Review Article | Published:

Regulatory T cells as a new therapeutic target for atherosclerosis

Acta Pharmacologica Sinicavolume 39pages12491258 (2018) | Download Citation

Subjects

Abstract

Atherosclerosis is an autoimmune disease caused by self- and non-self-antigens contributing to excessive activation of T and B cell immune responses. These responses further aggravate vascular infiammation and promote progression of atherosclerosis and vulnerability to plaques via releasing pro-infiammatory cytokines. Regulatory T cells (Tregs) as the major immunoregulatory cells, in particular, induce and maintain immune homeostasis and tolerance by suppressing the immune responses of various cells such as T and B cells, natural killer (NK) cells, monocytes, and dendritic cells (DCs), as well as by secreting inhibitory cytokines interleukin (IL)-10, IL-35 and transcription growth factor β (TGF-β) in both physiological and pathological states. Numerous evidence demonstrates that reduced numbers and dysfunction of Treg may be involveved in atherosclerosis pathogenesis. Increasing or restoring the numbers and improving the immunosuppressive capacity of Tregs may serve as a fundamental immunotherapy to treat atherosclerotic cardiovascular diseases. In this article, we briefiy present current knowledge of Treg subsets, summarize the relationship between Tregs and atherosclerosis development, and discuss the possibilities of regulating Tregs for prevention of atherosclerosis pathogenesis and enhancement of plaque stability. Although the exact molecular mechanisms of Treg-mediated protection against atherosclerosis remain to be elucidated, the strategies for targeting the regulation of Tregs may provide specific and significant approaches for the prevention and treatment of atherosclerotic cardiovascular diseases.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Jiang J, Mo ZC, Yin K, Zhao GJ, Lv YC, Ouyang XP, et al. Epigallocatechin-3-gallate prevents TNF-alpha-induced NF-kappaB activation thereby upregulating ABCA1 via the Nrf2/Keap1 pathway in macrophage foam cells. Int J Mol Med 2012; 29: 946–56.

  2. 2

    Yu XH, Jiang HL, Chen WJ, Yin K, Zhao GJ, Mo ZC, et al. Interleukin-18 and interleukin-12 together downregulate ATP-binding cassette transporter A1 expression through the interleukin-18R/nuclear factor-kappaB signaling pathway in THP-1 macrophage-derived foam cells. Circ J 2012; 76: 1780–91.

  3. 3

    Ketelhuth DF, Hansson GK. Adaptive response of T and B cells in atherosclerosis. Circ Res 2016; 118: 668–78.

  4. 4

    Bocian K, Kiernozek E, Domagala-Kulawik J, Korczak-Kowalska G, Stelmaszczyk-Emmel A, Drela N. Expanding diversity and common goal of regulatory T and B cells. I: Origin, phenotype, mechanisms. Arch Immunol Ther Exp (Warsz) 2017; doi:10.1007/s00005-017-0469-3.

  5. 5

    Zhang H, Kong H, Zeng X, Guo L, Sun X, He S. Subsets of regulatory T cells and their roles in allergy. J Transl Med 2014; 12: 125.

  6. 6

    Kosten IJ, Rustemeyer T. Generation, subsets and functions of inducible regulatory T cells. Antiinflamm Antiallergy Agents Med Chem 2015; 13: 139–53.

  7. 7

    Zhu ZF, Meng K, Zhong YC, Qi L, Mao XB, Yu KW, et al. Impaired circulating CD4+ LAP+ regulatory T cells in patients with acute coronary syndrome and its mechanistic study. PLoS One 2014; 9: e88775.

  8. 8

    Tselios K, Sarantopoulos A, Gkougkourelas I, Boura P. T regulatory cells: a promising new target in atherosclerosis. Crit Rev Immunol 2014; 34: 389–97.

  9. 9

    Arce-Sillas A, Alvarez-Luquin DD, Tamaya-Dominguez B, Gomez-Fuentes S, Trejo-Garcia A, Melo-Salas M, et al. Regulatory T cells: molecular actions on effector cells in immune regulation. J Immunol Res 2016; 2016: 1720827.

  10. 10

    Amin HZ, Sasaki N, Hirata KI. Regulatory T cell immunity in atherosclerosis. Acta Med Indones 2017; 49: 63–8.

  11. 11

    Foks AC, Lichtman AH, Kuiper J. Treating atherosclerosis with regulatory T cells. Arterioscler Thromb Vasc Biol 2015; 35: 280–7.

  12. 12

    Komatsu N, Takayanagi H. Regulatory T cells in arthritis. Prog Mol Biol Transl Sci 2015; 136: 207–15.

  13. 13

    Dasgupta A, Saxena R. Regulatory T cells: a review. Natl Med J India 2012; 25: 341–51.

  14. 14

    de Boer OJ, van der Meer JJ, Teeling P, van der Loos CM, van der Wal AC. Low numbers of FOXP3 positive regulatory T cells are present in all developmental stages of human atherosclerotic lesions. PLoS One 2007; 2: e779.

  15. 15

    Wang Z, Mao S, Zhan Z, Yu K, He C, Wang C. Effect of hyperlipidemia on Foxp3 expression in apolipoprotein E-knockout mice. J Cardiovasc Med (Hagerstown) 2014; 15: 273–9.

  16. 16

    Dietel B, Cicha I, Voskens CJ, Verhoeven E, Achenbach S, Garlichs CD. Decreased numbers of regulatory T cells are associated with human atherosclerotic lesion vulnerability and inversely correlate with infiltrated mature dendritic cells. Atherosclerosis 2013; 230: 92–9.

  17. 17

    Jia L, Zhu L, Wang JZ, Wang XJ, Chen JZ, Song L, et al. Methylation of FOXP3 in regulatory T cells is related to the severity of coronary artery disease. Atherosclerosis 2013; 228: 346–52.

  18. 18

    Niessner A, Weyand CM. Dendritic cells in atherosclerotic disease. Clin Immunol 2010; 134: 25–32.

  19. 19

    Rohm I, Atiskova Y, Drobnik S, Fritzenwanger M, Kretzschmar D, Pistulli R, et al. Decreased regulatory T cells in vulnerable atherosclerotic lesions: imbalance between pro- and anti-inflammatory cells in atherosclerosis. Mediators Inflamm 2015; 2015: 364710.

  20. 20

    Liu ZD, Wang L, Lu FH, Pan H, Zhao YX, Wang SJ, et al. Increased Th17 cell frequency concomitant with decreased Foxp3+ Treg cell frequency in the peripheral circulation of patients with carotid artery plaques. Inflamm Res 2012; 61: 1155–65.

  21. 21

    Ait-Oufella H, Salomon BL, Potteaux S, Robertson AK, Gourdy P, Zoll J, et al. Natural regulatory T cells control the development of atherosclerosis in mice. Nat Med 2006; 12: 178–80.

  22. 22

    Mor A, Luboshits G, Planer D, Keren G, George J. Altered status of CD4+CD25+ regulatory T cells in patients with acute coronary syndromes. Eur Heart J 2006; 27: 2530–7.

  23. 23

    Zhang WC, Wang J, Shu YW, Tang TT, Zhu ZF, Xia N, et al. Impaired thymic export and increased apoptosis account for regulatory T cell defects in patients with non-ST segment elevation acute coronary syndrome. J Biol Chem 2012; 287: 34157–66.

  24. 24

    Butcher MJ, Filipowicz AR, Waseem TC, McGary CM, Crow KJ, Magilnick N, et al. Atherosclerosis-driven Treg plasticity results in formation of a dysfunctional subset of plastic IFNgamma+ Th1/Tregs. Circ Res 2016; 119: 1190–203.

  25. 25

    Klingenberg R, Brokopp CE, Grives A, Courtier A, Jaguszewski M, Pasqual N, et al. Clonal restriction and predominance of regulatory T cells in coronary thrombi of patients with acute coronary syndromes. Eur Heart J 2015; 36: 1041–8.

  26. 26

    George J, Schwartzenberg S, Medvedovsky D, Jonas M, Charach G, Afek A, et al. Regulatory T cells and IL-10 levels are reduced in patients with vulnerable coronary plaques. Atherosclerosis 2012; 222: 519–23.

  27. 27

    Ait-Oufella H, Herbin O, Bouaziz JD, Binder CJ, Uyttenhove C, Laurans L, et al. B cell depletion reduces the development of atherosclerosis in mice. J Exp Med 2010; 207: 1579–87.

  28. 28

    Ghourbani GS, Andalib A, Hashemi M, Rezaei A. CD4+Foxp3+ Treg and its ICOS+ subsets in patients with myocardial infarction. Iran J Immunol 2012; 9: 53–60.

  29. 29

    Ammirati E, Moroni F, Magnoni M, Camici PG. The role of T and B cells in human atherosclerosis and atherothrombosis. Clin Exp Immunol 2015; 179: 173–87.

  30. 30

    Laurat E, Poirier B, Tupin E, Caligiuri G, Hansson GK, Bariety J, et al. In vivo downregulation of T helper cell 1 immune responses reduces atherogenesis in apolipoprotein E-knockout mice. Circulation 2001; 104: 197–202.

  31. 31

    Potteaux S, Esposito B, van Oostrom O, Brun V, Ardouin P, Groux H, et al. Leukocyte-derived interleukin 10 is required for protection against atherosclerosis in low-density lipoprotein receptor knockout mice. Arterioscler Thromb Vasc Biol 2004; 24: 1474–8.

  32. 32

    Mallat Z, Gojova A, Brun V, Esposito B, Fournier N, Cottrez F, et al. Induction of a regulatory T cell type 1 response reduces the development of atherosclerosis in apolipoprotein E-knockout mice. Circulation 2003; 108: 1232–7.

  33. 33

    Robertson AK, Rudling M, Zhou X, Gorelik L, Flavell RA, Hansson GK. Disruption of TGF-beta signaling in T cells accelerates atherosclerosis. J Clin Invest 2003; 112: 1342–50.

  34. 34

    Frutkin AD, Otsuka G, Stempien-Otero A, Sesti C, Du L, Jaffe M, et al. TGF-[beta]1 limits plaque growth, stabilizes plaque structure, and prevents aortic dilation in apolipoprotein E-null mice. Arterioscler Thromb Vasc Biol 2009; 29: 1251–7.

  35. 35

    Collison LW, Workman CJ, Kuo TT, Boyd K, Wang Y, Vignali KM, et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 2007; 450: 566–9.

  36. 36

    Lin Y, Huang Y, Lu Z, Luo C, Shi Y, Zeng Q, et al. Decreased plasma IL-35 levels are related to the left ventricular ejection fraction in coronary artery diseases. PLoS One 2012; 7: e52490.

  37. 37

    Sage AP, Mallat Z. Readapting the adaptive immune response - therapeutic strategies for atherosclerosis. Br J Pharmacol 2017; doi: 10.1111/bph.13700.

  38. 38

    Kyaw T, Tay C, Khan A, Dumouchel V, Cao A, To K, et al. Conventional B2 B cell depletion ameliorates whereas its adoptive transfer aggravates atherosclerosis. J Immunol 2010; 185: 4410–9.

  39. 39

    Wang P, Zheng SG. Regulatory T cells and B cells: implication on autoimmune diseases. Int J Clin Exp Pathol 2013; 6: 2668–74.

  40. 40

    Haddad Y, Lahoute C, Clement M, Laurans L, Metghalchi S, Zeboudj L, et al. The Dendritic Cell Receptor DNGR-1 Promotes the Development of Atherosclerosis in Mice. Circ Res 2017; 121: 234–43.

  41. 41

    Gu P, Gao JF, D'Souza CA, Kowalczyk A, Chou KY, Zhang L. Trogocytosis of CD80 and CD86 by induced regulatory T cells. Cell Mol Immunol 2012; 9: 136–46.

  42. 42

    Dietrich T, Hucko T, Schneemann C, Neumann M, Menrad A, Willuda J, et al. Local delivery of IL-2 reduces atherosclerosis via expansion of regulatory T cells. Atherosclerosis 2012; 220: 329–36.

  43. 43

    van Puijvelde GH, van Es T, van Wanrooij EJ, Habets KL, de Vos P, van der Zee R, et al. Induction of oral tolerance to HSP60 or an HSP60–peptide activates T cell regulation and reduces atherosclerosis. Arterioscler Thromb Vasc Biol 2007; 27: 2677–83.

  44. 44

    van Puijvelde GH, Hauer AD, de Vos P, van den Heuvel R, van Herwijnen MJ, van der Zee R, et al. Induction of oral tolerance to oxidized low-density lipoprotein ameliorates atherosclerosis. Circulation 2006; 114: 1968–76.

  45. 45

    Liang B, Workman C, Lee J, Chew C, Dale BM, Colonna L, et al. Regulatory T cells inhibit dendritic cells by lymphocyte activation gene-3 engagement of MHC class II. J Immunol 2008; 180: 5916–26.

  46. 46

    Wilson HM. Macrophages heterogeneity in atherosclerosis - implications for therapy. J Cell Mol Med 2010; 14: 2055–65.

  47. 47

    Mo ZC, Xiao J, Tang SL, Ouyang XP, He PP, Lv YC, et al. Advanced oxidation protein products exacerbates lipid accumulation and atherosclerosis through downregulation of ATP-binding cassette transporter A1 and G1 expression in apolipoprotein E knockout mice. Circ J 2014; 78: 2760–70.

  48. 48

    Peled M, Fisher EA. Dynamic aspects of macrophage polarization during atherosclerosis progression and regression. Front Immunol 2014; 5: 579.

  49. 49

    Lin J, Li M, Wang Z, He S, Ma X, Li D. The role of CD4+CD25+ regulatory T cells in macrophage-derived foam-cell formation. J Lipid Res 2010; 51: 1208–17.

  50. 50

    Meng X, Li W, Yang J, Zhang K, Qin W, An G, et al. Regulatory T cells prevent plaque disruption in apolipoprotein E-knockout mice. Int J Cardiol 2013; 168: 2684–92.

  51. 51

    Zhang M, Wu JF, Chen WJ, Tang SL, Mo ZC, Tang YY, et al. MicroRNA-27a/b regulates cellular cholesterol efflux, influx and esterification/hydrolysis in THP-1 macrophages. Atherosclerosis 2014; 234: 54–64.

  52. 52

    Chen SG, Xiao J, Liu XH, Liu MM, Mo ZC, Yin K, et al. Ibrolipim increases ABCA1/G1 expression by the LXRalpha signaling pathway in THP-1 macrophage-derived foam cells. Acta Pharmacol Sin 2010; 31: 1343–9.

  53. 53

    Tang SL, Chen WJ, Yin K, Zhao GJ, Mo ZC, Lv YC, et al. PAPP-A negatively regulates ABCA1, ABCG1 and SR-B1 expression by inhibiting LXRalpha through the IGF-I-mediated signaling pathway. Atherosclerosis 2012; 222: 344–54.

  54. 54

    Dong F, Mo Z, Eid W, Courtney KC, Zha X. Akt inhibition promotes ABCA1-mediated cholesterol efflux to ApoA-I through suppressing mTORC1. PLoS One 2014; 9: e113789.

  55. 55

    Subramanian M, Thorp E, Hansson GK, Tabas I. Treg-mediated suppression of atherosclerosis requires MYD88 signaling in DCs. J Clin Invest 2013; 123: 179–88.

  56. 56

    Foks AC, Frodermann V, ter Borg M, Habets KL, Bot I, Zhao Y, et al. Differential effects of regulatory T cells on the initiation and regression of atherosclerosis. Atherosclerosis 2011; 218: 53–60.

  57. 57

    Baigent C, Keech A, Kearney PM, Blackwell L, Buck G, Pollicino C, et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 2005; 366: 1267–78.

  58. 58

    Foks AC, Frodermann V, ter Borg M, Habets KL, Bot I, Zhao Y, et al. Differential effects of regulatory T cells on the initiation and regression of atherosclerosis. Atherosclerosis 2011; 218: 53–60.

  59. 59

    Mallat Z, Gojova A, Brun V, Esposito B, Fournier N, Cottrez F, et al. Induction of a regulatory T cell type 1 response reduces the development of atherosclerosis in apolipoprotein E-knockout mice. Circulation 2003; 108: 1232–37.

  60. 60

    Mor A, Planer D, Luboshits G, Afek A, Metzger S, Chajek-Shaul T, et al. Role of naturally occurring CD4+ CD25+ regulatory T cells in experimental atherosclerosis. Arterioscler Thromb Vasc Biol 2007; 27: 893–900.

  61. 61

    Trenado A, Fisson S, Braunberger E, Klatzmann D, Salomon BL, Cohen JL. Ex vivo selection of recipient-type alloantigen-specific CD4(+)CD25(+) immunoregulatory T cells for the control of graft-versus-host disease after allogeneic hematopoietic stem-cell transplantation. Transplantation 2004; 77: S32–34.

  62. 62

    Wang ZX, Wang CQ, Li XY, Feng GK, Zhu HL, Ding Y, et al. Mesenchymal stem cells alleviate atherosclerosis by elevating number and function of CD4(+)CD25 (+)FOXP3 (+) regulatory T-cells and inhibiting macrophage foam cell formation. Mol Cell Biochem 2015; 400: 163–72.

  63. 63

    Nilsson J, Lichtman A, Tedgui A. Atheroprotective immunity and cardiovascular disease: therapeutic opportunities and challenges. J Intern Med 2015; 278: 507–19.

  64. 64

    Bullenkamp J, Dinkla S, Kaski JC, Dumitriu IE. Targeting T cells to treat atherosclerosis: odyssey from bench to bedside. Eur Heart J Cardiovasc Pharmacother 2016; 2: 194–9.

  65. 65

    Yang K, Li D, Luo M, Hu Y. Generation of HSP60-specific regulatory T cell and effect on atherosclerosis. Cell Immunol 2006; 243: 90–5.

  66. 66

    Zhong Y, Wang X, Ji Q, Mao X, Tang H, Yi G, et al. CD4+LAP+ and CD4+CD25+Foxp3+ regulatory T cells induced by nasal oxidized low-density lipoprotein suppress effector T cells response and attenuate atherosclerosis in ApoE−/− mice. J Clin Immunol 2012; 32: 1104–17.

  67. 67

    Herbin O, Ait-Oufella H, Yu W, Fredrikson GN, Aubier B, Perez N, et al. Regulatory T-cell response to apolipoprotein B100-derived peptides reduces the development and progression of atherosclerosis in mice. Arterioscler Thromb Vasc Biol 2012; 32: 605–12.

  68. 68

    van Leuven SI, van Wijk DF, Volger OL, de Vries JP, van der Loos CM, de Kleijn DV, et al. Mycophenolate mofetil attenuates plaque inflammation in patients with symptomatic carotid artery stenosis. Atherosclerosis 2010; 211: 231–6.

  69. 69

    Liu C, Chapman NM, Karmaus PW, Zeng H, Chi H. mTOR and metabolic regulation of conventional and regulatory T cells. J Leukoc Biol 2015; 97: 837–47.

  70. 70

    Takeda M, Yamashita T, Sasaki N, Nakajima K, Kita T, Shinohara M, et al. Oral administration of an active form of vitamin D3 (calcitriol) decreases atherosclerosis in mice by inducing regulatory T cells and immature dendritic cells with tolerogenic functions. Arterioscler Thromb Vasc Biol 2010; 30: 2495–503.

  71. 71

    Huang K, Li SQ, Wang WJ, Liu LS, Jiang YG, Feng PN, et al. Oral FTY720 administration induces immune tolerance and inhibits early development of atherosclerosis in apolipoprotein E-deficient mice. Int J Immunopathol Pharmacol 2012; 25: 397–406.

  72. 72

    Tian Y, Yuan Z, Liu Y, Liu W, Zhang W, Xue J, et al. Pioglitazone modulates the balance of effector and regulatory T cells in apolipoprotein E deficient mice. Nutr Metab Cardiovasc Dis 2011; 21: 25–32.

  73. 73

    Maganto-Garcia E, Tarrio ML, Grabie N, Bu DX, Lichtman AH. Dynamic changes in regulatory T cells are linked to levels of diet-induced hypercholesterolemia. Circulation 2011; 124: 185–95.

  74. 74

    Meng X, Zhang K, Li J, Dong M, Yang J, An G, et al. Statins induce the accumulation of regulatory T cells in atherosclerotic plaque. Mol Med 2012; 18: 598–605.

  75. 75

    Jiagang D, Li C, Wang H, Hao E, Du Z, Bao C, et al. Amygdalin mediates relieved atherosclerosis in apolipoprotein E deficient mice through the induction of regulatory T cells. Biochem Biophys Res Commun 2011; 411: 523–9.

  76. 76

    Klatzmann D, Abbas AK. The promise of low-dose interleukin-2 therapy for autoimmune and inflammatory diseases. Nat Rev Immunol 2015; 15: 283–94.

  77. 77

    Kita T, Yamashita T, Sasaki N, Kasahara K, Sasaki Y, Yodoi K, et al. Regression of atherosclerosis with anti-CD3 antibody via augmenting a regulatory T-cell response in mice. Cardiovasc Res 2014; 102: 107–17.

  78. 78

    Kasahara K, Sasaki N, Yamashita T, Kita T, Yodoi K, Sasaki Y, et al. CD3 antibody and IL-2 complex combination therapy inhibits atherosclerosis by augmenting a regulatory immune response. J Am Heart Assoc 2014; 3: e719.

  79. 79

    Worthington JJ, Kelly A, Smedley C, Bauche D, Campbell S, Marie JC, et al. Integrin alphavbeta8-mediated TGF-beta activation by effector regulatory T cells is essential for suppression of T-cell-mediated inflammation. Immunity 2015; 42: 903–15.

  80. 80

    Uchiyama R, Hasegawa H, Kameda Y, Ueda K, Kobayashi Y, Komuro I, et al. Role of regulatory T cells in atheroprotective effects of granulocyte colony-stimulating factor. J Mol Cell Cardiol 2012; 52: 1038–47.

  81. 81

    Sasaki N, Yamashita T, Kasahara K, Fukunaga A, Yamaguchi T, Emoto T, et al. UVB exposure prevents atherosclerosis by regulating immunoinflammatory responses. Arterioscler Thromb Vasc Biol 2017; 37: 66–74.

  82. 82

    Sakaguchi S, Vignali DA, Rudensky AY, Niec RE, Waldmann H. The plasticity and stability of regulatory T cells. Nat Rev Immunol 2013; 13: 461–7.

  83. 83

    Flavell RA, Sanjabi S, Wrzesinski SH, Licona-Limon P. The polarization of immune cells in the tumour environment by TGFbeta. Nat Rev Immunol 2010; 10: 554–67.

  84. 84

    Asadullah K, Sterry W, Volk HD. Interleukin-10 therapy--review of a new approach. Pharmacol Rev 2003; 55: 241–69.

  85. 85

    Xu XH, Shah PK, Faure E, Equils O, Thomas L, Fishbein MC, et al. Toll-like receptor-4 is expressed by macrophages in murine and human lipid-rich atherosclerotic plaques and upregulated by oxidized LDL. Circulation 2001; 104: 3103–8.

  86. 86

    Buchman AL. Side effects of corticosteroid therapy. J Clin Gastroenterol 2001; 33: 289–94.

Download references

This work was supported by the National Natural Science Foundation of China (No 81670401), the Scientific Research Innovation Program of post-graduate in Hu-nan Province (No CX2017B554), the Construct Program of the Key Discipline in Hu-nan Province (Basic Medicine Sciences in University of South China) and the Zhengxiang Scholar (Xiang-yang TANG) Program of the University of South China.

Author information

Author notes

  1. These authors contributed equally to this work.

Affiliations

  1. Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, University of South China, Hengyang, 421001, China

    • Han-xiao Ou
    • , Bing-bing Guo
    • , Qi Liu
    • , Yu-kun Li
    •  & Zhong-cheng Mo
  2. 2016 Grade Clinical Medicine Class of Medical School, University of South China, Hengyang, 421001, China

    • Zhen Yang
  3. 2015 Grade Medical Imaging Class of Medical School, University of South China, Hengyang, 421001, China

    • Wen-jie Feng

Authors

  1. Search for Han-xiao Ou in:

  2. Search for Bing-bing Guo in:

  3. Search for Qi Liu in:

  4. Search for Yu-kun Li in:

  5. Search for Zhen Yang in:

  6. Search for Wen-jie Feng in:

  7. Search for Zhong-cheng Mo in:

Corresponding author

Correspondence to Zhong-cheng Mo.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/aps.2017.140