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Geniposide ameliorates TNBS-induced experimental 
colitis in rats via reducing inflammatory cytokine 
release and restoring impaired intestinal barrier 
function
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Abstract 
Geniposide is an iridoid glycosides purified from the fruit of Gardenia jasminoides Ellis, which is known to have antiinflammatory, anti-
oxidative and anti-tumor activities. The present study aimed to investigate the effects of geniposide on experimental rat colitis and to 
reveal the related mechanisms. Experimental rat colitis was induced by rectal administration of a TNBS solution.  The rats were treated 
with geniposide (25, 50 mg·kg-1·d-1, ig) or with sulfasalazine (SASP, 100 mg·kg-1·d-1, ig) as positive control for 14 consecutive days. 
A Caco-2 cell monolayer exposed to lipopolysaccharides (LPS) was used as an epithelial barrier dysfunction model. Transepithelial 
electrical resistance (TER) was measured to evaluate intestinal barrier function. In rats with TNBS-induced colitis, administration of 
geniposide or SASP significantly increased the TNBS-decreased body weight and ameliorated TNBS-induced experimental colitis and 
related symptoms. Geniposide or SASP suppressed inflammatory cytokine (TNF-α, IL-1β, and IL-6) release and neutrophil infiltration 
(myeloperoxidase activity) in the colon. In Caco-2 cells, geniposide (25–100 μg/mL) ameliorated LPS-induced endothelial barrier 
dysfunction via dose-dependently increasing transepithelial electrical resistance (TER). The results from both in vivo and in vitro 
studies revealed that geniposide down-regulated NF-κB, COX-2, iNOS and MLCK protein expression, up-regulated the expression of tight 
junction proteins (occludin and ZO-1), and facilitated AMPK phosphorylation. Both AMPK siRNA transfection and AMPK overexpression 
abrogated the geniposide-reduced MLCK protein expression, suggesting that geniposide ameliorated barrier dysfunction via AMPK-
mediated inhibition of the MLCK pathway. In conclusion, geniposide ameliorated TNBS-induced experimental rat colitis by both 
reducing inflammation and modulating the disrupted epithelial barrier function via activating the AMPK signaling pathway.
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Introduction
Intestinal inflammation is related to multiple factors including 
inflammatory bowel disease (IBD).  Although the precise etiol-
ogy of IBD remains unknown[1], it is mainly caused by ulcer-
ative colitis and Crohn’s disease[2].  Crohn’s disease causes 
inflammation that extends through the entire bowel wall, 
whereas ulcerative colitis affects the colon and/or the large 
intestine[3].  

Geniposide (Figure 1), an iridoid glycosides purified from 
the fruit of Gardenia jasminoides Ellis, is known to have anti-
inflammatory, anti-oxidative and anti-tumor effects[4–6].  The 

anti-inflammatory effects of geniposide have been found 
to ameliorate arthritis and mastitis[7, 8].  However, whether 
geniposide can effectively ameliorate intestinal inflammation 
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Figure 1.  Chemical structure of geniposide.
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remains unknown.  The present study was designed to inves-
tigate the effects of geniposide on intestinal inflammation.  

To provide valuable information for the potential clinical 
treatment of bowel inflammation, in the present study, both 
2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced experi-
mental ulcerative colitis in rats and lipopolysaccharide (LPS)-
infected Caco-2 cell monolayers were used as experimental 
intestinal inflammatory models, and sulfasalazine (SASP) was 
used as a positive control drug to evaluate and characterize 
geniposide-induced modulation and reveal the related mecha-
nisms.

Materials and methods
Animals
Male Sprague-Dawley (SD) rats weighing 180–220 g were 
obtained from the Experimental Animal Center of Dalian 
Medical University (Certificate of Conformity: No SCXK 2008-
0002).  The experimental protocol was carried out based on 
the Declaration of Helsinki and supported by Dalian Medical 
University Animal Care and Ethics Committee.  All rats were 
housed at a temperature of 22±2 °C, maintained on a 12:12-h 
light-dark cycle, and provided with food and water ad libitum.  
Rats were acclimatized for 1 week before the initiation of the 
study.

Establishment of experimental rat colitis 
The rat model of colitis was induced by rectal administration 
of TNBS according to previously described methods[9].  After a 
24-h period of fasting with ad libitum access to water, a TNBS-
ethanol solution (50% v/v) was administered through a cath-
eter into the rat colon at a dose of 100 mg/kg under urethane 
anesthesia (1.25 g/kg, ip).  The vehicle control group was 
treated with 50% ethanol alone.

Rats were randomly divided into six experimental groups 
with ten rats in each group: (1) vehicle control group, (2) vehi-
cle + geniposide (H, 50 mg/kg) group, (3) TNBS-treated group, 
(4) TNBS+SASP (100 mg/kg) group, (5) TNBS+geniposide (L, 
25 mg/kg) group, and (6) TNBS+geniposide (H, 50 mg/kg) 
group.  The vehicle and TNBS group were given an equal 
volume of saline.  Agents used in the assay were prepared 
using saline.  Starting 24 h after the initiation of TNBS-induced 
inflammation, saline, sulfasalazine (100 mg/kg), or geniposide 
(25, 50 mg/kg) was intragastrically administered once daily in 
all 6 groups for 14 consecutive days.  

Rat food intake, body weight, stool consistency (degree of 
diarrhea), and blood in stool were recorded daily.  Rats were 
sacrificed on d 15, the colon was removed, and the length and 
weight were measured.  The isolated colon was fixed in 4% 
paraformaldehyde for 24 h and embedded in paraffin.  Colon 
samples were prepared and stained with hematoxylin and 
eosin (H&E) and then assessed under light microscopy.  The 
pathologic score of the colonic damage was evaluated accord-
ing to previously described morphological criteria[10, 11].

Rats were denied access to food but allowed water for 3 h.  
Then, 150 μL fluorescein isothiocyanate-4 kDa dextran (80 
mg/mL, Sigma) was gavaged, and serum was harvested 1 

and 3 h later.  Serum recovery was measured using a Synergy 
HT plate reader (BioTek, Winooski, VT, USA) as previously 
reported[12].

LPS-infected Caco-2 cells
Caco-2 cells obtained from the ATCC (Rockville, MD, USA) 
and cultured in Dulbecco’s modified Eagle’s medium (DMEM, 
Gibco) containing 10% fetal bovine serum (FBS, Gibco) were 
given 1% non-essential amino acids and 1% glutamine.  All of 
the media contained 50 U/mL penicillin and 50 U/mL strep-
tomycin.  All cells were maintained at 37 °C in a humidified 
atmosphere of air and 5% CO2.  LPS (1 μg/mL)-stimulated 
Caco-2 cells were treated with geniposide or an equal volume 
of vehicle.

Transepithelial electrical resistance (TER) was measured 
to evaluate the epithelial barrier function in vitro.  Decreased 
TER is a significant indicator of barrier dysfunction[13].  An epi-
thelial voltohmmeter was used for the measurement of TER 
of filter-grown Caco-2 intestinal monolayers as previously 
reported[14].  TER of Caco-2-plated filters was measured daily.  
A steady state of TER was achieved after 21 d (always 540±12 
Ω·cm2), indicating that the barrier function model was estab-
lished, and Caco-2-plated filters could be used.

Cell transfection
Caco-2 cells were transfected with small interfering RNA 
(siRNA) or c-DNA as previously described[15].  Caco-2 cells 
were placed into 6-well plates for 24 h.  Cells were trans-
fected with specific siRNA (Genepharma, Shanghai, China) or 
c-DNA targeting AMPK with Lipofectamine 2000 (Invitrogen).  
After transfection for 48 h, the cells were infected with LPS or 
LPS+geniposide (50 μg/mL) for an additional 24 h.  Then, cells 
were collected for Western blot analysis.

ELISA assays
The expression levels of pro-inflammatory cytokines and 
mediators, including tumor necrosis factor-alpha (TNF-α), 
interleukin-1-beta (IL-1-β), interleukin-6 (IL-6), and myeloper-
oxidase (MPO), in the rat colon were determined using dou-
ble-antibody sandwich ELISAs (R&D Systems, USA) accord-
ing to the manufacturer’s instructions.

Western blot analysis
Equal amounts of protein were subjected to Western blot 
analysis as previously described[16].  Protein lysates from both 
rats and cells were separated by 10% sodium dodecyl sulfate 
polyacrylamide gel electrophoresis (SDS-PAGE) and trans-
ferred to polyvinylidene difluoride membranes.  Membranes 
were blotted for specific antibodies, including MLCK (Abcam, 
Cambridge, UK), occludin, ZO-1 (Santa Cruz Biotechnol-
ogy), NF-κB p65, p-p65, iNOS, COX-2, p-AMPK, and AMPK 
(CST, Beverly, MA, USA).  The blots were developed using an 
enhanced chemiluminescence method (GE Healthcare).  Quan-
tification was performed by densitometric analysis of specific 
bands on the immunoblots using a Multi Spectral imaging sys-
tem (UVP, Cambridge, UK).
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Reagents
Geniposide (purity >98%) was purchased from Chengdu 
Must Bio-Technology Co (Chengdu, China).  Unless otherwise 
indicated, all chemicals were obtained from Sigma-Aldrich (St 
Louis, MO, USA).

Statistical analysis
All data are shown as the mean±standard deviation (SD).  
One-way analysis of variance (ANOVA) was used where three 
or more groups of data were compared.  All experiments were 
repeated at least three times, and a P value of less than 0.05 
(P<0.05) was considered statistically significant.

Results
Establishment of TNBS-induced experimental colitis in rats 
Body weight and food intake of TNBS-treated rats (Figure 
2A, 2B) were significantly reduced compared with those of 
the vehicle control group.  Macroscopically visible damage, 
as measured by the disease activity index (DAI) and the colon 
weight-to-length ratio (Figure 2C, 2D), was significantly higher 
in the rats with TNBS-induced experimental colitis than in the 
vehicle control.  Significant tissue injuries with high micro-
scopic damage scores were found using histological examina-
tion (Figure 2E, 2F) of resected colons from TNBS-treated rats.  
Both geniposide (25, 50 mg/kg) and the positive control SASP 
(100 mg/kg) significantly increased the TNBS-decreased body 
weight and ameliorated TNBS-induced experimental rat colitis 
and related symptoms.  Although not significant, geniposide 
decreased the body weight of rats compared with that of the 
vehicle controls.

Geniposide-induced amelioration on intestinal inflammation in 
vivo
Inflammatory cytokine release and neutrophil infiltration play 
important roles in the process of inflammation[17–19].  The pres-
ent study indicated that levels of pro-inflammatory cytokines 
(TNF-α, IL-1β, and IL-6) and myeloperoxidase (MPO) activity 
in the resected colon from TNBS-treated rats were significantly 
higher than in the vehicle control (Figure 3A).  Geniposide 
(25, 50 mg/kg) significantly decreased both the increased pro-
inflammatory cytokines and enhanced MPO activity.

NF-κB plays an important role in inflammatory processes, 
initiating transcription of pro-inflammatory cytokine genes[20].  
Inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 
(COX-2) are also involved in the process of inflammation[21].  
Our results indicated that the expression levels of NF-κB, 
COX-2, and iNOS proteins were significantly increased in 
TNBS-treated rats compared with those in the vehicle control 
rats (Figure 3B).  Both geniposide (25, 50 mg/kg) and the posi-
tive control SASP (100 mg/kg) down-regulated the increased 
expression of NF-κB, COX-2, and iNOS proteins in TNBS-
treated rats.  

Geniposide-induced amelioration of intestinal barrier dysfunction 
in vivo 
Intestinal barrier dysfunction is found to cause increased 

intestinal permeability characterized by enhanced serum 
recovery of FD-4[22, 23].  Decreased AMPK phosphorylation, 
increased MLCK protein expression, and decreased occludin/
ZO-1 protein expression (tight junction) are also found to be 
related to the destruction of intestinal barrier function[24–27].  
Our results showed that serum FD-4 was significantly higher 
in TNBS-treated rats than in vehicle control rats.  Both geni-
poside (25, 50 mg/kg) and the positive control SASP (100 
mg/kg) reversed the increased serum recovery of FD-4 in 
TNBS-treated rats (Figure 4A).  AMPK phosphorylation was 
decreased in TNBS-treated rats.  Geniposide (25, 50 mg/kg) 
treatment reversed the decrease in AMPK phosphorylation 
in TNBS-treated rats (Figure 4B).  The protein expression of 
MLCK was significantly higher in TNBS-treated rats than in 
vehicle control rats.  Geniposide (25, 50 mg/kg) treatment sig-
nificantly down-regulated the increased protein expression of 
MLCK in TNBS-treated rats (Figure 4C).  Tight junction pro-
tein expression (occludin and ZO-1) was decreased in TNBS-
treated rats.  Geniposide (25, 50 mg/kg) treatment reversed 
the decrease in the protein expression of occludin and ZO-1 in 
TNBS-treated rats (Figure 4D).  

Geniposide-induced amelioration of barrier dysfunction in vitro
The damage to Caco-2 cells induced by LPS leads to a reduc-
tion in TER[28].  As shown in Figure 5, geniposide at final 
concentrations of 25 to 100 μg/mL significantly elevated the 
decreased TER (Figure 5A).  With an incubation time of 12 to 
48 h, geniposide at a concentration of 50 μg/mL significantly 
increased LPS-reduced TER (Figure 5B).

Destruction of barrier function is found in colitis[29].  Our 
results showed that the expression levels of occludin and 
ZO-1 protein were significantly lower (Figure 5C, 5D) in LPS-
infected Caco-2 cells than in the control Caco-2 cells.  Geni-
poside (25, 50, 100 μg/mL) significantly elevated the reduced 
occludin and ZO-1 protein expression in LPS-infected Caco-2 
cells.  

Geniposide-induced amelioration of inflammation in vitro
The results showed that the expression levels of NF-κB, COX-
2, and iNOS proteins were significantly higher in LPS-infected 
Caco-2 cells (Figure 6A–6C) than in control Caco-2 cells.  
Geniposide (25, 50, 100 μg/mL) significantly down-regulated 
NF-κB, COX-2, and iNOS protein expression in LPS-infected 
Caco-2 cells.

Geniposide-induced modulation of the AMPK/MLCK pathway
Decreased AMPK phosphorylation is found in LPS-infected 
Caco-2 cells[30].  At doses of 50–100 μg/mL (Figure 7A) and 
with incubation times of 12–48 h (Figure 7B), geniposide sig-
nificantly enhanced the decreased AMPK phosphorylation in 
LPS-infected Caco-2 cells in a dose- and time-dependent man-
ner.  Both siRNA-inhibited and cDNA-facilitated endogenous 
expression of AMPK in Caco-2 cells were used to further char-
acterize the role of geniposide in the modulation of AMPK.  
The results indicated that geniposide-mediated AMPK up-reg-
ulation was significantly abrogated following AMPK siRNA 
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transfection (Figure 7C), and geniposide could not further up-
regulate cDNA-facilitated AMPK expression (Figure 7D).  

Our results indicated that MLCK expression was signifi-

cantly increased in LPS-infected Caco-2 cells.  At doses of 
25–100 μg/mL (Figure 8A) and with incubation times of 
12–48 h (Figure 8B), geniposide exerted dose- and time-

Figure 2.  Protective effects of geniposide on TNBS-induced colitis in rats.  Compared with the TNBS-treated control group, geniposide (L, 25 mg/kg; 
H, 50 mg/kg) reversed both the decreased body weight (A) and the decreased food intake (B) and decreased the increased disease activity index (C), 
colon weight/length ratio (D), and histologic injury (E) in TNBS-treated rats.  Histologic injury scores of the colon in different groups were quantified (F).  
All data are expressed as the mean±SD.  n=6.  **P<0.01 vs vehicle control group.  #P<0.05, ##P<0.01 vs TNBS-treated group.
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Figure 3.  Geniposide-induced suppression of inflammatory 
parameters in TNBS-treated rats.  (A) Geniposide (L, 25 mg/kg) 
and geniposide (H, 50 mg/kg) decreased the high expression 
of tumor necrosis factor alpha (TNF-α), interleukin-1-beta (IL-
1β), interleukin-6 (IL-6) and myeloperoxidase (MPO) activity in 
TNBS-treated rats.  Data are expressed as the mean±SD.  n=6.  
(B) Geniposide reduced the increase in nuclear factor kappa-B 
(NF-κB) p65 phosphorylation, inducible nitric oxide synthase 
(iNOS) and cyclooxygenase 2 (COX-2) protein expression in 
TNBS-treated rats.  Data are expressed as the mean±SD.  n=3.  
**P<0.01 vs vehicle control group.  #P<0.05, ##P<0.01 vs TNBS-
treated group.
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dependent inhibitory effects on the increase in MLCK protein 
expression in LPS-infected Caco-2 cells.  To assess whether 
MLCK is involved in the AMPK signaling pathway in geni-
poside-induced modulation, the effects of geniposide on the 
status of MLCK protein expression following AMPK siRNA 
and cDNA treatment of Caco-2 cells were measured.  As 
shown in Figure 8C, 8D, knockdown of AMPK significantly 
increased the expression of MLCK compared with the control 
siRNA in LPS-infected Caco-2 cells, and geniposide-mediated 
down-regulation of MLCK in LPS-infected Caco-2 cells was 
abolished by AMPK siRNA transfection.  Overexpression of 
AMPK decreased MLCK protein expression compared with 
the control cDNA in Caco-2 cells, and geniposide did not fur-
ther decrease the down-regulated MLCK induced by AMPK 
overexpression.

Discussion
Geniposide, a traditional Chinese medicine from the fruit of 
Gardenia jasminoides Ellis, has been found to possess antidiar-
rheal, hepatoprotective, anti-inflammatory, and anti-endotoxin 
activities[31–33].  Recent studies have shown that geniposide is 
an efficient anti-inflammatory agent in experimental arthritis 
and mastitis[7, 34].  The present study was carried out to reveal 
the characteristics of geniposide in the protection against and 
amelioration of experimental rat intestinal inflammation and 
the underlying mechanisms.

In the present study, geniposide (25, 50 mg/kg) ameliorated 
TNBS-induced experimental rat colitis and related symptoms.  
Geniposide significantly increased the TNBS-decreased body 
weight compared with that of the TNBS controls, demonstrat-
ing its ameliorative effects; however, geniposide was found 

Figure 4.  Effects of geniposide on intestinal permeability in TNBS-treated rats.  (A) Geniposide (L, 25 mg/kg) and geniposide (H, 50 mg/kg) reduced the 
increase in the serum recovery of FD-4 induced by TNBS.  Data are expressed as the mean±SD.  n=6.  (B) Geniposide reversed the increase in myosin 
light chain kinase (MLCK) protein level induced by TNBS.  (C) Geniposide (25, 50 mg/kg) treatment reversed the decrease in AMP-activated protein 
kinase (AMPK) protein phosphorylation triggered by TNBS. (D) Geniposide reversed the reduction in the expression of tight junction proteins (occludin 
and ZO-1) induced by TNBS.  Data are expressed as the mean±SD.  n=3.  **P<0.01 vs vehicle control group.  #P<0.05, ##P<0.01 vs TNBS-treated group.
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to decrease the body weight of rats compared with that of 
vehicle controls without statistical significance (Figure 2).  This 
phenomenon can be explained as follows.  Geniposide is one 
of the active ingredients in traditional Chinese medicine used 
to fight obesity[35].  For instance, geniposide has been used for 
the amelioration of spontaneously obese type 2 diabetic mice 
and has been shown to suppress body weight and visceral fat 
accumulation[36].  

Inflammatory cytokine release and neutrophil infiltration 
play an important role in colitis; MPO can indirectly reflect the 
vitality of neutrophil infiltration[37].  NF-κB, an important regu-
latory factor of inflammation, regulates the expression of genes 
that are involved in the production of pro-inflammatory cyto-
kines including TNF-α, IL-1β, and IL-6[38].  A pro-inflammatory 
cytokine inhibitor such as infliximab, an anti-TNF-α antibody, 
is used in treatment of IBD patients[39].  iNOS and COX-2 are 
also involved in the process of inflammation, regulating the 
expression of inflammatory mediators NO and PGE2[40, 41].  The 
above-mentioned evidence indicates that increased expression 
of inflammatory mediators is found in intestinal inflamma-

tion, suggesting that down-regulation of those inflammatory 
mediators would be beneficial in the amelioration of intestinal 
inflammation.  The present study indicated that geniposide 
treatment not only improved the symptoms of TNBS-treated 
rats, including reversing the decreased body weight and food 
intake and the amelioration of histological injury, but also 
reduced MPO activity and down-regulated pro-inflamma-
tory cytokines including TNF-α, IL-1β, and IL-6 and protein 
expression of NF-κB, iNOS and COX-2, indicating the poten-
tial mechanisms involved in geniposide-induced amelioration 
of TNBS-induced experimental colitis.

Damaged intestinal epithelial barrier function is correlated 
with triggering or worsening intestinal inflammatory disor-
der[42].  Both maintenance and disruption of epithelial barrier 
function are related to intestinal inflammation.  For instance, 
intestinal barrier dysfunction is found to result in increased 
intestinal permeability characterized by enhanced serum 
recovery of FD-4[22, 23].  AMPK activity has a specific role in epi-
thelial barrier function[43].  LPS-induced endothelial hyperper-
meability occurs in parallel with a decrease in AMPK activity.  

Figure 5.  Geniposide-induced amelioration of the impaired barrier function in vitro.  (A) Effects of geniposide (0, 12.5, 25, 50, 100 μg/mL) on the 
decreased transepithelial electrical resistance (TER) induced by LPS.  (B) Time-course effect of geniposide (50 μg/mL) on the decreased TER induced 
by LPS.  Data are expressed as the mean±SD.  n=6.  (C–D) Effects of geniposide (0, 25, 50, 100 μg/mL) on the decreased occludin and ZO-1 protein 
expression induced by LPS in the Caco-2 monolayer.  Data are expressed as the mean±SD.  n=3.  **P<0.01 vs control group.  #P<0.05, ##P<0.01 
compared to LPS-infected group.
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Activation of AMPK by 5-aminoimidazole-4-carboxamide-1-d-
ribofuranoside, a potent AMPK activator, attenuates LPS-
induced endothelial hyperpermeability in vitro[30].  Increased 
MLCK protein expression and decreased occludin/ZO-1 
protein expression (tight junction) are also found to induce 
the destruction of intestinal barrier function[25–27].  All of these 
studies indicate that the amelioration of the disruption of epi-
thelial barrier function, characterized by restoration of these 
parameters back to normal, is therapeutically beneficial.  

Our results indicated that the mechanisms involved in geni-
poside-ameliorated intestinal epithelial barrier dysfunction 
in TNBS-treated rats had the following characteristics.  Geni-
poside reversed the increase in the serum recovery of FD-4, 
enhanced AMPK phosphorylation, inhibited the increase in 
protein expression of MLCK, and reversed the decrease in the 
protein expression of occludin and ZO-1.  Consistent with the 
above results obtained from the in vivo experiments, genipo-
side also significantly reversed the decrease in TER in LPS-
infected Caco-2 cells.  

Geniposide-induced modulation of epithelial barrier dys-
function was confirmed by in vitro assays.  Geniposide signifi-
cantly up-regulated the decreased p-AMPK (Figure 7A, 7B) 
and significantly down-regulated the increased MLCK protein 
expression (Figure 8A, 8B) in LPS-infected Caco-2 cells.  As 
AMPK activation has been found to inhibit MLCK[44, 45], these 
results suggest that geniposide attenuates LPS-induced intes-
tinal barrier dysfunction by AMPK up-regulation and acti-
vation (phosphorylation).  It should be noted that following 
AMPK siRNA transfection, geniposide neither up-regulated 
AMPK protein expression (Figure 7C) nor down-regulated the 
increased MLCK protein expression (Figure 8C).  Similarly, 
following cloning of MLCK cDNA, geniposide neither further 
up-regulated the increased AMPK protein expression (Figure 
7D) nor further down-regulated the MLCK protein expres-
sion (Figure 8D) in LPS-infected Caco-2 cells, showing that 
geniposide-induced modulation is characterized by reversing 
the disrupted epithelial function back to normal.

The present study indicated that geniposide treatment ame-
liorated TNBS-induced experimental colitis in vivo and attenu-
ated LPS-induced barrier dysfunction in vitro by reducing pro-
inflammatory cytokine release and restoring impaired intesti-
nal barrier function.  Geniposide down-regulates the protein 
expression of MLCK by activating AMPK phosphorylation.  
Our results suggest that geniposide has potential clinical 
implications for alleviating intestinal inflammatory disorders.
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