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Abstract
Reactive nitrogen species (RNS) play important roles in mediating cerebral ischemia-reperfusion injury.  RNS activate multiple 
signaling pathways and participate in different cellular events in cerebral ischemia-reperfusion injury.  Recent studies have indicated 
that caveolin-1 and matrix metalloproteinase (MMP) are important signaling molecules in the pathological process of ischemic 
brain injury.  During cerebral ischemia-reperfusion, the production of nitric oxide (NO) and peroxynitrite (ONOO-), two representative 
RNS, down-regulates the expression of caveolin-1 (Cav-1) and, in turn, further activates nitric oxide synthase (NOS) to promote RNS 
generation.  The increased RNS further induce MMP activation and mediate disruption of the blood-brain barrier (BBB), aggravating 
the brain damage in cerebral ischemia-reperfusion injury.  Therefore, the feedback interaction among RNS/Cav-1/MMPs provides an 
amplified mechanism for aggravating ischemic brain damage during cerebral ischemia-reperfusion injury.  Targeting the RNS/Cav-1/
MMP pathway could be a promising therapeutic strategy for protecting against cerebral ischemia-reperfusion injury.  In this mini-review 
article, we highlight the important role of the RNS/Cav-1/MMP signaling cascades in ischemic stroke injury and review the current 
progress of studies seeking therapeutic compounds targeting the RNS/Cav-1/MMP signaling cascades to attenuate cerebral ischemia-
reperfusion injury.  Several representative natural compounds, including calycosin-7-O-β-D-glucoside, baicalin, Momordica charantia 
polysaccharide (MCP), chlorogenic acid, lutein and lycopene, have shown potential for targeting the RNS/Cav-1/MMP signaling pathway 
to protect the brain in ischemic stroke.  Therefore, the RNS/Cav-1/MMP pathway is an important therapeutic target in ischemic stroke 
treatment.
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Pathophysiology of acute ischemic stroke
Stroke is one of the most prevalent diseases with high mortal-
ity and disability all over the world[1].  Ischemic stroke and 
hemorrhage stroke are two major subtypes, among which 
ischemic stroke accounts for more than 80 percent of stroke 
incidences[2].  Currently, tissue plasminogen activator (t-PA) 
is the only FDA approved drug for ischemic stroke, and its 
efficacy is limited by the restrictive golden time window of 
4.5 h[3] with the potential risk of hemorrhagic transformation 
when given beyond this time window[4, 5].  The development of 
novel therapeutic agents has become timely and important for 

improving the outcome of ischemic stroke treatment.
Ischemic stroke involves different pathophysiological cas-

cades, including energy failure, oxidative stress, acidosis, 
disruption of ion homeostasis, calcium overload, neuronal cell 
excitotoxicity, inflammation, etc[6-11].  In ischemic stroke, the 
obstruction of blood flow dramatically reduces glucose and 
oxygen supply in ischemic brain region and triggers “ischemic 
cascades”[12, 13].  Lack of ATP synthesis with low oxygen sup-
ply leads to accumulation of lactate and malfunction of ion 
pumps, including the Na+/K+-ATPase and Ca2+/H-ATPase[14], 
subsequently inducing membrane depolarization and calcium 
ion (Ca2+) overload[15].  In the meantime, membrane depolar-
ization causes the release of excitotoxic amino acids, espe-
cially leading to glutamate translocation into the extracellular 
compartment.  Glutamate can act to induce neurotoxicity, 
activate glutamate receptors and promote the influx of Ca2+[16].  
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A substantial elevation in intracellular Ca2+ activates vari-
ous calcium-dependent enzymes, including protein kinase C, 
phospholipase A2, phospholipase C, cyclooxygenase, calcium-
dependent nitric oxide synthase (NOS), calpain, proteases 
and endonucleases, resulting in necrotic and apoptotic cell 
death[17, 18].  Inflammation is another important process of cell 
death in ischemic stroke[19].  Ischemic cascades activate resi-
dent microglia and astrocytes, together with infiltrated T lym-
phocytes, neutrophils, and macrophages, subsequently induc-
ing the release of multiple inflammatory factors such as cyto-
kines, chemokines, enzymes and free radicals[19, 20].  Therefore, 
ischemic stroke is a complicated pathophysiological process 
involving the activation of regulatory networks in response to 
stroke.

Free radicals are considered to be important players in 
ischemic stroke, particularly in cerebral ischemia-reperfusion 
injury.  There are two species of free radicals including reac-
tive oxygen species (ROS) and reactive nitrogen species (RNS).  
ROS are comprised of superoxide, hydroxyl radical, singlet 
oxygen, hydrogen peroxide, etc.  ROS at a low concentration 
serve as redox signaling molecules to maintain biological func-
tions under physiological conditions, whereas large amounts 
of ROS produced from ischemic brains exacerbate brain injury 
through different mechanisms[21, 22].  For example, ROS enhance 
inflammatory responses by activating adhesion molecules and 
promoting leucocyte infiltration[23].  ROS induce the release of 
glutamate and calcium overload[24].  ROS activate inflamma-
tion factors, mediate lipid peroxidation, and induce neural cell 
death, disrupting the integrity of the blood-brain barrier (BBB) 
and enlarging the infarction volume[22].  As representative 
antioxidants, edaravone, NXY-059, and allopurinol improved 
outcomes in acute ischemic stroke patients[25-27].  Hence, free 
radicals aggravate the brain damage in ischemic stroke, and 
antioxidants may be beneficial in ischemic stroke treatment.  

While ROS-mediated ischemic brain injury has been inten-
sively investigated, the roles of RNS remain relatively unex-
plored.  RNS, including NO and ONOO-, mediate the BBB 
disruption, infarction enlargement and apoptotic cell death in 
cerebral ischemia-reperfusion injury[28].  RNS-mediated matrix 
metalloproteinase (MMP) activation is one of the critical path-
ological processes in cerebral ischemia-reperfusion injury[29, 30].  
MMP-9 has been used as a biomarker for monitoring brain 
damage and predicting hemorrhagic transformation in throm-
bolytic treatment for ischemic stroke[31].  NG-nitro-L-arginine 
methyl ester (L-NAME), a nonselective NOS inhibitor, signifi-
cantly reduced the BBB breakdown and MMP-9 activity in a 
middle cerebral artery occlusion (MCAO) animal model[32].  In 
the past decade, we have made great efforts in the exploration 
of the roles of RNS in cerebral ischemia-reperfusion injury.  In 
this mini-review, we mainly focus on the roles of RNS/caveo-
lin-1/MMP signaling cascades in acute ischemic brain injury.  
Subsequently, we review the potential natural compounds 
targeting RNS/caveolin-1/MMP signaling pathways for ame-
liorating cerebral ischemia-reperfusion injury.

Detection of NO and ONOO- in cerebral ischemia-reperfusion 
injury
As representative RNS, NO and ONOO- are produced at both 
the ischemia and reperfusion stages in cerebral ischemia-
reperfusion injury.  A low concentration of NO produced from 
endothelial nitric oxide synthase (eNOS) has physiological 
functions, whereas a high concentration of NO produced from 
inducible NOS (iNOS) and neuronal NOS (nNOS) is detrimen-
tal to the ischemic brain[28].  When NO and superoxide (O2

-) 
are simultaneously produced in the ischemic brain, they rap-
idly react with each other to produce ONOO- at a diffusion-
limited rate[28].  By using electron paramagnetic resonance 
(EPR) spin trapping technology, we monitored the production 
of NO in a rat MCAO model and found that cerebral ischemia-
reperfusion resulted in a biphasic increase in NO production 
in the ischemic core and penumbra, with first-phase NO pro-
duction at the ischemic phase and the second-phase increase 
of NO at the reperfusion stage[33].  Notably, a large amount of 
superoxide (O2

-) was generated from neurons and endothelial 
cells by activating NADPH oxidase[34], xanthine oxidase[35], 
and cyclooxygenase (COX)[36, 37].  The reaction of O2

- and NO 
rapidly forms ONOO-.  Peroxynitrite induces protein tyro-
sine nitration by the addition of a nitro group to the hydroxyl 
group of the tyrosine residue to form 3-nitrotyrosine (3-NT), a 
footprint marker for ONOO- production[38].  The production of 
NO from iNOS and nNOS appears to be important for ONOO- 
formation as iNOS or nNOS knockout mice did not show 
nitrotyrosine-positive staining[39, 40].  Due to the concerns of the 
sensitivity and specialty of 3-NT for ONOO-[41], we have made 
great efforts to develop novel specific and sensitive probes for 
ONOO- detection[42-44].  With ONOO- probes, we directly visu-
alized the ONOO--induced fluorescence in ischemic brains in 
vivo as well as hypoxic neurons in vitro.  Our results suggest 
that targeting ONOO- could be an important strategy not only 
for attenuating cerebral ischemia-reperfusion injury[45, 46] but 
also for reducing hepatic ischemia-reperfusion injury[47].  

Roles of peroxynitrite in cerebral ischemia-reperfusion 
injury
Peroxynitrite has a much higher cytotoxicity than NO and 
O2

-.  Peroxynitrite has an approximately 400 times higher pen-
etrating capacity across the lipid membrane than superoxide 
anions[48, 49].  Peroxynitrite penetrates the lipid bilayers of the 
membrane and induces DNA damage[50], protein nitration[51, 52], 
and lipid peroxidation[53], as well as enzyme and ion chan-
nel inactivation[54, 55].  Peroxynitrite, rather than NO, directly 
mediated poly(ADP-ribose) synthase (PARS) activation and 
suppressed cellular viability[56].  The peroxynitrite decomposi-
tion catalyst FeTMPyP reduced brain infarct volume, inhibited 
neuronal cell death in the Cornu Ammonis 1 (CA1) region 
of the hippocampus and improved functional outcomes[57, 58].  
Our recent study showed that FeTMPyP significantly reduced 
the ONOO- level in ischemic brains and attenuated neuronal 
apoptosis[59].  Uric acid, an ONOO- scavenger, rescued over 70 
percent of the ischemic cortex and striatum[60].  In addition to 
neuronal injury, cerebrovascular injury was also induced by 
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peroxynitrite.  The ONOO- donor 3-morpholino sydnonimine 
(SIN-1) further reduced the expression of tight junction protein 
ZO-1 and exacerbated BBB disruption in a cerebral ischemia-
reperfusion animal model[61].  Intravenous administration 
of FeTMPyP significantly reduced neurovascular injury in a 
prolonged brain ischemia model[62].  In clinical studies, a high 
level of uric acid in the blood was correlated with excellent 
outcomes in stroke patients[63, 64].  A meta-analysis involving 
10 studies with 8131 ischemic stroke patients also showed a 
positive correlation of serum uric acid with good neurological 
outcomes[65].  In addition, the plasma 3-NT level was positively 
correlated with the magnitude of the brain injury among isch-
emic stroke patients[66].  Together, these works indicate that 
ONOO- could be an important target for ischemic stroke.

Interaction of RNS and MMPs in ischemic brain injury
MMPs are proteolytic enzymes that are capable of disrupt-
ing the extracellular matrix (ECM) to mediate ischemic brain 
injuries[67, 68].  MMPs have a common configuration that 
includes a zinc-dependent catalytic site, propeptide cysteine 
switch and other entities, such as a transmembrane domain, 
fibronectin-binding site and so on[69].  MMP-9 and MMP-2 are 
two well-known MMPs that contribute to cerebral ischemia-
reperfusion injury.  The basal level of MMPs in the adult brain 
is low, but ischemic insults trigger acute activation of several 
MMPs[70-72].  Stroke patients have a significantly higher serum 
level of MMP-2 and MMP-9 than healthy controls[73].  Tissue 
plasminogen activator (t-PA) treatment further enhanced the 
serum MMP-9 level[73].  Neutrophils and microvessels are 
major sources of MMP-9 activation and contribute to hemor-
rhagic transformation in the presence or absence of t-PA dur-
ing ischemic stroke[74, 75].  Inhibition of MMPs protected against 
the sustained loss of tight junction proteins such as claudin-5 
and occludin in rodent MCAO models[30, 76, 77].  Broad-spectrum 
and specific MMP-9 inhibitors notably attenuated hippo-
campal neuronal damage in a transient global cerebral isch-
emia model[78, 79].  The MMP-9-neutralizing antibody greatly 
decreased infarction size in ischemic brain injury[80].  MMP-9 
KO mice showed a smaller lesion volume than wild-type mice 
after cerebral ischemia[81].  These results together indicate that 
MMP-9 plays an important role in mediating cerebral isch-
emia-reperfusion injury.

RNS activate MMPs during ischemic brain injury[82].  Per-
oxynitrite was co-localized with MMP-9 in brain microves-
sels of the area showing Evans blue leakage, suggesting that 
ONOO- may induce MMP-9 activation and contribute to BBB 
disruption[32].  The nonselective NOS inhibitor N(omega)-
nitro-L-arginine (L-NA) reduced the 3-NT level and attenu-
ated MMP-9 expression and EB extravasation during cerebral 
ischemia-reperfusion[83].  Consistently, S-nitrosoglutathione 
(GSNO) inhibited MMP-9 activation, up-regulated the expres-
sion of tight junction protein ZO-1, and ameliorated BBB 
leakage in ischemic brains[61].  Intravenous administration 
of FeTMPyP at the reperfusion stage significantly reduced 
MMP-9 and MMP-2 expression in ischemic brains[62].  Our 
recent study showed that ONOO--mediated MMP-9 activation 

contributed to hemorrhagic transformation (HT) in a rodent 
ischemic stroke model with delayed tissue plasminogen acti-
vator (t-PA) treatment[84].  Delayed t-PA treatment beyond 4.5 
h after MCAO ischemia significantly up-regulated the expres-
sion of 3-NT and MMP-9 and aggravated HT in the ischemic 
brain area.  FeTMPyP treatment significantly down-regulated 
MMP-9 activity, attenuated HT and improved the neurologi-
cal outcomes[84].  Furthermore, other studies have shown that 
ONOO- production mediates the activation of purified human 
proMMP-1, -8, and -9 in the presence of similar concentrations 
of GSH via S-nitrosoglutathione[85].  Peroxynitrite activated 
MMP-2 in the presence of glutathione by modifying the cyste-
ine residue in the auto-inhibitory domain of the zymogen[86].  
Taken together, ONOO--mediated MMP activation plays 
crucial roles in BBB damage and hemorrhagic transformation 
during cerebral ischemia-reperfusion injury.

Role of caveolin-1 in acute ischemic brain injury
Caveolae are flask-shaped lipid rafts in the cell membrane, 
ranging from 50 to 100 nm in size, that regulate transport and 
cell signaling.  Caveolins, which are 19–22-kDa integral mem-
brane proteins located at caveolae, are abundant in adipocytes, 
endothelial cells, and fibroblasts and are critical for caveolae 
formation[87-93].  Caveolins have three subtypes including 
caveolin-1, -2, and -3, with an NH2-terminal membrane attach-
ment domain (N-MAD, Residues 82–101) and COOH-terminal 
membrane attachment domain (C-MAD, residues 135–150) 
that binds to membranes with high affinity[94-96].  

Caveolin-1 (Cav-1) binds to all isoforms of NOS via the Cav-
binding motif and inhibits NOS activity[97-100].  Caveolin-1 has 
two cytoplasmic domains including the scaffolding domain 
(amino acids 61-101) and C-terminal tail (amino acids 135-178), 
which are able to bind with eNOS.  Peptides derived from 
the scaffolding domains of Cav-1 and Cav-3 inhibited eNOS, 
iNOS and nNOS activities[101] and subsequently reduced NO 
production in blood vessels and endothelial cells[99].  Over-
expression of Cav-1 significantly attenuated eNOS enzyme 
activity in endothelial cells[102, 103].  Loss of Cav-1 persistently 
activated eNOS both in mice and human subjects[104].  Under 
a transient MCAO ischemia-reperfusion condition, Cav-1 KO 
mice had a larger infarction volume than wild-type mice[105].  
Interestingly, Cav-1 expression was significantly down-regu-
lated in ischemic brains during cerebral ischemia-reperfusion 
injury compared to that in control brains.  NOS inhibitors 
including L-NAME, N6-(1-iminoethyl)-lysine (NIL) and 7-NI 
all prevented the loss of Cav-1 in ischemic brains[33], indicat-
ing that NO down-regulates Cav-1 in ischemic brain injury.  
The interaction between NO and Cav-1 forms a positive feed-
back loop for the regulation of NO production in cerebral 
ischemia-reperfusion injury.  Notably, the roles of NO in the 
modulation of Cav-1 expression appear to be different in neu-
roblastoma cells.  An NO donor up-regulated the expression 
of Cav-1, while both the non-selective NOS inhibitor L-NAME 
and iNOS inhibitor 1400W abolished the induction of Cav-1 
in neuroblastoma SK-N-MC cells.  Increased Cav-1 expres-
sion may be an adaptive mechanism in neuroblastoma cells in 
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response to hypoxic stimulation[106].  Consistent results have 
also been found in lung cancer cells[107].  Thus, the interaction 
of Cav-1 and NO could be an important cellular signaling 
pathway to cope with different pathological processes whose 
defensive or detrimental effects might be related to cell types 
and pathological conditions.

The interaction of Cav-1 and NO impacts BBB permeability 
through modulation of MMP activation in cerebral ischemia-
reperfusion injury[108].  Cav-1 was co-localized with MMP-2 
on the surface of endothelial cells[109, 110].  NO modulated 
the expression and distribution of Cav-1 and MMP-9 at the 
endothelial cell/tumor cell interface[111].  Treatment of Cav-1 
peptide protected BBB integrity from chemokine-induced 
damage as evidenced by the up-regulation of TJ and adherent 
junction proteins in BMECs in vitro[112].  Cav-1 KO mice had 
increased eNOS activity and NO production in endothelial 
cells along with endothelial hyper-permeability compared 
to wild-type mice[113].  To explore the roles of Cav-1 in the 
regulation of BBB permeability, we compared the activi-
ties and expression of MMPs and the BBB permeability in a 
mouse MCAO model.  After wild-type mice were subjected 
to cerebral ischemia-reperfusion injury, Cav-1 expression was 
down-regulated, accompanied with increased MMP-2 and 
-9 activities, decreased ZO-1 expression and enhanced BBB 
permeability in ischemic brains.  The roles of Cav-1 in the 
modulation of MMPs and BBB permeability were further con-
firmed by using Cav-1 KO mice in vivo and Cav-1 RNAi brain 
microvascular endothelial cells (BMECs) in vitro.  Knockout 
or knockdown of Cav-1 aggravated the BBB permeability and 
cell damage.  Furthermore, L-NAME treatment partly inhib-
ited MMP activation and protected the BBB integrity in Cav-1 
KO mice[114].  The results suggest that NO production directly 
contributes to MMP activation and BBB disruption even 
without Cav-1 involvement.  Cav-1 only partly contributes 
to the BBB damage.  Similar results have also been reported 
by others[115, 116].  Lentiviral-mediated re-expression of Cav-1 
inhibited MMP activation, protected TJ protein expression and 
decreased brain edema in Cav-1 KO mice[115].  Thus, we con-
clude that the NO/Cav-1/MMP signaling cascades play criti-
cal roles in mediating BBB damage during cerebral ischemia-
reperfusion injury[114].  In addition, peroxynitrite also affected 
Cav-1 expression in endothelial cells.  The expression of 3-NT 
was co-localized with Cav-1 in the endothelial cells of the 
diabetes mellitus (DM) patients, and exogenous peroxynitrite 
decreased the caveolae structure and Cav-1 expression, which 
led to NOS uncoupling[117].  Interestingly, similar results were 
also found in hepatic ischemia/reperfusion injury, showing 
Cav-1 KO mice have more 3-NT expression in liver tissues 
than wild-type mice[47].  Therefore, the interaction of RNS and 
Cav-1 may be an important cellular signaling pathway in both 
cerebral and hepatic ischemia-reperfusion injury[47, 108, 114, 116, 118].  
However, controversial results in different neurological dis-
ease models have also been reported.  In a rat cortical cold-
injury model, increased Cav-1 expression and phosphoryla-
tion were co-localized with decreased occludin and claudin-5 
expression in the brain area with increased BBB permeabil-

ity[119].  Expression of phosphorylated Cav-1 was increased in 
endothelial cells after cortical cold injury, which was associ-
ated with BBB disruption and edema in brain injury[120].  The 
exact mechanisms and explanations for those controversial 
results are unclear.  Since those studies only presented a phe-
nomenon in which increased Cav-1 expression co-existed with 
BBB disruption in the rat cortical cold-injury model, further 
investigations should be conducted for the proof-of-concept of 
the roles of Cav-1 in BBB permeability.  Recently, we stepped 
forward to investigate the roles of Cav-1 in the modulation 
of the BBB permeability in neuroinflammation diseases by 
using a laboratory murine model of experimental autoimmune 
encephalomyelitis for mimicking multiple sclerosis.  Increased 
expression of Cav-1 in the serum and spinal cord was associ-
ated with disease incidence and severity in wild-type mice 
with active encephalomyelitis.  After immunization, Cav-1 KO 
mice showed a remarkably lower disease incidence and fewer 
clinical symptoms than wild-type littermates.  The Cav-1 KO 
mice also had fewer encephalitogenic T cells trafficking into 
the CNS and decreased expression of adhesion molecules 
ICAM-1 and VCAM-1 within the lesions.  Thus, we concluded 
that Cav-1 could mediate CNS-directed lymphocyte traffick-
ing across the BBB via interacting with adhesion molecules 
ICAM-1 and VCAM-1, subsequently aggravating neuroinflam-
mation and degeneration in EAE pathology[121, 122].  The above 
results indicate that Cav-1 has different functions in different 
neurological diseases.  Particularly for ischemic brain injury, 
we concluded that the interaction of RNS, Cav-1 and MMPs 
could form a positive feedback loop, amplifying the impact 
of RNS in BBB disruption and ischemic brain injury (Figure 
1).  Therefore, targeting the RNS/Cav-1/MMP pathway is a 
promising therapeutic strategy for protecting against cerebral 
ischemia-reperfusion injury[28, 108, 123].

Natural active compounds targeting ONOO-/Cav-1/MMP-
9 signaling pathway for neuroprotection in ischemic 
stroke 
Based on abundant experience and accumulated histologi-
cal evidence, Chinese herbal medicine has been used for the 
treatment of stroke in China for centuries.  Herbal formulas or 
single herbs are great sources for drug discovery.  Herein, we 
summarize the current progress in the exploration of active 
compounds from Chinese medicinal herbs that modulate the 
RNS/Cav-1/MMP signaling pathways and their implications 
for neuroprotection in the treatment of ischemic stroke.

Calycosin and calycosin-7-O-β-D-glucoside
Calycosin and its glycoside form calycosin-7-O-β-D-glucoside 
(CG) are two representative isoflavones isolated from Astragali 
Radix, a medicinal herb used for ischemic stroke for hundreds 
of years in China[124].  The chemical structure of CG is shown 
in Figure 2.  We investigated the neuroprotective effects of 
CG on modulating the NO/Cav-1/MMP signaling pathway 
and reducing infarction volume and BBB permeability in a rat 
MCAO cerebral ischemia-reperfusion model[125].  CG inhibited 
MMP activation, maintained the expression of Cav-1 and tight 
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junction proteins, attenuated BBB disruption, reduced infarc-
tion volume and improved the neurological outcomes in cere-
bral ischemia-reperfusion injury[125, 126].  Calycosin also demon-
strated bioactivities of scavenging free radicals and inhibiting 
MMP-9 activity in other cellular or non-cellular systems[127-129].  
Calycosin and calycosin-7-O-β-D-glucoside decreased the pro-
duction of NO, O2

-, and TNF-α in lipopolysaccharide (LPS)-
stimulated microglial or RAW 264.7 macrophages[124, 130] and 
attenuated the neurotoxicity induced by various pathological 
factors including LPS, glutamate, mongholicus and xanthine 
(XA)/xanthine oxidase (XO)[130-132].  In addition, calycosin 
attenuated the permeability of human umbilical vein endo-
thelial cells (HUVECs) under hypoxic conditions, possibly 
through inhibiting ROS production and preserving cytoskel-
eton structure[133].  These results suggest that the inhibition of 
the RNS/MMP-9 signaling pathway contributes to the neu-
roprotective and vascular protective effects of calycosin and 
CG.  Nevertheless, other mechanisms could also account for 
the neuroprotective effects of calycosin and CG.  For example, 
calycosin up-regulated transient receptor potential canonical 
6 (TRPC6) and induced phosphorylation of CREB in ischemic 

brains[134].  Calycosin modulated the positive feedback of estro-
gen receptor ER-α and microRNA-375 in cerebral ischemia-
reperfusion injury[135].  Calycosin was shown to act as a non-
competitive calcium channel blocker to prevent calcium over-
load[136].  CG activated the PI3K/Akt pathway and had neuro-
protective effects in cerebral ischemia-reperfusion injury[137].  
Therefore, calycosin and CG are able to modulate multiple 
signaling targets to exert their neuroprotective effects on isch-
emic brain injury.  With better bioavailability than calycosin, 
CG has greater potential for further translational research[125].  

Baicalin
Baicalin is one of the major flavonoids isolated from the dried 
root of Scutellaria baicalensis, a medicinal herb used for isch-
emic stroke in China[138].  The chemical structure of baicalin is 
shown in Figure 3.  Baicalin promoted neuronal differentiation 
of neural progenitor cells[139, 140].  Baicalin reduced brain infarc-
tion volume, brain edema, BBB damage and brain inflam-

Figure 1.  Schematic illustrating the involvement of RNS/caveolin-1/MMPs in mediating the ischemic brain injury and the natural compounds regulating 
related targets. Upon cerebral ischemia, reduction of caveolin-1 (CAV-1) activates nitric oxide synthase (NOS) and overproduces NO.  NO is accumulated 
and down-regulates CAV-1 expression in ischemic brains, which further activates NOS and forms a feedback interaction to amplify the detrimental 
signals.  MMPs activity is negatively regulated by CAV-1, and loss of CAV-1 leads to higher activity of MMPs. In addition, NO reacts with O2

- to generate 
ONOO-. ONOO- is highly toxic and could also activate MMPs.  Active MMPs cleave tight junction proteins, including occludin, claudin, and ZO-1, leading 
to blood-brain barrier damage. Calycosin or Calycosin-7-O-β-D-glucoside targets on CAV-1 (Ref 125), NO (Ref 124, 125, 130), and MMPs (Ref 125, 127, 
128); M charantia polysaccharide targets on NO (Ref 45) and ONOO- (Ref 45); Baicalin targets on NO (Ref 150, 151), ONOO- (Ref 46, 59, 151), and 
MMPs (Ref 46, 152, 153); Chlorogenic acid targets on CAV-1 (Ref 181), NO (Ref 173), ONOO- (Ref 168–171), and MMPs (172, 175, 176); lutein targets 
on ONOO- (Ref 182); lycopene targets on ONOO- (Ref 187-189). Ref, reference.

 Inhibit
 Promote

Figure 2. Calycosin-7-O-β-D-glucoside. Figure 3. Baicalin.
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mation in rodent ischemic stroke models[138, 141-145].  Baicalin 
decreased BBB permeability and protected brain microvascu-
lar endothelial cells (BMVECs) in vivo and in vitro[46, 145, 146] and 
reduced neurotoxicity under an OGD condition[147-149].  The 
neurovascular protective effects of baicalin may be attributed 
to its antioxidant effects[138, 150, 151].  By using mass spectrometry 
and EPR spin trapping experiments, we demonstrated the 
direct scavenging activities of baicalin on ONOO- and super-
oxide[59].  Baicalin inhibited the formation of 3-nitrotyrosine 
in ischemic brain tissues[59].  By using our newly developed 
peroxynitrite-specific probe, HK-Yellow AM, we directly visu-
alized the production of ONOO- in ischemic brains.  Baicalin 
also inhibited ONOO- production and reduced MMP-9 activ-
ity[46], protected the expression of the tight junction protein 
occludin, and attenuated the BBB damage and brain edema in 
both permanent MCAO model and intracerebral hemorrhage 
model[152, 153].  Notably, a proteomic study and gene microar-
ray indicated that baicalin acted in a regulatory network to 
induce its neuroprotective effects against cerebral ischemic 
injury[142, 154].  Further studies revealed that baicalin inhibited 
toll-like receptor 2/4 and NF-kB pathways[143, 151, 155], reduced 
the phosphorylation of CaMKII[156] and up-regulated AMPK 
alpha signaling[157].  Thus, baicalin is a good drug candidate for 
the treatment of stroke[142, 158, 159].  

M charantia polysaccharide (MCP)
M charantia polysaccharide (MCP) is one of the important bio-
active components of Momordica charantia (MC), also named 
the bitter melon.  MC has antioxidant and anti-hyperglycemic 
effects on cerebral ischemia-reperfusion injury in diabetic 
mice[160].  MCP showed its antioxidant effects through promot-
ing endogenous antioxidant enzyme activities in a rat myo-
cardial infarction model[161, 162].  Our recent studies showed 
that MCP dose-dependently reduced infarction volume and 
attenuated neuronal apoptosis in animal models of four-vessel 
occlusion (4-VO) and MCAO.  MCP had scavenging effects 
on NO and ONOO-, inhibited the release of cytochrome c 
from mitochondria and modulated the activation of the JNK3, 
c-Jun, and Fas-L signaling pathways in ischemic brains[45].  
NO was reported to mediate the activation of JNK3 signaling 
via S-nitrosylation, and antioxidant N-acetylcysteine down-
regulated JNK3 signaling and protected neurons from isch-
emic brain injury[163, 164].  Thus, the neuroprotective effects of 
MCP may be attributed to inhibiting the free radical-mediated 
c-Jun N-terminal kinase 3 signaling pathway to protect against 
cerebral ischemia-reperfusion injury.  

Chlorogenic acid
Chlorogenic acid (CGA) is a dietary phenylpropanoid mole-
cule derived from a variety of natural products such as auber-
gine, blueberries and coffee[165-167].  The chemical structure of 
CGA is shown in Figure 4.  CGA directly reacted with ONOO- 
with a rate constant of 1.6±0.7×105 M−1·s−1 and prevented DNA 
damage[168-171].  CGA is also a strong MMP-9 inhibitor with an 
IC50 of 30–50 nmol/L[172].  CGA inhibited the excess produc-
tion of NO in LPS/gamma-interferon (IFN-gamma)-treated 

C6 astrocytes[173].  CGA improved the behavioral outcome 
in a rabbit small clot embolic stroke model[174].  CGA and its 
metabolite dihydrocaffeic acid (DHCA) inhibited MMP-2/9 
activity, attenuated BBB damage and reduced brain infarction 
and brain edema[175, 176].  CGA also exerted anti-inflammatory 
effects against cerebral ischemia-reperfusion injury[177, 178].  
CGA protected against glutamate-induced neurotoxicity in 
primary cultured cortical neurons[179].  CGA was shown to 
cross the BBB[180].  In an alcoholic liver injury model, CGA up-
regulated the expression of Cav-1 and inhibited Stat3/iNOS 
signaling and hepatic lipid accumulation and peroxidation[181].  
Thus, CGA could target the RNS/Cav-1/MMP signaling path-
ways to potentially protect the brain against ischemic stroke.  
Notably, CGA has synergistic effects with tissue plasminogen 
activator (t-PA), the only FDA-approved drug, in improving 
the neurological outcomes[174].  As a thrombolytic treatment, 
t-PA has a restrictive therapeutic time window within 4.5 h, 
and treatment beyond this time window increases the risk 
of hemorrhagic transformation (HT)[67].  BBB disruption is a 
critical process of delayed t-PA-induced HT, which involves 
ONOO- generation and MMP activation[67, 84].  With the bioac-
tivities of inhibiting ONOO- and MMPs, further study of the 
potential of CGA as an adjunct agent for protecting BBB integ-
rity and preventing t-PA-mediated HT during thrombolytic 
treatment for ischemic stroke is valuable.  

Other compounds
Other compounds such as lutein and lycopene may also target 
RNS to protect ischemic brains.  For example, lutein (Figure 5), 
a xanthophyll rich in green leafy vegetables, directly reacted 
with peroxynitrite and nitrogen dioxide radicals[182] and pro-
tected human neuroblastoma cells from DNA damage induced 
by peroxynitrite[183].  Lutein treatment ameliorated oxidative 
stress and inflammation, reduced brain infarction volume and 
protected against neuronal apoptosis in mouse MCAO mod-
els[184, 185].  Interestingly, ischemic stroke patients with a poor 
early outcome showed significantly lower plasma lutein levels 
than those who remained functionally stable[186].  These results 
suggest that lutein may protect ischemic brains through its 
antioxidant effects.  As lutein is a safe daily supplement for 
ocular health, its potential application for stroke treatment 
merits further study.

Lycopene (Figure 6) is another compound that has been 
shown to directly react with ONOO-.  Lycopene prevented 
protein nitration and DNA damage in lung fibroblast 
cells[187-189].  Lycopene exerted antioxidative stress effects and 
inhibited neuronal apoptosis in rodent transient cerebral isch-

Figure 4. Chlorogenic acid.
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emia/reperfusion models[190, 191].  A recent meta-analysis of 
116 127 participants and 1989 cases showed that circulating 
lycopene was negatively associated with the risk of stroke[192].  
Similarly, a prospective study also demonstrated the potential 
of lycopene for reducing the risk of stroke onset[193].  Hence, 
lycopene is valuable for further studies as a neuroprotective 
agent for ischemic stroke.  In addition, other compounds, such 
as resveratrol, curcumin, apocynin, caffeic acid, and tanshi-
none IIA, have been noted as good candidates for inhibiting 
RNS-mediated brain damage in cerebral ischemia-reperfusion 
injury or ischemic brain injury.  We have reviewed their values 
as potential therapeutic agents in our previous articles[28, 82, 158].  
The details have been discussed before and should not be 
repeated here.

Discussion
Ischemic stroke is a major cause of death and long-lasting 
disability worldwide.  Identifying new therapeutic targets is 
important for drug development to treat ischemic stroke.  In 
this review, we have highlighted the important role of the 
RNS/Cav-1/MMP pathway in mediating cerebral ischemia-
reperfusion injury (Figure 1).  As shown in Figure 1, we have 
summarized the effects of several representative compounds 
targeting the RNS/Cav-1/MMP signaling pathway to dem-
onstrate their neuroprotective mechanisms in ischemic stroke 
treatment.

The following points regarding studies on drug discovery 
for ischemic stroke should be noted.  First, optimal therapeutic 
strategies should be considered since RNS has complex func-
tions at different stages of stroke pathology.  For example, 
at a low concentration, free radicals could also contribute to 
redox signaling.  NO can be a cellular signaling molecule that 
promotes neuronal proliferation and migration and improves 
neurological outcomes at the recovery stage in post-ischemic 
brains[194].  MMP-9 has also been shown to exert its beneficial 
effects on neuronal plasticity and brain remodeling at the 
recovery phase in post-stroke brains[195].  Treatment with an 
MMP-9 inhibitor beginning at day 7 exacerbated brain injury 
and impaired the functional outcomes of rats at day 14 after 
MCAO ischemia[195].  Consistently, we found that caveolin-1 
inhibited the neuronal differentiation of neural stem cells via 
the VEGF pathway, and Cav-1 KO mice showed more abun-

dant newborn neurons in brains[196].  Cav-1 KO mice revealed 
a better proliferation capacity of adult neural stem cells than 
wild-type mice[197].  Hence, the RNS/Cav-1/MMP pathways 
may be beneficial for brain repair at the recovery phase of isch-
emic stroke.  For drug treatment, the half-life of the aforemen-
tioned compounds is quite short, within several hours, which 
is still in the acute phase of stroke.  For example, calycosin-7-
O-β-D-glucoside had an elimination half-life of approximately 
2.18 h after oral gavage in rats[198].  Baicalin had an elimination 
half-life of 0.12 h after intravenous injection in rats[199].  The 
CGA metabolite level was decreased to less than 50% within 
1.5 h after intraperitoneal injection[200].  To reach the goal of 
the best neuroprotective outcome without interrupting the 
brain repair process, the selection of the optimal intervention 
time, dosage and frequency by integrating the knowledge of 
the functions of cellular signaling pathways at different stages 
of brain damage and repair and the pharmacological activi-
ties, pharmacokinetics and pharmacodynamics of those com-
pounds is important[69, 201].  Thus, understanding the dynamic 
changes of RNS, Cav-1 and MMPs and their impact on brain 
injury and brain repair after ischemic stroke is a prerequisite.  

We should also consider the therapeutic time window of 
these compounds.  In current studies, most of the compounds 
were applied within 2 h after ischemia onset[59, 125].  In the past, 
many neuroprotective compounds have failed in clinical trials 
despite animal studies showing promising neuroprotective 
effects.  One of the important reasons for this failure in clinical 
trials might be the limited therapeutic time windows of those 
compounds[202].  A compound that shows a neuroprotective 
effect when treated at 2 h after experimental stroke attack may 
not guarantee its therapeutic effect on stroke patients, espe-
cially when those treatments are launched several hours after 
stroke onset.  Therefore, the compounds that show a broad 
therapeutic time window in an experimental stroke model are 
favorable.  A series of experiments should be conducted to 
determine the therapeutic time window of those compounds 
in stroke treatment.

For drug development, we should consider the following 
key issues.  First, the pharmacokinetics and pharmacodynam-
ics of the candidate compounds should be taken into consid-
eration.  The BBB is a critical factor limiting drug distribution 
into the brain[203, 204].  The BBB penetration of the drug is usu-

Figure 5. Lutein.

Figure 6. Lycopene.
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ally determined by two major parameters: one is the physi-
cochemical properties of the compounds (such as molecular 
weight, rotatable bonds, solvent-accessible surface areas, 
H-bond capacity), and the other is the binding affinity of the 
compounds to the central nervous system (CNS) drug efflux 
pumps (most often the P-glycoprotein)[204].  Some simple rules 
based on the physiochemical features help to predict the BBB 
penetration of the compounds.  For example, if the number 
of N+O in a compound is no more than five, the compound is 
likely to cross the BBB[205].  A CNS drug has been proposed to 
have an in vitro passive permeability more than 150 nm/s and 
should not be a good P-glycoprotein substrate[206].  Neverthe-
less, experimental data should be collected to directly show the 
penetration of the compounds into the CNS.  Cerebral-spinal 
fluid (CSF) studies are usually conducted to calculate the CNS 
exposure of drug candidates[204].  An animal study showed 
that baicalin could cross the BBB and was detected in the CSF 
after single intravenous injection at a dosage of 24 mg/kg[207].  
CGA was also detected in the CSF of rats after oral administra-
tion and reached the level of pharmacological effect[208].  These 
preclinical results suggest the potential of these compounds to 
enter the ischemic brains to exert their neuroprotective effects.

Another key issue is the acquisition of direct evidence of the 
compound-target interaction in the treatment of ischemic brain 
injury[204].  Although many papers have reported the thera-
peutic effects of candidate compounds with in vivo and in vitro 
data, most of the aforementioned studies did not provide data 
regarding the direct interaction of the active compounds with 
the observed targets, such as the RNS/Cav-1/MMP signaling 
pathway, in the experimental systems.  Moreover, we should 
note that those compounds might have multiple targets, and 
their neuroprotection should not be simply explained by tar-
geting a single signaling pathway.  For example, calycosin-7-
O-β-D-glucoside also modulated TRPC6 and ER-α signaling 
in ischemic brain injury[134, 135].  Baicalin was also revealed to 
inhibit TLR-2/-4 signaling and attenuate brain inflamma-
tion[143].  Therefore, further exploration of the molecular targets 
of natural compounds and differentiation of the direct and 
indirect effects of those compounds on certain cellular signal-
ing pathways and disease progression are desirable.  

Recent advances in brain imaging technology highlight posi-
tron emission tomography as a useful tool to directly assess 
drug distribution and drug-target interaction[204, 209].  The tech-
nique enables scientists to further evaluate the binding affinity 
and efficacy of the compounds to a target of interest in differ-
ent brain regions among different species[209, 210].  By using this 
method, we could guide the dosage selection by determining 
the target occupancy and its relationship to the blood-drug 
concentration[210].

The third key issue is the downstream biological effects of 
these compounds in human subjects.  Preclinical studies of 
those compounds seem promising.  To evaluate the overall 
drug efficacy, clinical trials are needed to evaluate neurologi-
cal scores, brain infarction, brain edema, etc.  In addition, mea-
surements of serum biomarkers will help assess the modula-
tion of related pathways as well as the drug effectiveness.  For 

example, 3-NT and MMP-9 are potential biomarkers of isch-
emic stroke and are associated with the prognosis of stroke 
outcomes[66, 73].  Therefore, serum 3-NT and MMP-9 levels may 
help monitor the effects of the compounds on the RNS/caveo-
lin-1/MMP-9 signaling pathways.

In summary, we propose that the RNS/Cav-1/MMP path-
way plays an important role in mediating cerebral ischemia-
reperfusion injury.  Targeting this novel signaling pathway 
could provide a new clue for drug discovery for the treatment 
of ischemic stroke.
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