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Role of oxylipins in cardiovascular diseases
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Abstract
Globally, cardiovascular diseases (CVDs) are the number one cause of mortality.  Approximately 18 million people died from CVDs 
in 2015, representing more than 30% of all global deaths.  New diagnostic tools and therapies are eagerly required to decrease 
the prevalence of CVDs related to mortality and/or risk factors leading to CVDs.  Oxylipins are a group of metabolites, generated via 
oxygenation of polyunsaturated fatty acids that are involved in inflammation, immunity, and vascular functions, etc.  Thus far, over 100 
oxylipins have been identifi ed, and have overlapping and interconnected roles.  Important CVD pathologies such as hyperlipidemia, 
hypertension, thrombosis, hemostasis and diabetes have been linked to abnormal oxylipin signaling.  Oxylipins represent a new era of 
risk markers and/or therapeutic targets in several diseases including CVDs.  The role of many oxylipins in the progression or regression 
in CVD, however, is still not fully understood.  An increased knowledge of the role of these oxygenated polyunsaturated fatty acids in 
cardiovascular dysfunctions or CVDs including hypertension could possibly lead to the development of biomarkers for the detection 
and their treatment in the future.

Keywords: circulating biomarkers; cardiac oxylipins; plasma oxylipins; adenosine receptors; CYP-epoxygenases; soluble epoxide 
hydrolase; coronary reactive hyperemia; cardiovascular diseases; hypertension

Acta Pharmacologica Sinica (2018) 39: 1142–1154; doi: 10.1038/aps.2018.24; published online 7 Jun 2018

*To whom correspondence should be addressed.
E-mail mnayeem@hsc.wvu.edu
Received 2017-12-02    Accepted 2018-02-19

Introduction
Cardiovascular Diseases (CVDs) are the number one cause 
of death globally: more people die annually from CVDs than 
from any other disease [World Health Organization (WHO)]. 
An estimated ~18 million people died from CVDs in 2015, 
representing 31% of all global deaths (WHO). Of these deaths, 
an estimated 7.4 million were due to coronary heart disease 
and 6.7 million were due to stroke (WHO). Most cardiovas-
cular diseases can be prevented; if we establish and sort out 
the precise circulating biomarkers (plasma oxylipins?) for the 
early detection of CVDs, including hypertension, which may 
possibly help us to avoid, use of risk factors such as tobacco, 
unhealthy diet, sedentary life style, and harmful use of alco-
hol. Also, people with cardiovascular disease or who are con-
sidered a high cardiovascular risk (due to the presence of one 
or more risk factors such as: hypertension, diabetes, hyperlip-
idemia or an already established disease) need early detection 
and management using counseling and medicines, as appro-
priate (WHO). Globally, 1.39 billion persons, representing 
31% of all adults (25 years and over), have hypertension [1]. 

Out of which,  75 million American adults have hypertension; 
that is 1 out of every 3 adults (CDC, 2016). Surprisingly, the 
state of West Virginia is ranked #1 (41.0%±1.5%) in the top 10 
highest rated states for hypertensive populations in the U.S. 
(2013, Trust for America’s Health). Also, only about half (54%) 
of people in the US with hypertension have their condition 
under control; the other half (46%) are not under control and 
hypertension costs the US $46 billion each year (CDC, 2016). 
In addition to the hypertensive cases, nearly 1 out of 3 Ameri-
can adults have pre-hypertensive conditions too (CDC, 2016), 
and pre-hypertension and hypertension are the global major 
risk factors for the cardiovascular diseases (CVDs)[2]. There-
fore, newer early diagnostic tools in the form of circulating 
biomarkers [plasma oxygenated polyunsaturated fatty acids 
(oxylipins)?] and therapies are required to decrease the CVDs. 
Oxylipins are the oxygenated polyunsaturated fatty acids that 
regulate infl ammation, vascular response and coronary hyper-
emic response[3-12].

Oxylipins
Oxylipins are bioactive lipids generated by the oxidation of 
polyunsaturated fatty acids (PUFAs)[13]. Since their discovery 
almost five decades ago, numerous biologic functions have 
been linked to them and many others are still being elucidated. 
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The advancement in detection and quantifi cation rejuvenated 
both interest and research in oxylipins with accurate nanomo-
lar detection using an array of state-of-the-art mass spectrom-
etry instruments[14].  Still, studying the biological functions of 
oxylipins is challenged by the sheer number of oxylipins dis-
covered, thus far, over 100 oxylipins have been identified[13], 
and have overlapping and interconnected roles. Important 
cardiovascular disease (CVD) pathologies, including: hyper-
lipidemia, hypertension, thrombosis, hemostasis, and diabetes 
have been linked to abnormal oxylipin signaling[15].
     Oxylipins derived from arachidonic acid (AA) include 
EETs, HETEs, and prostanoids, whereas those derived from 
linoleic acid (LA) include EpOMEs and HODEs among oth-
ers. Figure 1 illustrates some of AA- and LA-derived oxy-
lipins and the main enzymes involved in their generation 
and breakdown, such as lipoxygenases, CYP-epoxygenases, 
ω-hydroxylases and cyclooxygenases. Figure 2 illustrates 
involvement of soluble epoxide hydrolase in changing the 
ratios of EpOME/DiHOME and EET/DHET, whereas, Figure 
3 illustrate involvement of oxylipins in cardiovascular regula-
tion.

Oxylipins biosynthesis
Oxylipins are both potent and short lived. Therefore, they 
are not stored; rather, they are  synthesized de novo and regu-
lated closely and exert their effect in a paracrine or autocrine 
manner[13]. Free PUFAs are mono- or dioxygenated by three 
families of enzymes: cyclooxygenase (COX), lipoxygenase 
(LOX), and cytochrome P450 (CYP) into distinct classes of 
oxylipins[16]. The type of oxylipins produced from PUFAs 
depends on the amount of dietary PUFAs consumed, the oxy-

genases (COX, LOX or CYP) present for metabolizing PUFAs, 
and the enzyme’s affinity for a specific substrate PUFA[3]. 
The most well-known oxylipins are the eicosanoids (20-car-
bon compounds) formed from arachidonic acid (AA) and 
octadecanoids (18-carbon compounds) derived from linoleic 
acid (LA)[3]. Cyclooxygenase (COX) enzymes convert AA into 
prostanoids (PGs and thromboxanes). Also, COX enzymes 
can produce some hydroxy-metabolites, such as 11-HETE 
from AA and 9-HODE from LA[17]. Lipoxygenases (LOXs) 
catalyze the formation of hydroxy fatty acids, including: leu-
kotrienes, lipoxins, resolvins, protectins, maresins, hepoxilins, 
and eoxins[3]. LOX enzymes also metabolize AA to form mid-
chain (5-, 8-, 9-, 11-, 12-, and 15-) HETEs[18]. Cytochrome P450 
(CYP) enzymes, which were originally known for their roles 
in xenobiotic metabolism, could either have epoxygenase or 
ω-hydroxylase activity[3]. ω-Hydroxylase enzymes (CYP4A 
and CYP4F) metabolize AA and generate ω-terminal (16-, 17-, 
18-, 19-, and 20-) HETEs, whereas CYPs, with epoxygenase 
activity (CYP2C and CYP2J), metabolize AA and generate 
epoxyeicosatrienoic acid (EETs), which are further metabo-
lized to dihydroxyeicosatrienoic acids (DHETs) by soluble 
epoxide hydrolase (sEH)[13]. AA can also be generated from LA 
metabolism[19]. Metabolism of LA includes the same enzyme 
families described above; for example, CYP epoxygenases 
metabolize LA to form EpOMEs, the epoxy compounds of LA. 
EpOMEs are hydrated by sEH to form DiHOMEs, the dihy-
droxy form of EpOMEs[18]. LOX enzymes form the hydroxy 
metabolites of LA: HODEs[13]. Oxylipins have a wide range 
of biological functions, many of which are still being investi-
gated. They produce their effects through activating PPARs 
or through GPCRs[20]. Targeting sEH impacted the level of 

Figure 1. AA- and LA-derived oxylipins and the main enzymes involved in their generation and breakdown.
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oxylipins directly affected by its catalytic activity, such as: 
EETs, DHETs, EpOMEs, and DiHOMEs and indirectly by 
affecting the other PUFAs pathways, such as; HODEs, and 
HETEs[21]. The latter observation could be explained by the 
shift observed in sEH–/– mice through AA metabolism due to 
EETs accumulation[22], suggesting that the different oxylipin 
pathways affect one another. Further, compared to n-6 PUFAs, 
the supplemental dietary n-3 PUFAs have variety of health 
benefits against cardiovascular diseases by a decrease in the 
production of infl ammatory mediators (eicosanoids, cytokines, 
and ROS) and the expression of adhesion molecules[23-27]. Also, 
the benefi cial effects of n-3 PUFAs have been well discussed 
by Lorente-Cebrian et al in his review[28], including enhanced 
vascular functions, cardioprotection, reduction in myocardial 
infarction, arrhythmia, sudden cardiac death, stroke, etc. How-
ever, the benefi cial effects of n-3 PUFAs are not the interest of 
the current review article. 

Epoxyeicosatrienoic acids (EETs)
EETs are 20-carbon metabolites of arachidonic acid (AA) 
with numerous physiologic actions. They are generated from 
AA by the cytochrome P450 epoxygenase pathway. Four 
distinct regioisomers are produced: 5,6-EET, 8,9-EET, 11,12-
EET, and 14,15-EET. In the heart, EETs exert cardioprotective 
effects in ischemia/reperfusion injury[29]. EETs are classified 
as EDHFs; they are produced in endothelial cells and induce 

hyperpolarization in vascular smooth muscle cells by activat-
ing large conductance Ca2+-activated K+ channels (BKCa)[30, 31]. 
EETs also cause vasodilation in many vascular beds, such 
as: the intestines[32], kidney preglomerular vasculature[33], 
conduit arteries[34-38], and brain[39]. It is worth mentioning 
that small (KCa2.3) and medium (KCa3.1) conductance Ca2+-
activated K+ channels are important in EETs-induced hyper-
polarization[31]. EETs are metabolized rapidly by hydration to 
their corresponding, less active, DHETs by sEH, which is the 
main catabolic pathway responsible for EETs breakdown[40]. 
Not all EETs isomers are substrates for sEH; 5,6-EET is a poor 
substrate of sEH. In fact, this EET isomer (5,6-EET) along with 
8,9-EET are substrates for cyclooxygenase (COX) pathway[41]. 
The half-life of 14,15-EET was found to be between 7.9–12.3 
min[42]. Other catabolic pathways of EETs include ω-oxidation, 
β-oxidation, and chain elongation. The latter two pathways 
become more important when the activity of the main path-
way, hydration by sEH, is inhibited[41]. Not only were EETs 
shown to have confirmed beneficial effects in numerous 
animal studies through their vasodilatory[32-39], cardioprotec-
tive[29], and anti-infl ammatory effects[43], they were also linked 
to decreased cardiovascular risk in epidemiological studies in 
humans[44, 45]. Polymorphism variants where EETs production 
is decreased, such as decreased CYP2J2 expression (variant 
G-50T)[45] or EETs breakdown is increased, such as increased 
sEH activity (variant K55R)[44], had increased risk of coronary 

Figure 2.  Soluble epoxide hydrolase in changing EpOME/DiHOME & EET/DHET ratios.
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artery disease. It was speculated by some researchers that 
EETs exert their effects through specifi c cell surface receptors, 
which is supported by the finding that different responses 
were elicited by different stereoisomers and regioisomers 
of EETs[46]. However, it is worth mentioning that numerous 
reports linked EETs’ signaling pathway with protein kinase A 
(PKA) and cAMP[47].

Mid-chain hydroxyeicosatetraenoic acids (HETEs)
Mid-chain HETEs are produced through allylic oxidation 
of AA by lipoxygenase (LOX)[22]. They were shown to have 
chemotaxis effects, change in vascular tone, and induced the 
production of vascular endothelial growth factors[48-51]. Also, 
the increased formation of mid-chain HETEs was involved 
in cardiovascular dysfunction[52-55]. Also, mid-chain HETEs 
like 5-, 8-, 9-, 11-, and 12-HETE stimulate migration, chemo-
taxis and chemokinesis in leukocytes[56-59], whereas, 15-HETE 
appears to have opposite effects[60, 61]. Also, 15-HETE can be 
converted into lipoxins (LXs) which play a role in the resolu-
tion of infl ammation [62]. Unlike the vasodilatory effect of EETs 
in the kidneys[33], 12-HETE caused vasoconstriction in small 
renal arteries[63]. Also, the generation of mid-chain HETEs is 
increased in essential hypertension[64] suggesting that they 
could be involved in its pathogenesis. These reports point to 
opposite effects of EETs vs HETEs in vascular biology. Maayah 
et al reported that mid-chain HETEs blocked the synthesis 
of EETs and increased their conversion to DHETs in RL-14 
cells[65]. Moreover, although sEH is not directly involved in 
the generation or breakdown of mid-chain HETEs, sEH was 
found to be essential for mid-chain HETE–mediated induction 
of cellular hypertrophy[65]. Therefore, not only do EETs and 
mid-chain HETEs have opposite effects, they seem to affect the 
level of each other.

ω-Terminal hydroxyeicosatetraenoic acids (ω-terminal HETEs)
16-, 18-, 19-, and 20-HETEs are produced by cytochrome P450 
ω-hydroxylase activity. 16-HETE is produced and released by 
polymorphonuclear leukocytes upon angiotensin II stimula-
tion[66]. Of the ω-terminal HETEs, 20-HETE, which is a potent 
vasoconstrictor in mouse mesenteric arteries, mouse aorta and 
mouse coronary artery, is produced by CYP4A from arachi-
donic acid[34, 35, 37, 38, 67-71]. Also, 20-HETE is a potent vasocon-
strictor in porcine coronary arteries[72].

Epoxyoctadecaenoic acid (EpOMEs)
EpOMEs and DiHOMEs were reported to increase oxidative 
stress in vascular endothelial cells[73-75]; DiHOMEs were toxic 
to renal proximal tubular cells[76] and intravenously injected 
9,10-EpOME had cardiodepressive effects in dogs[77]. Pretreat-
ment with 12,13-EpOME protected primary cultures of rabbit 
renal proximal tubular cells against hypoxia/reoxygenation 
injury[78]. Also, effects of EpOME/DiHOME ratio, induced 
by sEH inhibition using AUDA, improved renal recovery in 
response to ischemia/reperfusion injury in C57BL/6 mice[79]. 

9-, 13-Hydroxyoctadecadienoic acids (9-, 13-HODEs)
Linoleic acid is also metabolized through hydroxylation by 

CYP epoxygenases to form hydroxyl-LA metabolites known 
as hydroxyoctadecadienoic acids (HODEs)[22]. HODEs are 
associated with oxidative stress[80, 81], and the 9-HODE induces 
macrophage IL-1β [82]. Also, 9- and 13-HODE activate plas-
minogen activator inhibitor type-1 via PPARγ activation in 
endothelial cells [83], and 13-HODE is also suggested to have 
an anti-inflammatory role in inflammatory diseases through 
its effect as a PPARγ-agonist[84-88]. Also, 13-HODE increased 
prostacyclin (PGI2) biosynthesis, which was involved in 
splenic and coronary artery relaxation in smooth muscle cells 
in Mongrel dogs[89]. 9-HODE, unlike 13-HODE, was described 
as pro-infl ammatory in an experimental wound-healing model 
in rats[90, 91], whereas, 13-HODE prevents platelets adhering in 
human vascular endothelial cells[92, 93].

Prostanoids
The term prostanoids comprises of two distinct groups: pros-
taglandins and thromboxanes. Prostaglandins G2 and H2, 
which are AA metabolites formed by COX isoforms (1 and 2), 
get converted into the 4 main bioactive PGs (D2, E2, I2, and 
F2α) and thromboxanes (TXA2 and TXB2)[94, 95]. Most PGs have 
pro-infl ammatory effects. However, PGE2 was found to have 
an anti-infl ammatory role as well by up-regulating cAMP and 
inducing secretion of the anti-infl ammatory IL-10[96]. Similarly, 
PGD2 attenuated inflammation in experimental models of 
pleuritis and colitis [95]. 6-keto-PGF1α is a stable metabolite and 
marker for PGI2 that is produced via cyclooxygenase (COX) 
signaling. 6-keto-PGF1α in humans is inversely related to 
cardiovascular events and high blood pressure[97, 98]. PGF2α 
induces vasoconstriction in bovine, canine, and human coro-
nary arteries[99]. PGF2α is associated with cardiac dysfunction 
and cardiac hypertrophy[100, 101]. TXA2 induces vasoconstriction 
and aggregation of platelets [102]. Also, TXB2 is positively asso-
ciated with high blood pressure and multiple cardiovascular 
dysfunctions[97, 98].

Discussion
Oxylipins regulate inflammation, vascular response and 
coronary hyperemic response[3-7, 9-12]. Recently, in our labora-
tory, oxylipins were analyzed in both blood plasma and heart 
perfusates of adenosine A2A receptor knockout   (A2AAR−/−) 
mice, where soluble epoxide hydrolase (sEH) was overex-
pressed and CYP2C was underexpressed [69, 103] compared to 
its  wild-type mice (A2AAR+/+); Tie2-sEH Tr (sEH-overex-
pressed mice) compared to  C57Bl/6; sEH knockout (sEH−/−) 
mice compared to its wild-type mice (sEH+/+); Tie2-CYP2J2 
Tr (CYP2J2-overexpressed) compared to  C57Bl/6 mice, and 
trans-4-[4-(3-adamantan-1-ylureido)cyclohexyloxy]benzoic 
acid  (t-AUCB, sEH-inhibitor) treated C57Bl/6 compared to  
non-treated C57Bl/6 mice [8-12]. The heart perfusate data have 
demonstrated  positive/negative effects of a brief ischemia on 
cardiac oxylipin levels (local) with enhanced or reduced coro-
nary reactive hyperemic responses depending upon the mice 
(A2AAR−/−, sEH−/−, Tie2-sEH Tr, CYP2J2 Tr, C57Bl/6, and 
sEH-inhibitor-treated C57Bl/6 and other transgenic mice), as 
they are assessed before and after the ischemia in vitro mouse 
model of isolated heart[9-12]. Also, blood plasma oxylipins pro-
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fi le data of A2AAR−/− vs A2AAR+/+ have supported the data 
of heart perfusates (cardiac oxylipins profi le) of A2AAR−/− vs 
A2AAR+/+ mice[8]. Further, there are evidences that show a 
relationship exists between endothelial dysfunctions involving 
cardiovascular diseases/hypertension and genetic polymor-
phisms in A2AAR, CYP2J2 and sEH genes in humans[44, 104-108]. 
Similarly, A2AAR−/− have increased hypertension compared 
to A2AAR+/+ mice[109]. Hypertension was also observed in 
CYP2J5−/− compared to CYP2J5+/+ mice[110], and sEH over-
expression in rats have increased blood pressure compared 
to their respective control[111], while sEH−/− mice had lower 
blood pressure[40]. Further, the up-regulation of angiotensin 
II is directly proportional to sEH up-regulation[112], whereas, 
sEH inhibition blocks Angiotensin II-induced hypertension 
in rats[113]. As we mentioned earlier, the plasma levels of both 
EETs (oxylipins) and DHETs (oxylipins) levels in A2AAR−/− vs 
A2AAR+/+ mice supported the fi ndings of  the heart perfusate 
samples (cardiac oxylipins) of A2AAR−/− vs A2AAR+/+ mice; 
EETs/DHETs ratio was decreased by the elevated DHET 
levels which leads to significant reduction in coronary reac-
tive hyperemic response in A2AAR−/− vs A2AAR+/+ mice [8]. 
Similarly, in the heart, EETs exert cardioprotective effects 

against ischemia/reperfusion injury[29], and EETs are classifi ed 
as EDHFs; they are produced in endothelial cells and induce 
hyperpolarization in vascular smooth muscle cells by activat-
ing large conductance BKCa[30, 31]. EETs also cause vasodila-
tion in many vascular beds, such as: the intestines[32], kidney 
preglomerular vasculature[33], conduit arteries[34-38, 69, 103, 114], 
and brain[39]. EETs are metabolized rapidly by hydration to 
their corresponding, less active, dihydroxyeicosatrienoic acids 
(DHETs) by soluble epoxide hydrolase sEH, which is the main 
catabolic pathway responsible for EETs breakdown[40]. Earlier, 
we reported that sEH knockout (sEH–/– mice) and pharmaco-
logic inhibition of sEH decreased DHETs in heart perfusate 
(cardiac oxylipins) leading to signifi cantly increased coronary 
reactive hyperemic response in sEH–/– and t-AUCB (sEH-
inhibitor)-treated C57BL/6 vs their respective controls[11, 12]. 
The increased expression of sEH and decreased expression 
of CYP2C in A2AAR−/−mice[69, 103] is probably the cause of 
an increase in DHETs’ generation and drove the decrease in 
EET/DHET ratios in A2AAR−/− vs A2AAR+/+ mice[8]. Also, 
EETs have anti-infl ammatory properties[41], the higher the sEH 
activity [like K55R (genetic polymorphism in humans)] alters 
the ratio between EpOME:DiHOME (oxylipins) in the athero-
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sclerosis risk in communities, where Caucasians carry K55R 
variant allele[44]. Also, we found out recently an enhanced cor-
onary reactive response with the change in the isolated hearts 
perfusate oxylipins (cardiac) and plasma oxylipins (increased 
the ratio between EETs:DHETs, EpOMEs:DiHOMEs, and 
decreased in HETEs, prostanoids, TXB2, etc) in sEH−/−, Tie2-
CYP2J2 Tr and sEH inhibitor-treated C57BL6 vs Tie2-sEH Tr 
and A2AAR−/− mice, and these oxylipins play an important 
role in the cardiovascular functions in mice[8-12]. Our observa-
tion in A2AAR−/− and Tie2-sEH Tr compared to its respec-
tive wild-type mice cardiac as well as plasma oxylipin data  
are very interesting since it suggests a possible decrease in 
the anti-inflammatory role of EETs and increase in the pro-
inflammatory role of DHETs with the reduction in coronary 
reactive hyperemic response[8, 9]. Also, effects have been 
reported on arachidonic acid metabolism leading to cardiovas-
cular diseases due to cytochrome P450 polymorphism[115], and 
this CYP450 polymorphisms are considered to be one of the 
determinants of susceptibility to cardiovascular diseases. CYP-
epoxygenases, CYP2C and CYP2J2 metabolize arachidonic 
acid to form EETs, which are involved in vascular relaxation, 
anti-infl amation, anti-apoptosis, anti-thrombosis, and cardio-
protective activities. Therefore, it is strongly suggested that 
genetic polymorphisms in CYP2C and CYP2J2 cause lower 
activities which are associated with an increased risk of sev-
eral cardiovascular diseases like,  hypertension and coronary 
artery disease[116-126]. Soluble epoxide hydrolase (sEH) metabo-
lizes CYP-epoxygenases derived active epoxyeicosatrienoic 
acids from arachidonic acids to the less active dihydroxyeico-
satrienoic acids (DHETs). Therefore, polymorphism in sEH 
gene has also been associated with cardiovascular diseases, 
such as the higher the sEH activity [K55R (genetic polymor-
phism in humans)] alters the ratio between EpOME:DiHOME 
(oxylipins) in the atherosclerosis risk in communities, where 
Caucasians carry K55R variant allele[44, 127]. Also, genetic 
polymorphisms in ω-hydroxylases (CYP4A11 & CYP4F2) 
are associated with higher risk of hypertension through 
20-HETE[128-130]. As we mentioned earlier, a relationship exists 
between endothelial dysfunctions involving cardiovascu-
lar diseases/hypertension and genetic polymorphisms in 
A2AAR, CYP2J2 and sEH genes in humans[44, 104-108]. There-
fore, we observed recently an enhanced coronary reactive 
response with the change in isolated hearts perfusate oxy-
lipins (cardiac) and plasma oxylipins (increased the ratio 
between EETs:DHETs, EpOMEs:DiHOMEs, and decreased in 
HETEs, prostanoids, TXB2, etc) in sEH−/−,Tie2-CYP2J2 Tr and 
sEH inhibitor-treated C57BL6 compared to Tie2-sEH Tr and 
A2AAR−/− mice, and these oxylipins play an important role in 
the cardiovascular functions in mice [8-12]. The attenuated coro-
nary reactive hyperemia (CRH) in A2AAR−/− and Tie2-sEH Tr 
mice could be due to decreased EET/DHET ratio, which could 
be attributed to the increased expression of sEH and decreased 
expression of CYP2C[69, 103], and this may indicate an overall 
reduction in EETs vasodilatory and anti-infl ammatory activity 
in A2AAR−/− and Tie2-sEH Tr mice compared to their respec-
tive wild-type mice[8, 9]. 

In addition to EETs and DHETs, mid-chain (5-, 8-, 11-, 12- 

and 15-) HETEs were also detected in both blood plasma 
and heart perfusates, and they were increased with reduced 
coronary reactive hyperemic response in A2AAR−/− and 
Tie2-sEH Tr compared to their respective wild-type mice [8, 9]. 
Lipoxygenases produce mid-chain HETEs from arachidonic 
acid (AA)[22]. Also, CYP-epoxygenase 1B1 produces mid-chain 
HETEs through oxidation of AA, and mid-chain HETEs have 
pro-inflammatory and vasoconstriction properties[22, 65, 131]. 
Further, cardiovascular dysfunction associated with increased 
formation of mid-chain HETEs have been reported[52-55]. As we 
mentioned earlier, heart perfusates and blood plasma demon-
strated an increase in mid-chain HETEs in A2AAR−/− and Tie2-
sEH Tr with reduced coronary reactive hyperemic response 
compared to their respective wild-type mice[8, 9]. Therefore, 
the increase in mid-chain (5-, 8-, 11-, 12- and 15-) HETEs in 
A2AAR−/− and Tie2-sEH Tr mice, along with the decreased 
EET/DHET ratios, indicated an increase in the pro-infl amma-
tion and vasoconstriction associated with A2AAR–deletion 
(A2AAR−/−) and sEH overexpression (Tie2-sEH Tr) in mice, 
and might have contributed to the decrease or reduction of 
coronary reactive hyperemic response in both A2AAR−/− and 
Tie2-sEH Tr compared to their respective wild-type mice[8, 9]. 

Omega-terminal HETEs are also generated from AA, 
but through ω-hydroxylases (CYP4A, CYP4F)[132]. The pri-
mary oxylipin of ω-terminal HETEs is 20-HETE[132], which 
promotes hypertension, vascular contraction, and vascular 
dysfunction[133, 134]. Further, blocking 20-HETE synthesis 
reduced mean arterial pressure in old spontaneously hyper-
tensive (SHR) female rats[135]. Our lab has recently reported 
that blocking ω-hydroxylases by DDMS/HET0016 enhanced 
coronary reactive hyperemic response and vascular relaxation 
in mesenteric arteries of sEH-overexpressed (Tie2-sEH Tr) and 
control mice[9, 67, 136]. Similarly, targeting the ω-terminal–HETEs 
pathway, reversed the decreased coronary reactive hyperemic 
response in A2AAR−/− mice[8], because A2AAR−/− mice have 
ω-hydroxylases upregulated[34, 71]. Therefore, ω-hydroxylases–
inhibition reversed the decreased coronary reactive hyperemic 
response as well as vascular relaxation in A2AAR−/− mouse 
aorta and mesenteric arteries[9, 34, 67, 71, 136]. Further, we were 
able to detect these ω-terminal (19- and 20)-HETEs in plasma 
samples through LC-MS/MS and found increased levels 
of 20-HETE[8]. Therefore, the increased 20-HETE formation 
through ω-hydroxylases in A2AAR−/− compared to A2AAR+/+ 
mice, along with the other changes in plasma/cardiac oxy-
lipins, suggests an increase in the pro-inflammation state, 
vascular contraction, and vascular dysfunction associated with 
A2AAR–deletion (A2AAR−/−) or sEH-overexpression (Tie2-
sEH Tr) in mice may have contributed to the attenuated coro-
nary reactive hyperemic response  in A2AAR−/− and Tie2-sEH 
Tr compared to their respective wild-type mice.  Similarly, in 
humans, 20-HETE is produced by CYP4A and CYP4F, and 
CYP4A11 genes, and polymorphisms in these genes are asso-
ciated with essential hypertension in the male western Chi-
nese Han population[137]. Also, CYP4A11 gene polymorphism 
is involved in coronary artery disease as well as myocardial 
infarction in Han and Uygur populations in China[138, 139].

Deletion of A2AAR in A2AAR−/− mice was associated with 
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increased plasma/cardiac prostanoid levels too, including: 
PGF2α, PGE2, PGD2, and TXB2 compared to their respective 
wild type mice[8]. Prostanoids include two groups of metabo-
lites (oxylipins): 1) thromboxanes (TXA2 and TXB2) and 2) bio-
active prostaglandins (PGF2α, PGE2, PGI2, PGD2), and they 
are generally pro-infl ammatory[94, 95]. Therefore, the increased 
prostanoid levels in A2AAR−/− mice may have contributed to 
an increase in the proinflammatory state in A2AAR−/− com-
pared to their respective wild-type mice[8]

Soluble epoxide hydrolase (sEH) role in cardiovascular 
biology extends beyond its role in the conversion of 5,6-, 8,9-, 
11,12- and 14,15-EETs into 5,6-, 8,9-, 11,12- and 14,15-DHETs; 
it also plays a central role in the metabolism of arachidonic-, 
linoleic- and omega-3-derived oxylipins [22]. Like EpOMEs, 
whose parental fatty acid is linoleic acid, they are hydro-
lyzed to DiHOMEs by sEH.  Also, we reported earlier that 
the deletion of sEH (sEH–/– mice)[12] and inhibition of sEH 
by t-AUCB[11] increased EpOMEs, decreased DiHOMEs, and 
increased EpOME/DiHOME ratio in heart perfusate. The 
increased EpOME/DiHOME and EETs/DHETs ratios were 
believed to contribute to the enhancement of coronary reac-
tive hyperemic response[11], which suggested that increased 
EpOME/DiHOME and EETs/DHETs ratios may have had 
a positive role in mediating vasodilation in coronary and 
aortas[11, 36-38, 69, 103]. Also, a protective effect against hypoxia/
reoxygenation injury by EpOMEs in primary cultures of rabbit 
renal proximal tubular cells was reported by Nowak et al[78], an 
effect which was faded away with DiHOMEs[78]. Further, endo-
thelium-dependent vasodilation in the cerebral circulation 
was impaired by decreased EpOME/DiHOME ratio in Tie2-
sEH Tr mice[140]. Therefore, in A2AAR-null mice had decreased 
EpOME/DiHOME ratio due to increased DiHOMEs in the 
plasma[8]. Whereas, sEH-null and C57Bl/6 mice treated with 
sEH inhibitor (t-AUCB) had an increased EpOME/DiHOME 
ratio due to increased EpOMEs and decreased DiHOMEs 
in the heart perfusates[12]. Also, DiHOMEs were reported 
to have deleterious effects, including: cytotoxic, cardiode-
pressive and vascular contraction[141, 142]. Because of that, the 
decreased EpOME/DiHOME ratio and increased DiHOMEs 
in A2AAR-null mice may have contributed to the blunted 
coronary reactive hyperemic response. As mentioned earlier, 
sEH was overexpressed and CYP-epoxygenase was under-
expressed A2AAR-null compared to wild-type mice[69, 103]. 
Further, polymorphism in sEH gene has been associated with 
cardiovascular diseases, such as the higher the sEH activity 
[K55R (genetic polymorphism in humans)] alters the ratio 
between EpOME:DiHOME (oxylipins) in the atherosclerosis 
risk in communities, where Caucasians carry K55R variant 
allele[44, 127].

In addition to EpOMEs, HODEs are generated through 
hydroxylation of LA by CYP epoxygenases or lipoxygenases[22]. 
9-HODE, but not 13-HODE, was increased in A2AAR−/− vs 
A2AAR+/+ mice. Role of 9-HODE is pro-inflammatory[90, 91], 
whereas role of 13-HODE could be anti-inflammatory[84-88]. 
The opposite effects of these two isomer oxylipins make this 
observation consistent with our earlier reports of an increased 
13–HODE level in sEH–deleted (sEH–/–) and C57Bl/6 mice 

treated with sEH inhibitor (t-AUCB)[11, 12]. The increased 
9-HODE levels in A2AAR−/− mice plasma may be linked to the 
reported increase in sEH-expression and decreased expression 
of CYP-epoxygenase in A2AAR−/− compared to its wild-type 
mice[69, 103]. Thus, the increased 9-HODE levels in A2AAR−/− 

and the decreased 9-HODE levels in sEH−/− and C57Bl/6 mice 
treated with sEH inhibitor (t-AUCB) may have contributed 
to the reduction of coronary reactive hyperemic response  in 
A2AAR−/− and increased coronary reactive hyperemic response 
(CRH)  in sEH−/− and C57Bl/6 mice treated with sEH inhibitor 
(t-AUCB)[11, 12].

Vascular endothelial overexpression of human CYP2J2 in 
mice (Tie2-CYP2J2 Tr) increased CRH after brief ischemia 
compared to respective wild-type mice[10]. As we described 
earlier, ischemic insult to the heart is likely to cause dam-
age if not corrected within a short period of time[8, 9, 11, 12]. The 
heart responds to ischemic insult by increasing coronary fl ow 
through CRH to reduce the deleterious effects of ischemia-
induced damage[8, 9, 11, 12, 143]. Also, we previously described that 
the role of EETs and DHETs, as well as other oxylipins, in cor-
relation with the changes in CRH in mice in response to brief 
ischemic insult[8, 9, 11, 12]. More generation of EETs compared to 
DHETs have well-established their beneficial cardiovascular 
effects[8, 9, 11, 12, 47, 142, 144, 145]; more EETs generation compared 
to DHETs protect from myocardial and cerebral ischemia/
reperfusion injury[29, 146] and relaxes vascular beds, includ-
ing: the intestines, preglomerular and brain[32, 33, 39]. Vascular 
endothelial overexpression of human CYP2J2 in mice (Tie2-
CYP2J2 Tr) generates more EETs compared to their respective 
WT mice from AA through epoxidation[11, 147]. The strategy to 
increase EETs level is to create the endothelial overexpression 
of CYP2J2 (Tie2-CYP2J2 Tr) in mice[141, 148]. Endothelial overex-
pression of human CYP2J2 protected from cerebral ischemia 
in male mice, and 11,12- and 14,15-EET levels were increased 
in aortic endothelial cell (isolated from Tie2-CYP2J2 Tr mice) 
culture medium[148]. Jia et al also suggested that the protection 
against cerebral ischemia was linked to increase in blood fl ow 
and anti-infl ammatory activities in endothelial overexpression 
of human CYP2J2 in mice (Tie2-CYP2J2 Tr)[148], both of which 
are recognized effects of EETs[32, 33, 39, 149]. In our lab, these Tie2-
CYP2J2 Tr mice had increased CRH compared to its wild-
type mice[10], and this study also suggests that CYP2J2-derived 
EETs do play a signifi cant role in CRH after a brief ischemic 
insult[10]. The CYP2J2*7 polymorphism in humans, which is 
associated with reduced CYP2J2 activity, was linked to higher 
risk of adverse cardiovascular outcomes including myocardial 
infarction[125, 150]. Also, hypertension was observed in CYP2J5−/− 
compared to CYP2J5+/+ mice[110].

In addition to EETs and DHETs in Tie2-CYP2J2 Tr mice, 
ω-terminal HETEs are generated from AA by CYP4A and 
CYP4F subfamilies[132]. The 19- and 20-HETEs are potent oxy-
lipins typically found at very low levels, and these ω-terminal 
HETEs were below detectable levels in our mouse heart per-
fusate samples in both Tie2-CYP2J2 Tr and their respective 
wild-type  mice[10]. Since the 20-HETE is a potent vasoconstric-
tor and involved with the renin-angiotensin system to produce 
hypertension, vasoconstriction, and vascular dysfunction[132-134], 
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we analyzed the effect of inhibiting ω-hydroxylases (CYP4A & 
CYP4F) activities by DDMS.  DDMS enhanced CRH more in 
Tie2-CYP2J2 Tr vs WT mice [10]. 

Another group of oxylipins produced by AA through cyclo-
oxygenase pathway is prostanoids, which include prostaglan-
dins (PGs) and TXB2. Vascular endothelial overexpression 
of CYP2J2 in mice (Tie2-CYP2J2 Tr) did not have significant 
changes in the cardiac prostanoid levels, but we observed a 
trend towards lower in Tie2-CYP2J2 Tr vs WT mice[10]. PGs 
are generally pro-inflammatory, but PGD2 and PGE2 have 
anti-inflammatory properties and secretes anti-inflammatory 
IL-10[95, 96]. We described earlier that by targeting the EETs 
pathway (sEH deletion or sEH inhibition), the levels of cardiac 
prostanoids were decreased in isolated mouse heart perfus-
ates[11, 12]. Though, mice overexpressing the EETs-generating 
CYP2J2 in this study did not have signifi cant change in pros-
tanoid levels[10], but interestingly, the levels of cardiac PGF2α 
and cardiac PGE2 were decreased in response to ischemia in 
Tie2-CYP2J2 Tr vs WT mice[10]. 

Interestingly, 8-iso-PGF2α was significantly lower in Tie2-
CYP2J2 Tr vs WT mice, and 8-iso-PGF2α is one of the iso-
prostanes, which are produced through lipid peroxidation 
of AA[151]. 8-iso-PGF2α, produced under the elevated level of 
reactive oxygen species (ROS), act as a surrogate marker for 
ROS production[141]. 8-iso-PGF2α is a potent vasoconstrictor in 
isolated guinea pig hearts[151]. The level of 8-iso-PGF2α was not 
changed by ischemic insult in Tie2-CYP2J2 Tr and WT mice, 
possibly because of brief ischemic insult, but the level of 8-iso-
PGF2α was lower in Tie2-CYP2J2 Tr vs WT mice pre- and 
post-ischemia[10]. The decrease in 8-iso-PGF2α levels in Tie2-
CYP2J2 Tr vs WT mice, and the subsequent decrease in vaso-
constrictive activity, may have contributed to the enhanced 
CRH observed in Tie2-CYP2J2 Tr vs WT mice[10].

Therefore, an increase in knowledge of plasma oxylipins 
profi le in CVDs including hypertensive individuals, and these 
plasma oxylipins could be the predictors of cardiovascular 
diseases and hypertension. Recently, we observed increased 
8,9-,11,12-,14,15-DHETs; increased 5-,11-,15-, 19-, 20-HETEs;  
increased prostanoids (6-keto-PGF1α, PGF2α, PGD2, PG-E2, 
and TxB2) levels; increased 9,10-,12,13-DiHOMEs; increased 
9-, 13-HODEs; decreased in the ratio of 8,9-EETs:8,9-DHETs; 
11,12-EETs:11,12-DHETs; 14,15-EETs: 14,15-DHETs and 
decreased 9,10- and 12,13- EpOME/DiHOME ratios in the 
plasma of A2AAR−/− vs A2AAR+/+ mice[8]. Further, A2AAR−/− 
mice have reduced CRH response, reduced vasodilation, 
hypertension with overexpression of soluble epoxide hydro-
lase and underexpression of CYP-epoxygenases in A2AAR−/− 
vs A2AAR+/+ mice[8, 69, 103, 109]. These plasma oxylipins may be 
used as circulating biomarkers possibly detecting cardiovascu-
lar dysfunctions or cardiovascular diseases in future. Because, 
these oxygenated polyunsaturated fatty acids (oxylipins) 
regulate inflammation, vascular response, atherosclerosis, 
hypertension, and coronary hyperemic response[3-12, 44, 109, 110, 127]. 
Also, a strong relationship exists between endothelial dysfunc-
tions involving cardiovascular diseases/hypertension and 
genetic polymorphisms in A2AAR, CYP2J2 and sEH genes in 
humans[44, 104-108].

Conclusion
A possible relationship exists between positive/negative 
changes in oxylipins profile and positive/negative changes 
in cardiovascular function in A2AAR−/−, sEH–/–, Tie2-sEH Tr, 
CYP2J2 Tr, C57Bl/6, and sEH-inhibitor-treated C57Bl/6 
mice[8-12]. Also, a relationship exists between cardiovascular 
diseases and polymorphisms in adenosine receptors includ-
ing A2A, CYP-epoxygenases (CYP2C, CYP2J2) and soluble 
epoxide hydrolase genes in humans[44, 104-108]. Further, A2A 
AR–/– mice had sEH overexpressed and CYP2C underex-
pressed[69, 103], and the  sEH gene, EPHX2, is called a suscepti-
bility gene for CVDs in humans[44]. Higher sEH activity (K55R) 
due to polymorphism altered the ratio between EpOMEs: 
DiHOMEs with elevated atherosclerosis risk in Caucasian 
populations[44]. Furthermore, mid-chain (5-, 11-, 12- and 15-) 
HETEs (oxylipins) have chemotaxis effects, change vascular 
tone, and produce vascular endothelial growth factors[48-51]. 
Also, increased levels of mid-chain HETEs have been linked 
with cardiovascular dysfunctions[52-55]. Unlike the vasodila-
tion, cardioprotective and anti-hypertensive effects of EETs 
in the reno-cardiovascular system[33], the mid-chain HETEs 
are involved in essential hypertension[64]. Recently, we dis-
covered an enhanced CRH response with a change in car-
diac and plasma oxylipins (increase in the ratio between 
EETs:DHETs and EpOMEs:DiHOMEs, and decreases in 
HETEs, HODEs, prostanoids, TxB2, etc) isolated from mouse 
(sEH−/−,Tie2-CYP2J2 Tr and sEH inhibitor-treated C57BL/6) 
heart perfusates and blood plasma vs A2AAR−/− and Tie2-
sEHTr mice (reduced CRH response, decreased ratio between 
EETs:DHETs and EpOMEs:DiHOMEs, and increases in 
HETEs, HODEs, prostanoids, TXB2, etc)[8-12]. These cardiac 
and plasma oxylipins play a pivotal role in the regulation of 
cardiovascular functions in mice[8-12]. DHETs are the sEH-cata-
lyzed metabolic breakdown products of EETs; EETs have anti-
infl ammatory properties[41], but A2AAR−/−mice have increased 
DHETs vs EETs due to increased expression of sEH and 
decreased expression of CYP2C with more vasoconstriction 
in A2AAR−/− vs A2AAR+/+ mice[8, 69, 103]. Whereas, sEH–/– mice 
have increased EETs vs DHETs with more A2AAR upregula-
tion and vasodilation in sEH−/− vs sEH+/+ mice[12, 36]. Increased 
ω-HETEs (20-HETE) and mid-chain HETEs are observed in 
blood plasma of A2AAR−/− vs A2AAR+/+ mice[8]. Whereas, 
20-HETE and mid-chain HETEs were decreased in sEH−/− vs 
sEH+/+ mice[12]. Also, 20-HETE promotes hypertension, vaso-
constriction, and vascular dysfunction[133, 134]. A2AAR−/− mice 
had increased plasma prostanoid levels, including 6-keto-
PGF1α, PGE2, PGF2α, and TXB2[8]. Also, prostaglandins 
are pro-inflammatory[95], and TXB2 is the inactive degrada-
tion product of TXA2, which mediates platelet aggregation, 
smooth muscle contraction, and endothelial infl ammation[95]. 
In A2AAR−/− mice, a decrease in EpOME/DiHOME ratio was 
driven by increased DiHOMEs and decreased EpOMEs in 
the blood plasma with reduced CRH[8], whereas, an increase 
in EpOME/DiHOME ratio was driven by increased EpOMEs 
and decreased DiHOMEs with enhanced CRH[12],  and 
DiHOMEs have deleterious effects, including cytotoxic, car-
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diodepressive, and vasoconstrictive properties[141, 142]. HODEs 
were increased in A2AAR−/− vs A2AAR+/+ mice[8], and HODEs 
are thought to be pro-infl ammatory[90, 91]. All these changes in 
cardiac and plasma oxylipins profi le in A2AAR–/– and Tie2-
sEHTr compared to their respective wild-type and sEH−/−, 
Tie2-CYP2J2 Tr and sEH inhibitor-treated C57BL/6 mice may 
be responsible for the significantly reduced CRH response, 
increase in blood pressure, increase in vasoconstriction, and 
cardiovascular dysfunctions[8-12, 44, 48-55, 64, 103, 109, 133, 134]. Therefore, 
an increase in knowledge of plasma oxylipins profi le in CVDs 
including hypertensive individuals may be used as circulat-
ing biomarkers possibly detecting cardiovascular dysfunc-
tions or cardiovascular diseases in future.
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