32EP3 are upregulated in the resistant clones, which can
provide additional survival advantages. The upregulation of
apoptosis-related genes such as CASP4 (in Cluster 1), TNFSF10
(in Cluster 8) and TNFRSF9 (in Cluster 9) suggests that apoptosis
is one of prevailing cellular events in TKI-treated cell lines,
which may increase higher cellular turnover rates and also
facilitate the selection of clones with survival benefits. Some of
the upregulated transcripts in TKI-resistant cell lines are known
to involve in cell adhesion (ITGA4 and MCAM) and cytoske-
leton (LAMB1, KIF1A, MAP7 and LAMA4). Of interests, ABCB1
gene (in Cluster 1) encodes ATP-dependent drug efflux pump.
The overexpression of this transporter molecule may inhibit the

intracellular accumulation of drug, which is one of the potential
mechanism to obtain drug resistance.9,28

Pathway analysis of expression profiles associated with
TKI resistance
For pathway analysis, we used PAGE method that measures the
enrichment of differentially expressed genes to predetermined
functional gene sets.25 Table 3 lists the annotated molecular
functions of significantly enriched (Po0.001) functional gene
sets and their leading edge gene subsets. The top upregulated
molecular function is ‘ATPase activity’ that includes a number of
ATP-binding cassette transporters such as ABCB1 and TAP1.
This indicates that TKI-resistant sublines have globally activated
transporter activities; their coordinated upregulation suggests
that ‘ATPase activity’ might have a key role in the acquisition of
the resistance to TKI. The upregulation of genes belonging to
solute carrier (SLC) gene family is responsible for the enrichment
of ‘amino acid transport’ category. The roles of the ‘amino acid
transport’ genes in TKI resistance have not been appreciated
except for some examples of organic cation transporter.29

However, these findings suggest that the acquisition of TKI
resistance accompanies the transcriptional activation of diverse

Table 3 Molecular functionalities associated with TKI-resistant expression profiles

Typea Functional annotationb Gene size P-valuec Genesd

Upregulated GO/ATPase activity, coupled to
transmembrane movement of
substances

22 1.7E-06 ABCA8, ABCB1, TAP1, ABCC1, ABCB9, ABCD4

GO/amino-acid transport 28 1.2E-05 SLC12A7, SLC38A6, XK, SLC38A1, SLC43A1,
MGC15523, SLC7A8

GO/immune response 163 0.0001 IFITM3, TAP1, IFIH1, TNFRSF9, AIM2, PSMB9,
IL18RAP, IFITM2, PSME1, IFI16, IFIT3, CD97, DAF,
CNIH, CCL5, ISGF3G, IL18R1, PSME2, MR1, EBI2,
TNFSF10, LIF, IKBKE, FCGR2B, ACSL1

GO/amino-acid-polyamine
transporter activity

23 0.0002 SLC12A7, SLC38A6, SLC38A1, MGC15523,
SLC7A8

GenMAPP/Integrin-mediated
cell adhesion

55 0.0005 FYN, SEPP1, ITGB5, RAP1B, CAPN2, RAC2, CAV1,
TLN1, AKT1, ITGA4, CAV2, VCL, PAK1

GO/cell adhesion 189 0.0006 CD44, TPBG, MCAM, LAMA4, LAMB1, CD36,
ITGB5, CPXM, CD9, TNXB, PTPRF, CD97, SELPLG,
CD47, PCDH10, CCL5, IGSF1, PCDH17, FAT,
URP2, ITGA4, NELL2, FEZ1, C16orf9, VCL,
PKP2, CASK

GenMAPP/
Smooth_muscle_contraction

81 0.0007 RGS20, PRKCH, IGFBP4, TNXB, ADM, ITPR2,
PRKCZ, GSTO1, CREB3, ACTA2, GJA1, NOS3,
ATF5, ATP2A3, NFKB1

GO/non-membrane spanning
protein tyrosine kinase activity

11 0.0009 SYK, FYN

Downregulated GO/sterol biosynthesis 19 0.0002 FDFT1, SC4MOL, NSDHL, MVK, HMGCR, IDI1,
CYP51A1, DHCR24, SC5DL

GenMAPP/
Cholesterol_Biosynthesis

14 0.0003 FDFT1, SC4MOL, NSDHL, MVK, HMGCR, IDI1,
LSS, CYP51A1, SC5DL

GO/steroid biosynthesis 30 0.0003 HSD17B7, HSD17B8, FDFT1, SC4MOL, HSD17B1,
NSDHL, MVK, HMGCR, IDI1, LSS, CYP51A1,
DHCR24, SC5DL

GO/cholesterol biosynthesis 16 0.0006 FDFT1, NSDHL, MVK, HMGCR, IDI1, CYP51A1,
DHCR24

Abbreviation: TKI, tyrosine kinase inhibitors.
aThe signatures were distinguished for upregulated and downregulated gene sets in TKI-resistant sublines.
bThree databases (GO, KEGG and GenMAPP) used to collect the gene sets are denoted in the respective gene sets.
cThe significance for enrichment is calculated using parametric gene set enrichment analysis algorithm based on z-statistics, and unadjusted
Po0.10 was considered significance.
dAmong the genes belonging to the gene set, the ‘leading edge subset’ are listed for genes whose corresponding signal-to-noise ratio is above
mean+s.d. (upregulated) or below mean�s.d. (downregulated).
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transmembrane transporter molecules, altering the drug efflux/
influx and cellular susceptibility in a given dose of drugs.

We also observed that ‘cell adhesion’ and ‘integrin-mediated
cell adhesion’ categories are upregulated in TKI-resistant
sublines. It has been previously shown that the extracellular
signals such as fibronectin-induced integrin signaling can
convey antiapoptotic signals to BCR-ABL-positive cells in
in vitro settings30 as potential resistance-acquiring mechanism.
The upregulated integrin molecules in our study (ITGB5 and
ITGA4) may have similar functional implication. In addition,
we observed the relative upregulation of various immune-
related genes, as well as downregulation of genes belonging
to ‘chrolesterol biosynthesis’ functional categories, which

constitute unique functional categories associated with TKI
resistance.

Resistance-associated transcriptional upregulation
of kinase molecules
We have already observed the upregulation of various kinase-
encoding genes in cluster analysis (Table 2). Pathway analysis
also identified the upregulation of two non-receptor tyrosine
kinases, SYK and FYN, which is responsible for the enrichment
of ‘tyrosine kinase activity’ category (Table 3). Thus, we focused
on the transcriptional upregulation of kinase molecules as one of
the remarkable expression signatures associated with TKI

Figure 4 Expression levels of five kinases in TKI-resistant K562 sublines. (a) The expression levels of five kinases in four K562 sublines are
measured using real-time quantitative PCR. The relative expression levels of AURKC and FYN for three TKI-resistant sublines are illustrated as
compared with those of TKI-susceptible parental cell lines. (b) The expression levels of SYK, BTK and YES1 are demonstrated in the same manner.

Table 4 Putative transcriptional regulators and chemicals associated with expression profiles in TKI-resistant sublines

Gene set Condition Gene set annotation Gene size P-value

Regulatory motif
gene set

Resistance-up V$ICSBP_Q6 122 5.2E�07
STTTCRNTTT_V$IRF_Q6 99 1.8E�05
V$EVI1_02 67 3.0E�05
YAATNRNNNYNATT_UNKNOWN 38 6.6E�05
TTANWNANTGGM_UNKNOWN 24 7.7E�05
V$OCT1_06 125 0.0001
V$IRF1_01 119 0.0002
V$TCF11_01 109 0.0003
V$WHN_B 128 0.0005
V$CDX2_Q5 111 0.0005
V$CART1_01 95 0.0006

Resistance-down V$ETF_Q6 61 2.1E�06
V$E2F_Q2 96 7.6E�05

Connectivity map
gene set

Resistance-up Tamoxifen (1.0E�06M)_Down 49 4.8E�09
Rosiglitazone_Down 41 4.4E�08
Sodium phenylbutyrate (1.0E�03M,
HL60, medium)_Up

57 2.7E�07

Cobalt chloride (1.0E�04M)_Up 44 2.3E�06
Rofecoxib (PC3)_Up 32 4.1E�05
Butein (PC3)_Down 64 5.5E�05
Troglitazone_Down 41 5.8E�05
Pyrvinium (1.3E�06M)_Up 50 9.3E�05
Gefitinib (HL60)_Up 42 0.0001
Blebbistatin (1.7E�05M)_Up 39 0.0002
Sodium phenylbutyrate (1.0E�03M, PC3,
medium)_Up

33 0.0002

SC-58125 (HL60)_Up 47 0.0003
Rofecoxib_Up 38 0.0004
Monorden (1.0E�07M, PC3)_Up 63 0.0008

Resistance-down Imatinib (PC3)_Up 48 0.0002
Pirinixic acid (1.0E�04M, SKMEL5)_Up 58 0.0003

Abbreviation: TKI, tyrosine kinase inhibitors.
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resistance. The activation of tyrosine kinase, especially Src
family kinases including FYN, has been implicated in the
acquisition of TKI resistance in a number of models8,31 by
mimicking the oncogenic effects of Bcr-Abl kinase.32 The
conformational resemblance between Src family kinase and Abl
kinase leads to an assumption that dual kinase inhibitors such as
dasatinib can be more potential with off-target effects
to Src kinase. Similarly, it was proposed that the inhibitor
of Aurora kinase can inhibit T315I mutant Bcr-Abl kinase, which
is refractory to conventional TKIs.33,34 Thus, the screening
of kinases associated with TKI resistance can advance our
understanding to the mechanism of drug resistance and also
facilitate to select the appropriate TKI inhibitors in a given clinical
context. Our findings suggest that the activation of multiple kinase
molecules is a common event in TKI-resistant BCR-ABL(þ ) cell

lines and also highlights the potential utility of using multi-kinase
inhibitors to modulate imatinib resistance. We further experi-
mentally verified the expression change of the five kinases
(AURKC, FYN, SYK, BTK and YES1) in TKI-resistant and TKI-
susceptible K562 cell lines using RT-qPCR. Consistent upregula-
tion of AURKC and FYN was observed in all three TKI-resistant
cell lines tested, while the other three kinases, SYK, BTK and
YES1, showed dose-dependent upregulation pattern (Figure 4).

The analysis of regulatory motifs and drugs associated
with TKI-resistant expression profiles
Regulatory motif gene sets (for example, a set of genes whose
cis-regulatory sequences are enriched for a specific regulatory
motif; MSigDB C3 category) were also used in pathway analysis

Table 5 Comparison of expression profiles between TKIs

Condition Geneset ID Gene size P-value

Nilotinib versus imatinib GenMAPP/Prostaglandin_synthesis_regulation 13 0.0006
KEGG/Glycerolipid metabolism 23 0.0007

Imatinib versus nilotinib GO/steroid biosynthesis 30 2.4E�07
GenMAPP/Cholesterol_Biosynthesis 14 5.1E�07
GO/sterol biosynthesis 19 1.3E�06
GO/cholesterol biosynthesis 16 6.5E�05
KEGG/Biosynthesis of steroids 11 0.0003
GenMAPP/Glycolysis_and_Gluconeogenesis 26 0.0004
GO/lipid biosynthesis 47 0.0006
GO/glycolysis 36 0.0007

High versus low dose of nilotinib GO/amino acid biosynthesis 19 6.9E�20
KEGG/’’Glycine, serine and threonine metabolism 11 9.7E�09
KEGG/Alanine and aspartate metabolism 13 1.1E�07
GO/transaminase activity 12 1.2E�06
GO/growth factor activity 53 2.7E�05
GO/tRNA binding 11 5.3E�05
GO/serine-type endopeptidase inhibitor activity 20 0.0001
GO/endopeptidase inhibitor activity 27 0.0001
GO/hormone activity 30 0.0003
GO/cell-cell signaling 102 0.0003
GO/integrin complex 15 0.0004
GO/soluble fraction 107 0.0004
GO/steroid metabolism 33 0.0005
GO/NADH dehydrogenase (ubiquinone) activity 38 0.0006
GO/NADH dehydrogenase activity 37 0.0007
GO/cell motility 65 0.0008
GenMAPP/Electron_Transport_Chain 88 0.0009

Low versus high dose of nilotinib GO/rRNA processing 42 1.7E�10
GO/translation initiation factor activity 61 1.1E�08
GO/nucleolus 54 1.6E�07
GenMAPP/Translation_Factors 44 1.4E�06
GO/helicase activity 109 4.0E�06
GO/regulation of translational initiation 26 5.0E�06
GO/ATP-dependent helicase activity 70 5.8E�06
GO/ribosome biogenesis 30 6.8E�06
GO/translation factor activity, nucleic acid binding 22 8.8E�06
GenMAPP/G1_to_S_cell_cycle_Reactome 57 9.2E�06
GO/mRNA processing 174 2.4E�05
GO/sterol biosynthesis 19 5.3E�05
GenMAPP/mRNA_processing_Reactome 109 7.3E�05
GO/translational initiation 25 0.0002
GO/cholesterol biosynthesis 16 0.0002
GO/RNA splicing 58 0.0002
GenMAPP/Cholesterol_Biosynthesis 14 0.0003
GO/nuclear pore 41 0.0005
GO/nucleoside-triphosphatase activity 93 0.0005
GO/DNA replication 98 0.0006
GO/mRNA export from nucleus 31 0.0006
GO/DNA repair 171 0.0006
GO/tRNA processing 38 0.0009

Abbreviation: TKI, tyrosine kinase inhibitors.
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to infer the potential regulator involved in TKI resistance.
In the comparison of TKI-resistant versus TKI-susceptible K562
sublines, the potential transcription targets of ‘V$ICSBP_Q6’
was most significantly upregulated in TKI-resistant sublines
(P¼ 5.2� 10�7) (Table 4). The related regulatory motif gene
sets, ‘V$IRF_Q6’ (1.8� 10�5) and ‘V$IRF_Q6’ (1.9� 10�4)
also showed substantial enrichment as upregulated genes in
TKI-resistant sublines. It is known that Bcr-Abl kinase suppresses
the Irf8 transcription factors (interferon consensus sequence-
binding protein or ICSBP). This suppression reactivates anti-
apoptotic genes such as BCL2 or BCLX, whose transcription is
normally suppressed by the ISCBP-mediated transcriptional
control.35 The upregulation of potential transcription targets
of ISCBP or IRF may represent a treatment effect of TKI, but it is
expected that TKI-resistant clones will restore some functions
mediated by ICSBP, such as apoptosis. Consistent with this
expectation, clustering analysis showed that a number of
apoptosis-related genes (CASP4, TNFSF10 and TNFRSF9) were
upregulated in resistant clones. In addition, the transcription
factors previously assumed to have roles in leukemogenesis such
as Evi1 were also enriched in TKI-resistance expression
profiles,36 which may increase the cellular proliferation after
the acquisition of TKI resistance.

We also used the expression profiles associated with drug
perturbation of in vitro cell lines (Connectivity Map) to
investigate potential chemical agents that may mimic or
modulate the TKI resistance in terms of gene expression
(Table 4).37 Among the drug perturbation-related gene sets,
‘imatinib (PC3)_Up’ showed downregulation in TKI-resistant
sublines (that is, the upregulated genes in the imatinib-treated
in vitro PC3 cell line are relatively downregulated in our
TKI-resistant K562 sublines). This may also represent the
inhibition effects of TKI, indicating that the expression signatures
of TKI-resistant clones are largely composed of those from TKI
inhibition as shown in the example of upregulation of apoptosis
category. The correlation analysis of the expression profiles with
in silico drug-screening results should be interpreted with care.
However, our preliminary analysis shows that genes that can be

suppressed with widely used anticancer or antidiabetic
drugs such as tamoxifen and rosiglitazone are upregulated in
resistance-related expression profiles, which will require
further effort to investigate the potential drug interactions or
the possibility that these agents can affect the adverse effects or
resistance acquisition of TKI.

We next performed the pathway analysis by comparing two
different TKI-resistant cell lines (nilotinib versus imatinib).
Table 5 lists the molecular functions enriched to the genes
relatively upregulated in nilotinib- or imatinib-resistant cell
lines, respectively. We observed that ‘prostaglandin biosynth-
esis’ and ‘glycerolipid metabolism’ are relatively upregulated in
nilotinib-resistant sublines compared with imatinib-resistant
clones. The overexpression of cyclooxygenase-2 and increased
prostaglandin E2 production have been observed with imatinib
treatment,38 which suggests the inhibitor to cyclooxygenase-2
can modulate the imatinib-resistant cases.39 Our pathway
analysis indicates that the differential expression between
nilotinib- and imatinib-resistant cases was primarily associated
with ‘prostaglandin metabolism’ category, which indicates
that the disturbance to eicosanoid metabolism is less severe in
nilotinib-resistant cases, or such disturbance accompanies
different pathway molecules.

Discussion

The use of imatinib as the first-line chemoagent in treating
newly developed CML has achieved a high-profile success
achieving 80% of response rate in chronic phase CML cases.
However, the development of resistance has been a major
obstacle that severely limits the clinical utility of this drug.

In this study, the global transcriptome analysis of K562 in vitro
cell line model that acquired drug resistance to 1st and 2nd
line TKI of imatinib and nilotinib identified a number of
candidate genes and potential molecular functions associated
with the TKI resistance. The expression profiles of TKI-resistant
cell clones are largely composed of two features; one represents

Figure 5 Expression profiles of the four kinase genes in imatinib-resistant patients and good responders. Twelve CML samples were collected, six
poor responders (P) containing three chronic phase (CP) and three acute phase (AP); six good responders (G) containing three CPs and three APs.
qRT-PCR was performed for the 12 samples as described in Materials and methods section using the same primers listed in Table 1. All three
chronic phase poor responders showed relative upregulation of AURKC expression compared with good responders. However, the other three
kinase genes did not show prominent difference of expression between the poor and good responders.
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the upregulation of genes that may confer survival benefits
(for example, kinases and known oncogenes) while the other
represents the effects of TKI inhibition (for example, apoptosis).
It is notable that we observed the upregulation of various kinds
of kinase-encoding genes in TKI-resistant clones (AURKC, FYN,
SYK, BTK and YES1). It is expected that the activated kinase
molecules can confer the alternative survival signatures when
the endogenous Bcr-Abl oncoprotein becomes inactivated by
TKI inhibitors. The use of alternative kinase can be an efficient
way to obtain drug resistance for the clones that are already
addicted to oncogenic Bcr-Abl protein. This feature has also
important clinical implications in that the currently available
(or those on clinical evaluation) kinase inhibitors have
target selectivity and the effort is ongoing to discover synergistic
inhibitor combination.40 It is already reported that inhibitors that
can target different kinase molecules can have beneficial effects
in controlling the imatinib-resistant cases,33,34 and dual Src/Abl
inhibitors such as dasatinib can also help overcome the
developed resistance to imatinib.17 We also observed a number
of genes whose activation may help the clones to obtain the
resistance phenotype such as known cancer-related genes (EGF
and JAG1) and transporter-encoding genes (ABCB1 and TAP1).
These molecules may represent a set of potential biomarkers,
which will facilitate the evaluation and screening of potential
resistance cases and targets for therapeutic intervention.
We have observed expression profiles of the four kinase genes

(AURKC, FYN, SYK and BTK) in imatinib-resistant patients and
good responders (Figure 5). All three chronic phase poor
responders showed relative upregulation of AURKC expression
compared with good responders. However, the other three
kinase genes did not show prominent difference of expression
between the poor and good responders. Further study is needed
with a larger clinical sample size and we are in the process of
conducting it.
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