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A selective D3 receptor antagonist YQA14 attenuates 
methamphetamine-induced behavioral sensitization 
and conditioned place preference in mice
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Aim: We have reported that a selective dopamine D3 receptor antagonist YQA14 attenuates cocaine reward and relapse to drug-
seeking in mice.  In the present study, we investigated whether YQA14 could inhibit methamphetamine (METH)-induced locomotor 
sensitization and conditioned place preference (CPP) in mice.
Methods: Locomotor activity was monitored in mice treated with METH (1 mg/kg, ip) daily on d 4–13, followed by a challenge with 
METH (0.5 mg/kg) on d 21.  CPP was examined in mice that were administered METH (1 mg/kg) or saline alternately on each other day 
for 8 days (METH conditioning).  YQA14 was injected intraperitoneally 20 min prior to METH or saline.
Results: Both repetitive (daily on d 4–13) and a single injection (on the day of challenge) of YQA14 (6.25, 12.5 and 25 mg/kg) dose-
dependently inhibited the acquisition and expression of METH-induced locomotor sensitization.  However, repetitive injection of YQA14 
(daily during the METH conditioning) did not alter the acquisition of METH-induced CPP, whereas a single injection of YQA14 (prior 
to CPP test) dose-dependently attenuated the expression of METH-induced CPP.  In addition, the repetitive injection of YQA14 dose-
dependently facilitated the extinction and decreased the reinstatement of METH-induced CPP.
Conclusion: Brain D3 receptors are critically involved in the reward and psychomotor-stimulating effects of METH.  Thus, YQA14 
deserves further study as a potential medication for METH addiction.
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Introduction
Methamphetamine (METH) is a highly addictive drug that is 
abused throughout the world.  In China, METH users in the 
drug-abusing population rapidly increased from 6.7% in 2005 
to 35.9% in 2013, and METH is predicted to be one of the most 
widely used addictive drugs in the future[1].  Despite extensive 
research in recent decades, no effective pharmacotherapy has 
been approved by the United States Food and Drug Admin-
istration for the treatment of METH addiction[2, 3].  To achieve 
this goal, various experimental animal models, such as loco-
motor behavior sensitization, conditioned place preference 
(CPP) and self-administration, have been developed to study 

the mechanisms underlying METH addiction and to screen 
chemicals that may have therapeutic potential for the treat-
ment of METH addiction[4].  

The rewarding effects of METH are mediated by activation 
of mesolimbic dopamine (DA) transmission in the nucleus 
accumbens (NAc).  Specifically, this action is mediated by 
METH re-uptake into presynaptic terminals via membrane DA 
transporters; METH inhibits DA re-uptake into vesicles via 
type 2 vesicular monoamine transporters (VMAT2), thereby 
increasing cytoplasmic DA and DA release[5-7].  There are 
five subtypes of DA receptors, which are further classified as 
D1-like (D1 and D5) and D2-like (D2, D3, and D4) based on their 
different intracellular G-protein-coupled signaling pathways.  
Thus, brain DA receptors are reasonable molecular targets for 
possible therapeutics to treat METH addiction[4].  Growing 
evidence suggests that DA D3 receptors (D3Rs) play a critically 
important role in mediating DA action and substance abuse, 
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given the restricted distribution patterns of these receptors pri-
marily within the mesolimbic DA system, including the ventral 
tegmental area (VTA), NAc, islands of Calleja, and olfactory 
tubercle[8-10].  Neuroimaging studies suggest that mesolimbic 
D3Rs are up-regulated in both METH and cocaine abusers[11].  
Accordingly, inducing normalization (antagonism) of D3R 
functions using D3R antagonists may effectively attenuate 
vulnerability to psychostimulant reward and relapse.  

Various compounds with D3R antagonist profiles, such as 
YQA14, SB-277011A, NGB2904, BP-897, S-33138, PG-01037, 
and SR21502, have been evaluated for the treatment of 
addiction to psychostimulants, particularly cocaine, in 
experimental animals[10, 12-15].  However, few studies have 
evaluated the potential use of these compounds for the treat-
ment of METH addiction.  The systemic administration of 
SB-277011A, NGB2904, BP-897 and PG01307 attenuates the 
reward effects of METH-enhanced electrical brain stimula-
tion[13, 16].  SB-277011A also decreases the breaking point for 
METH self-administration and METH-induced reinstatement 
of drug-seeking behavior in rats[13, 16-18].  However, further 
development of SB-277011A as a therapeutic candidate for 
the treatment of drug addiction has been terminated due to 
its poor pharmacokinetic profile (an extremely short half-
life in primates) and concerns about toxicity[10, 19].  Therefore, 
we have recently developed another novel D3R antagonist, 
YQA14, which binds to two high-affinity binding sites on D3Rs 
with Ki values of 0.68×10-4 nmol/L and 2.11 nmol/L.  YQA14 
displays more than 150-fold selectivity for D3Rs over D2Rs and 
more than 1000-fold selectivity for D3Rs over other DA recep-
tors[12].  Moreover, pharmacokinetic assays demonstrate that 
YQA14 has improved oral bioavailability (~20%) in vivo in 
dogs and a longer half-life (>1.5 h in human liver microsome 
enzymes) compared with SB-277011A (~20 min) in vitro[20].  
YQA14 appears to have no rewarding or addictive potential 
because it does not sustain self-administration in rats that 
previously self-administered cocaine[21] or induce conditioned 
place preference (CPP) or conditioned place aversion (CPA)[22].  
Furthermore, YQA14 has no effect on locomotor activity when 
administered acutely or chronically[21].  These data suggest 
that YQA14 displays several advantageous properties that are 
useful for potential therapeutic development for the treatment 
of drug addiction compared with other reported D3R ligands, 
including SB-277011A.  

Therefore, in the present study, we further evaluated the ther-
apeutic potential of using YQA14 in experimental animals for 
the treatment of METH addiction.  Specifically, we investigated 
whether chronic or acute administration of YQA14 significantly 
alters the acquisition and expression of METH-induced loco-
motor sensitization, METH-induced CPP, METH-induced CPP 
extinction, and METH-induced reinstatement of CPP.

Materials and methods
Drugs
Methamphetamine was obtained from the Beijing Public Secu-
rity Bureau Forensic Medical Examination Center (China).  
YQA14 was synthesized by the Beijing Institute of Pharma-

cology and Toxicology and dissolved in 2-hydroxypropyl-β-
cyclodextrin (Xi’an Deli Biological Chemical Co, Ltd, Xi’an, 
China) which was used as the vehicle.

Animals
Male Kun-Ming mice (Beijing Animal Center, Beijing, China) 
weighing 18–20 g were housed under environmentally con-
trolled conditions at an ambient temperature maintained at 
21±1 °C and with humidity maintained at 50%–60%.  All mice 
were maintained on a 12-h light/dark cycle (lights on at 7:00 
AM and lights off at 7:00 PM) with food and water provided 
ad libitum.  All animals were maintained in a facility fully 
accredited by the Association for Assessment and Accredita-
tion of Laboratory Animal Care International, and all experi-
mental procedures were conducted in accordance with the 
guidelines established by the Institutional Review Committee 
for the Use of Animals.

Locomotor behavior sensitization experiment
The general procedure for sensitization was identical to a 
previously described procedure[21].  Briefly, the apparatus 
(JLBehv-LAG-9, Shanghai, China) was a locomotor activity 
monitor chamber.

Habituation phase (d 1–3) 
Before receiving drug treatment, mice were habituated in the 
locomotor detection chambers for 1 h per day for 3 days.  

METH-induced behavior sensitization and challenge phases (d 4–21)
Animals in the METH group and the saline group received 
METH (1 mg/kg, ip) or saline (10 mL/kg, ip), respectively, 
and were immediately placed in a locomotor detection cham-
ber, where their activity was recorded for 1 h daily for 10 
days (d 4–13).  All animals were then returned to their home 
cages without METH or saline treatment for a 7-d withdrawal 
period (d 14–20).  Finally, all of the mice were challenged with 
METH (0.5 mg/kg, ip) on d 21.

To evaluate the effects of chronic YQA14 administration on 
the acquisition of METH challenge-induced locomotor sen-
sitization (Figure 1A), the animals in the METH group were 
assigned to 4 groups that received either vehicle or YQA14 
(6.25, 12.5 and 25 mg/kg, ip, n=12 per dose group) 20 min 
before receiving METH (1 mg/kg, ip).  The locomotor activ-
ity of the animals was then recorded for 1 h daily for 10 days’.  
The mice did not receive YQA14 during the withdrawal 
period or on the challenge day.  

To assess the effects of acute YQA14 administration on METH 
challenge-induced locomotor sensitization (Figure 2A), the ani-
mals in the METH group were assigned to 4 groups that received 
either vehicle or YQA14 (6.25, 12.5 and 25 mg/kg, ip, n=12 per 
dose group) 20 min before receiving METH (0.5 mg/ kg, ip) on 
the challenge day, and their locomotor activity was recorded 
for 1 h.  These mice did not receive YQA14 during the period 
of acquisition of METH-induced behavior sensitization or dur-
ing the withdrawal period.

All data were recorded using a computerized video tracking sys-
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tem (Jiliang Software Co, Ltd, Shanghai, China).  Travel distance 
was used to evaluate the effects of YQA14 on locomotor behavior.

Conditioned place preference experiment
The general procedure for the unbiased CPP procedure was 

identical to a previously described procedure[23] as shown in 
Figure 3A.  Briefly, a conventional CPP apparatus (CPP-VR01, 
Ningbo, China) was used.  The apparatus had two compart-
ments of equal size (25 cm×35 cm×64 cm) and a central tunnel 
(15 cm×35 cm×64 cm).  One compartment was black, with a 
stainless steel grid in the floor that consisted of perpendicu-
larly placed rods (cross-section: 0.3 cm×0.3 cm) placed to form 
empty centers (1.5 cm×1.5 cm).  The other compartment was 
white with a 28.5 cm×22.5 cm stainless steel mesh floor.  The 
center corridor was painted black on the floor and white on 
the two lateral walls.  Each compartment had a LED light and 
an overhead camera.  All data were recorded using a comput-
erized video tracking system (AniLab Software & Instrument 
Co, Ltd, Ningbo, China).  

Pre-conditioning phase (d 1–3)
The mice were first placed in the center corridor and allowed 
free access to the other two compartments for 15 min daily.  
The time spent in each compartment was recorded.  This 
habituation period was used to exclude biased mice that spent 
more than 800 s in either compartment during the study.  

METH-induced CPP (d 4–12)
METH conditioning was conducted for 8 days (4 drug sessions 
and 4 saline sessions).  Each animal received METH (1 mg/kg, 
ip) or saline (10 mL/kg, ip) injections alternately on every 
other day.  The mice were then immediately confined in the 
appropriate drug- or saline-paired compartments for 60 min.  

To assess the effects of YQA14 on the acquisition of METH-
induced CPP, naïve animals received vehicle or YQA14 (6.25, 
12.5 and 25 mg/kg, ip, n=12 per group) 20 min prior to each 
METH (1 mg/kg, ip) or saline (10 mL/kg, ip) injection dur-
ing the METH conditioning phase (Figure 3A).  The CPP test 
was conducted 24 h after the last injection.  There was no drug 
treatment on the test day.  

To evaluate the effects of YQA14 on the expression of METH-
induced CPP, either vehicle or YQA14 (6.25, 12.5 and 25.0 mg/kg, 
ip, n=18–19 per group) was administered 20 min prior to 
the CPP test to additional groups of naïve mice that did not 
receive chronic YQA14 treatment during METH conditioning 
(Figure 4A).  The mice were placed in the center corridor and 
were allowed free access to the other two compartments for 
15 min.  The preference (ie, CPP score) was calculated by sub-
tracting the time spent in the saline-paired compartment from 
the time spent in the drug-paired compartment.

CPP extinction (d 13–22)
Naïve animals  were trained with METH.  Following the 
establishment of METH-induced CPP, the animals were sepa-
rated into 4 groups and then underwent daily extinction train-
ing for 10 days.  During this time, they received injections of 

vehicle or YQA14, but without METH, and were confined in 
the previously drug-paired compartment for 60 min (n=23–24 
per group).  The effect of chronic YQA14 on the extinction 
response to METH-induced CPP was evaluated after each 4-d 
period of extinction training during an extinction test 1 on d 17 
and an extinction test 2 on d 22.

Reinstatement test (d 23)
After the completion of the above extinction tests, all mice 
were primed with an injection of METH (0.5 mg/kg, ip) to 
analyze the METH-induced reinstatement of the CPP response 
after chronic vehicle or YQA14 treatment during the extinction 
described above.

Statistical analysis 
All data are presented as the mean±SEM.  The effects of 
YQA14 on METH-induced behavioral sensitization and CPP 
were assessed using one-way or two-way ANOVA.  Indi-
vidual group comparisons were performed using Student-
Newman-Keuls methods.  A paired t-test was also used to 
analyze the statistical significance of effects on METH-induced 
CPP between pre-conditioning and post-conditioning 

Results
Chronic administration of YQA14 inhibits the acquisition of 
METH-induced behavioral sensitization
Figure 1B shows the effects of repeated METH administra-
tion (1 mg/kg, ip) on locomotor behavior in the presence 
or absence of YQA14.  Chronic METH treatment produced 
significant behavioral sensitization (P<0.05 on d 12 and 
P<0.01 on d 13 vs d 1) in METH group mice.  Chronic YQA14 
treatment significantly attenuated the acquisition of METH-
induced behavioral sensitization.  Two-way ANOVA for 
repeated measures revealed a significant YQA14 treatment 
main effect (F4, 55=14.22, P<0.01), time main effect (F9, 486=2.83, 
P=0.003), and a treatment×time interaction (F36, 589=2.00 
P<0.01).  On the challenge day, METH (0.5 mg/kg, ip) pro-
duced a significant increase in locomotion only in the vehicle 
group but not in any of the YQA14 treatment groups (t=-6.539, 
with 22 degrees of freedom, P<0.01 vs the saline group, Fig-
ure 1C).  One-way ANOVA revealed a significant main effect 
of YQA14 treatment (F3,44=4.752, P<0.01).  Post hoc individual 
group comparisons revealed a significant difference between 
the vehicle and YQA14 treatment groups at each dose (P<0.05, 
P<0.01 and P<0.01 for 6.25, 12.5 and 25 mg/kg, respectively).

A single injection of YQA14 inhibits the effects of METH 
challenge during behavioral sensitization
METH (0.5 mg/kg, ip) priming produced a significantly 
enhanced locomotor response in the vehicle treatment group 
(t=4.70, P<0.01, Figure 2B).  However, pretreatment with a 
single administration of YQA14 significantly attenuated this 
effect on METH-induced locomotor sensitization (F3, 44=6.45, 
P<0.01) in a dose-dependent manner.  Individual group com-
parisons revealed a statistically significant reduction after the 
administration of 12.5 mg/kg or 25 mg/kg YQA14 (P<0.01).
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Chronic pretreatment with YQA14 does not alter the acquisition 
of METH-induced CPP 
We then further examined whether repeated administration of 
YQA14 would alter the acquisition of METH-induced CPP in 
mice.  METH produced a robust place preference regardless of 

YQA14 treatment (P<0.01, P<0.01, P<0.05 and P<0.01 for vehi-
cle, 6.25, 12.5 and 25 mg/kg YQA14, respectively, Figure 3B), 
indicating that chronic administration of YQA14 had no signifi-
cant effect on the acquisition of METH-induced CPP compared 
with the vehicle treatment group (F3, 44= 0.11, P>0.05).

A single injection of YQA14 inhibits the expression of METH-
induced CPP 
We next examined the effect of YQA-14 on the expression of 
METH-induced CPP.  YQA14 pretreatment (6.25, 12.5, and 25 
mg/kg, ip, 20 min prior to test) significantly attenuated METH-
induced CPP in a dose-dependent manner (F3, 74=3.34, P<0.05, 
Figure 4B).  Post hoc individual group comparisons revealed a 
statistically significant reduction in CPP after administration of 
12.5 mg/kg or 25 mg/kg of YQA14 (P<0.05, vs vehicle).

Chronic administration of YQA14 facilitates the extinction and 
inhibits the reinstatement of METH-induced CPP 
Before extinction training, mice were not pretreated with 
YQA14.  METH (1 mg/kg, ip) produced significant CPP in 
the vehicle and YQA14 treatment groups compared with the 
responses in the pre-conditioning phase.  During the extinc-
tion phase, the mice were treated daily with vehicle or YQA14 
immediately before being placed into the formerly METH-
paired compartment.  Repeated pretreatment with YQA14 

Figure 1.  Effects of chronic administration of YQA14 on the acquisition of 
METH-induced behavioral sensitization in mice.  (A) Experimental protocol 
for YQA14 and METH treatments.  (B) Time courses of METH-induced 
hyperactivity and locomotor sensitization in the presence or absence of 
YQA14 pretreatment.  Mean±SEM. n=12.  bP<0.05, cP<0.01 vs day 1; 
eP<0.05, fP<0.01 vs METH treatment alone.  (C) METH (0.5 mg/kg, ip) 
priming produced a significant increase in locomotor activity 7 days after 
the last METH injection (cP<0.01 vs the saline group).  This effect was dose-
dependently attenuated in the groups that received chronic treatment with 
YQA14 (eP<0.05, fP<0.01 vs METH treatment alone).  Mean±SEM.  n=12.

Figure 2.  Effects of a single injection of YQA14 on METH challenge-
induced behavior sensitization in mice.  (A) Experimental protocol for 
YQA14 and METH treatments.  (B) METH (0.5 mg/kg, ip) priming produced 
a significant increase in locomotor activity 7 days after the last METH 
injection (cP<0.01 vs the saline group).  This effect was dose-dependently 
inhibited by a single injection of YQA14 (fP<0.01 vs vehicle group).  
Mean±SEM. n=12. 
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dose-dependently decreased reward-seeking during extinc-
tion, ie, the time spent in the METH-paired compartment on 
the first extinction test day compared with the vehicle treat-
ment group (F3, 90=2.96, P<0.05, Figure 5B).  Because the CPP 
response was not completely extinguished on the first test day, 
we continued daily extinction using vehicle or YQA14 treat-
ment for an additional 4-days.  Next, we observed the effects 
of chronic YQA14 treatment on the METH-induced reinstate-
ment of CPP.  After 8 d of extinction training, METH-induced 
CPP was nearly completely extinguished in all vehicle and 
YQA14 treatment groups during test 2.  On the reinstate-
ment test day, priming with METH (0.5 mg/kg, ip) in the 
vehicle group induced a robust reinstatement of the METH-
induced CPP (t=6.37, P<0.01) that was significantly attenuated 
by YQA14 (6.25, 12.5, and 25 mg/kg, ip) in a dose-depen-
dent manner (F3, 90=6.85, P<0.01, Figure 5B).  Individual group 
comparisons revealed a statistically significant reduction after 
the administration of 6.25, 12.5 and 25 mg/kg YQA14.  

Discussion
The major findings of the present study are that chronic or 
acute administration of the selective D3R antagonist YQA14 
significantly inhibits the acquisition and expression of METH-
induced locomotor sensitization and the expression of METH-
induced CPP in a dose-dependent manner.  In addition, the 

chronic administration of YQA14 also facilitates the extinction 
of reward-seeking and attenuates the METH-induced rein-
statement of CPP.  These data suggest that brain D3Rs play a 
critical role in the stimulatory effects of METH.  Thus, YQA14 
or other D3R antagonists warrant further research aimed at 
studying their effect as potential pharmacotherapies for METH 
addiction.  

Locomotor hyperactivity is one of the most commonly used 
paradigms for studying the rewarding and psychostimulatory 
effects of drugs[24-29].  In the present study, we observed that 
chronic administration of METH induced gradually increasing 
locomotion after daily injection.  A previous study reported 
that acute or chronic administration of YQA14 had no effect 
on locomotor activity[21].  However, acute injection of YQA14 
prior to METH administration significantly inhibited METH-
induced hyperactivity, suggesting a reduction in METH 
reward and psychomotor-stimulation.  This is consistent 
with the significantly attenuated acute locomotor responses 
observed following administration of METH in D3R−/− mice 
compared with the effects observed in wild-type mice[30].  
These results are also consistent with the ability of YQA14 
and other D3R antagonists, such as SB-277011A, NGB2904, 
and PG-01037, to significantly inhibit METH or cocaine self-
administration[12, 13, 18, 21, 22, 31-34] and METH- or cocaine-enhanced 
electrical brain stimulation rewards, two of the other most 
common animal models used to evaluate drug reward sys-
tems[14-16, 22, 33, 35].  

Figure 3.  Effects of chronic administration of YQA14 on the acquisition 
of METH-induced CPP in mice.  (A) YQA14 and METH treatment protocols.  
(B) CPP scores after vehicle or YQA14 administration illustrate that 
pretreatment with YQA14 did not produce a statistically significant 
reduction in METH-induced CPP.  Mean±SEM.  n=12.  bP<0.05, cP<0.01 vs 
pre-conditioning.

Figure 4.  Effects of a single injection of YQA14 on the expression 
of METH-induced CPP in mice.  (A) The METH and YQA14 treatment 
protocols.  (B) CPP scores after treatment with vehicle or YQA14 illustrate 
that pretreatment with YQA14 on the CPP test day dose-dependently 
inhibited the expression of METH-induced CPP.  Mean±SEM.  cP<0.01 vs 
pre-conditioning.  eP<0.05 vs vehicle.
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Behavioral sensitization has been proposed as a useful 
paradigm for investigating the mechanisms involved in 
addiction to psychostimulants.  Behavioral sensitization, 
which is the progressive and enduring augmentation of cer-
tain behaviors following repetitive drug use, alters rodent 
locomotion in a long-standing manner and is a well-studied 
model of behavioral plasticity[36].  The mechanisms underly-
ing behavioral sensitization are thought to involve enhanced 
DA transmission[37-41].  In the present study, we observed that 
repeated administration of the same dose of METH produced 
significant locomotor sensitization, ie, an enhanced locomotor 
response, compared with responses during the first few days 
of METH injections.  This effect was long-lasting and persisted 
for at least 7 days after the start of METH abstinence.  This 
finding suggests that METH-induced behavioral sensitization 
may in part be involved in the enduring neural adaptations 
associated with drug cravings and relapses after chronic long-
term use of METH.  In addition, chronic administration of 
YQA14 significantly and dose-dependently inhibited both the 
development and the expression of METH-induced behavioral 
sensitization.  This inhibition is congruent with the above DA 
hypothesis regarding behavioral sensitization and with previ-
ous findings showing that YQA14 or SB-277011A significantly 
attenuated cocaine-induced behavioral sensitization[12, 21].  The 
experimental results observed in the present study are also 

consistent with findings in studies of other D3R antagonists (ie, 
nafadotride, U99194A and GR103691) that have shown that 
blockade of D3Rs attenuates the behavioral sensitization pro-
duced by repeated amphetamine administration[42, 43].  The D3 
receptor mutant (D3R−/−) mice also exhibited attenuated acute 
locomotor responses as well as the development of behavioral 
sensitization to METH compared with the results in wild-type 
mice[30].  Taken together, these results suggest an important 
role for D3Rs in METH-induced locomotor sensitization and 
possibly in relapse toward METH-seeking behavior.  

In support of these conclusions, we used the CPP paradigm 
to evaluate the effects of chronic vs acute administration of 
YQA14 on the acquisition, expression, extinction and reinstate-
ment of METH-induced CPP.  The CPP paradigm is based 
on Pavlovian stimulus learning, which is considered a reli-
able measure of the reinforcing properties of addictive drugs 
and is particularly useful for evaluating the reinforcing effect 
of paired addictive drugs and environmental cues[44].  In the 
present study, we observed that the chronic administration of 
YQA14 did not significantly block the development of METH-
induced CPP.  However, a single injection of YQA14 dose-
dependently attenuated the expression of METH-induced CPP 
measured 7 days after chronic METH administration.  Overall, 
these findings are consistent with previous findings show-
ing that the D3R-preferring agents BP-897 and nafadotride 

Figure 5.  Effects of chronic administration of YQA14 on the extinction and reinstatement of METH-induced CPP in mice.  (A) The complete experimental 
protocol for METH and YQA14 treatments.  (B) CPP scores after treatment with vehicle or YQA14 during extinction illustrate that YQA14 dose-
dependently facilitated the extinction of METH reward-seeking and the METH-primed reinstatement of METH-seeking behavior.  Mean±SEM.  n=23–24, 
cP<0.01 vs pre-conditioning; eP<0.05, fP<0.01 vs the vehicle control group.
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also selectively block the expression, but not the acquisition, 
of amphetamine-induced CPP at the same drug doses[2, 45, 46].  
Furthermore, these results are consistent with our recent find-
ing that YQA14 selectively inhibits the expression, but not the 
acquisition, of morphine-induced CPP[23].  The precise mecha-
nisms underlying the inability of YQA14 to disrupt the acqui-
sition of METH-induced CPP are unclear.  The simplest expla-
nation is that the doses of YQA14 used here were not adequate 
to block METH-induced CPP.  This possibility is supported 
by our finding that in the absence of METH, the same doses 
of YQA14 significantly inhibited the expression of METH-
induced CPP (Figure 4B).  Another reasonable explanation is 
that DA receptor mechanisms other than those related to D3Rs 
may also be involved in the development of METH-induced 
CPP.  The CPP model is viewed as an incentive learning pro-
cess.  Accordingly, during the conditioning sessions, the stim-
uli in the chamber was associated with the METH to display 
the perceived appetitive.  However, on the expression day, 
the animals that did not receive METH spent more time in the 
drug-paired chamber because of this incentivized learning[47-49].  
The results indicate that YQA14 blocks D3Rs and impairs the 
capacity of the environmental cues that were associated with 
METH to elicit approach behaviors; however, YQA14 does not 
alter the perceived appetitive value of METH.  These results 
suggest that D3Rs play a more important role in the expres-
sion of conditioned behaviors than in their acquisition[47, 50].  
Regardless of the mechanisms underlying the ineffectiveness 
of YQA14 at combatting the acquisition of METH-induced 
CPP, the present finding that YQA14 inhibits the expression of 
METH-induced CPP is consistent with previous reports that 
have shown that the blockade of D3Rs by SB-277011A, YQA14 
or SR21502 inhibits cocaine-induced CPP[14, 22, 51], cocaine and 
METH self-administration[12, 18, 21, 31], and cocaine- and METH-
induced enhancement of electrical brain stimulation rewards[21, 33, 35].  
Importantly, YQA14 itself does not induce CPP or CPA[22].

These findings suggest that blockade of D3Rs impairs the 
capacity of the environmental cues that were associated with 
METH to elicit approach behaviors but does not alter the per-
ceived appetitive value of METH.  These results indicate that 
D3Rs play a more important role in the expression of incentive 
learning than in the acquisition of METH-induced CPP[47, 50].

METH addiction is also characterized by persistent suscepti-
bility to drug relapse[52].  Identifying effective medications that 
can prevent drug relapse is a key goal of the study of drug 
addiction.  Drug-primed reinstatement is identified as one of 
the most important aspects of relapse in humans and has been 
modeled by the reinstatement of extinguished METH seeking 
or METH-induced CPP behavior in mice[4].  Using this model, 
we observed, for the first time, that chronic administration 
of YQA14 significantly facilitated the extinction of METH-
induced CPP (ie, reward-seeking behavior) and the METH-
induced reinstatement of drug-seeking behavior.   

Extinction training of drug-associated cues has been pro-
posed as a treatment called cue exposure therapy, which aims 
to prevent relapse by reducing the motivational properties of 
the cues.  However, cue exposure therapy in clinical settings 

has not been efficacious[53, 54].  A modified extinction training 
procedure based on disruption of the reconsolidation of the 
memories associated with drugs of abuse was recently pro-
posed as a potential strategy to decrease relapse[55-57].  In this 
study, we used cue-exposure therapy protocols combined 
with the use of selective D3R antagonists such as YQA14.  
The results are similar to those in previous studies showing 
that the chronic administration of YQA14 inhibits morphine-
induced reinstatement of CPP and that the acute administra-
tion of YQA14 inhibits cocaine- or cue-induced relapse to 
cocaine-seeking behavior[12, 21, 22, 58].  The neuronal mechanisms 
underlying these effects are unclear.  Drug-associated cues can 
increase DA (and glutamate) release in the mesolimbic DA 
system, particularly in the NAc[59-63].  This effect may explain 
why the blockade of D3Rs by YQA14 facilitated the extinction 
of METH-induced CPP and diminished reinstatement in the 
present study.  

In addition, the extinction of reward-seeking is an active 
learning process that does not erase the memory of addic-
tion but instead establishes a new memory[64].  Mesolimbic–
mesocortical DA has been thought to play an important role 
in learning and memory[65].  Moreover, a series of studies has 
demonstrated the participation of D3Rs.  The moderately selec-
tive D3R agonist 7-OH-DPAT impaired passive avoidance 
performance in mice and produced disturbances in an object 
discrimination task in marmosets[66].  The DA D2/D3 recep-
tor antagonist raclopride alleviated the memory impairment 
induced by a compound that activates D3Rs[67].  The relatively 
selective D3R antagonist nafadotride antagonized scopol-
amine-induced memory deficits in rats[68].  The highly selective 
D3R antagonists SB-277011A and RGH-1756, the moderately 
selective U-99194A and the partially selective D3R agonist 
BP-897 also improved learning performance in memory-
impaired rats[67].  These data suggest that DA D3R antagonists 
produce cognition-enhancing effects that may be beneficial 
for learning and memory.  This DA-D3R hypothesis may also 
partially explain the YQA14 antagonism of the reinstatement 
of METH-seeking behavior observed in the present study.  
Clearly, further study is required to fully address this issue.  

In conclusion, the chronic administration of YQA14, a 
selective D3R antagonist, induces the persistent reversal of 
behavioral sensitization to METH.  Furthermore, YQA14 
significantly inhibits the expression of METH-induced CPP.  
Importantly, it also facilitates the extinction and reduces the 
METH-primed reinstatement of METH-induced CPP in mice 
in a dose-dependent manner.  These findings suggest that 
YQA14 not only decreases the rewarding effect of METH but 
also attenuates relapse to METH-seeking behavior.  Thus, 
chronic administration of D3R antagonists in combination with 
cognitive behavioral therapy may provide a novel effective 
treatment for METH relapse.  
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