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Aim: A large number of drug-induced long QT syndromes are ascribed to blockage of hERG potassium channels.  The aim of this study 
was to construct novel computational models to predict compounds blocking hERG channels.
Methods: Doddareddy’s hERG blockage data containing 2644 compounds were used, which divided into training (2389) and test 
(255) sets.  Laplacian-corrected Bayesian classification models were constructed using Discovery Studio.  The models were internally 
validated with the training set of compounds, and then applied to the test set for validation.  Doddareddy’s experimentally validated 
dataset with 60 compounds was used for external test set validation.
Results: A Bayesian classification model considering the effects of four molecular properties (Mw, PPSA, ALogP and pKa_basic) as well 
as extended-connectivity fingerprints (ECFP_14) exhibited a global accuracy (91%), parameter sensitivity (90%) and specificity (92%) in 
the test set validation, and a global accuracy (58%), parameter sensitivity (61%) and specificity (57%) in the external test set validation.
Conclusion: The novel model is better than those in the literatures for predicting compounds blocking hERG channels, and can be used 
for large-scale prediction.
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Introduction
Long QT syndrome (LQTs) occurs frequently and is associated 
with a potential risk of life-threatening torsades de pointes 
(TdP).  Many drugs have been withdrawn from the market 
for LQTs toxicity[1–3]. The human ether-à-go-go-related gene 
(hERG) product is a tetrameric potassium channel that plays 
an important role in cardiac action potential.  Currently, a 
large number of clinical cases of drug-induced or acquired 
LQTs have been ascribed to the blockage of the hERG chan-
nel[4, 5].   Therefore, it is necessary to measure the hERG inhibi-
tion activity of candidate compounds during drug discovery.  
Many experimental assays have been used to detect hERG 
blockage, such as patch clamp assays, radioligand binding 
assays, and fluorescence-based assays[6].  However, these 
assays are time-consuming, labor-intensive and costly.  It is of 
high interest to develop computational methods that can rap-

idly and accurately assess the hERG liability of a compound 
before it is synthesized or purchased from a commercial 
library.

In past years, many hERG blockage prediction approaches 
have been reported and can be roughly categorized as struc-
ture-based or ligand-based.  Because the crystal structure of 
the hERG potassium channel has not been resolved as yet, the 
structure-based approaches rely mainly on homology model-
ing.  These structure-based approaches are useful for explain-
ing the binding effect of closely related analogues or a small 
collection of compounds.  However, due to the lack of a suit-
able template three-dimensional (3D) structure with sufficient 
sequence identity, the modeled hERG structure shows limited 
ability to substantially improve the prediction capabilities of 
these approaches.

With the rapid accumulation of hERG blockage data for 
various compounds, more ligand-based approaches were 
reported.  In 2002, Cavalli et al used the CoMFA method anal-
ysis for 31 drugs and built a four-point pharmacophore model 
that included a positively charged tertiary amine flanked by 
three aromatic or hydrophobic centers, which was validated 
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using 6 compounds (r2=0.744)[7].  In 2003, Keseru et al devel-
oped traditional and hologram QSAR (HQSAR) models with 
five descriptors, including ClogP, molar refractivity (CMR), 
partial negative surface area (PNSA1), polarizability (W2), 
and hydrophobicity (D3), to predict hERG affinities, for a test 
set of 13 compounds (r=0.75)[8].  In 2006, Yoshida et al carried 
out 2D-quantitative structure activity relationship (2D-QSAR) 
studies on 104 hERG channel blockers with descriptors that 
included the octanol/water partition coefficient, topological 
polar surface area, molecular diameter, the summed surface 
area of the atoms and an indicator variable representing the 
experimental conditions for a test set containing 18 com-
pounds (r2=0.688)[9].  In 2008, Li et al performed a classification 
model of hERG blockage for 495 compounds based on GRIND 
descriptors and the support vector machine (SVM) method, 
which achieved an accuracy of 92% for the training set but 
only an accuracy of 72% for the test set of 66 WOMBAT-PK 
compounds[10].  In 2011, Shen et al performed a model with 
4D-fingerprints (4D-FPs) and traditional 2D and 3D VolSurf-
like molecular descriptors, based on the PubChem hERG 
Bioassay data set containing 876 compounds — the accuracy 
for this model was 87% for an external test set of 356 com-
pounds[11].  However, the PubChem hERG Bioassay data set 
was assembled from diverse sources and measured by various 
experimenters, which might cause the resulting model to be 
less reliable.  In 2010, Doddareddy et al developed linear dis-
criminant analysis (LDA) and SVM models based on a large 

dataset of 2644 compounds.  Extended-connectivity finger-
prints were used to describe chemical space.  The best SVM-
ECFP_6 model showed 88% accuracy for the external test 
set, which contained 255 compounds[12].  In 2013, Wang et al 
reviewed recent developments in computational prediction of 
hERG blockage, and they proposed that more reliable experi-
mental data and a consensus modeling strategy are required to 
improve the performance of current computational models[13].  

hERG blockage data for chemicals are quickly accumu-
lated, and a QSAR model based on a large dataset is a good 
approach to accurately predict the property of hERG blockage.  
Although Shen used PubChem containing a large amount of 
data and obtained a good prediction, the 4D-FP descriptors 
were generated based on estimations of the conformation 
energy profiles of molecules by molecular dynamics simula-
tion, which is difficult to obtain[11].  So far, the largest dataset 
used for hERG blockage prediction was compiled by Dod-
dareddy et al.  They constructed SVM models that yielded 
good prediction accuracy but showed limited ability to inter-
pret the mechanism of action.  In this study, we used Dod-
dareddy’s data set and constructed models with a Laplacian-
corrected Bayesian classification method, which considers 
the effects of some features in identifying toxic compounds.  
Simple molecular properties and extended-connectivity finger-
prints were used as descriptors.  These models performed well 
for the training and test sets and could be used for large-scale 
prediction.  

Figure 1.  Example to show the ECFP iterative generation procedure.
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Materials and methods
Datasets
The work reported here used the hERG blockage data from 
Doddareddy and co-workers[12], which contained 2644 com-
pounds, including 1479 literature compounds tested for effects 
on the hERG channel and 1165 FDA-approved drugs.  The 
dataset was divided into training and test sets as described[12].  
Activity data were expressed as an IC50 value, measured by 
either patch clamp or radioligand binding assays, which were 
conducted in human HEK-293 and CHO cell lines.  Although 
there were some differences in the pIC50 values, these two 
assay results showed a consistent trend.  Moreover, because 
we choose to build qualitative (classification) models, the 
quantitative variability in different assays can be consider-
ably reduced by setting appropriate activity thresholds for 
separating blockers from nonblockers.  Here, we employed 
Doddareddy’s criteria, ie, the compounds with IC50 value <10 
μmol/L were labeled as blockers and those with IC50 value 
>30 μmol/L and FDA-approved drugs as nonblockers.

Calculation of molecular properties
Many previous studies have revealed that molecular proper-
ties are relevant to hERG blockage, including the molecular 
lipid-water partition coefficient (ClogP), molecular weight 
(MW), and the molecular surface area information[8, 9].  In this 
study, molecular weight (MW), molecular fractional polar sur-
face area (FPSA), and lipophilicity (ALogP) were used.  We 
also calculated the pKa of the most positive basic nitrogen (pKa 
basic) based on previous pharmacophore models[7, 14, 15].  These 
four molecular properties were used as simple molecular 
descriptors for hERG blockage modeling and were calculated 
with the “Calculate Molecular Properties” protocol within Dis-
covery Studio (version 3.0; Accelrys, San Diego, CA, USA) and 
components in Pipeline Pilot (version 7.5; Accelrys, San Diego, 
CA, USA).  

Extended-connectivity fingerprints (ECFPs) are a class of 
2D fingerprints for capturing molecular features based on a 
variant of the Morgan algorithm[16].  An example of the gen-
eration process of ECFP for benzamide is shown in Figure 1.  
The ECFPs’ capture atom information based on the Daylight 
atomic invariants rule[17] and the identifiers are hashed into a 
single 32-bit integer value[18].  The number of iterations per-
formed is determined by the maximum diameter of the neigh-
borhoods requested.  For example, “ECFP_4” generates fea-
tures around each atom up to a diameter of 4, which requires 
two iterations.  We also calculated the fingerprints with the 
“Calculate Molecular Properties” protocol within the Discov-
ery Studio (version 3.0; Accelrys, San Diego, CA, USA).

Modeling methods
Laplacian-corrected Bayesian classifier models were generated 
using Discovery Studio (version 3.0; Accelrys, San Diego, CA, 
USA)[19–21].  Bayesian categorization model is a statistical clas-
sification method, which use knowledge of probability and 
statistics based on Bayes’ theorem (Eq 1): 

Where A is the classification of model, B is the observed value, 
P(A) is the prior probability or marginal probability of clas-
sification A without considering any B factors, P(B) is the prior 
or marginal probability of the value, P(B|A) is the posterior 
probability (the probability of value B if classification A is 
true), and P(A|B) is the probability that classification A is true 
given the observed data B (also called the posterior probabil-
ity)[22].  

We choose to build a Laplacian-corrected Bayesian classi-
fier because it considers the complexity of the model as well 
as the likelihood and then picks the simplest model to explain 
observed data, which can avoid overfitting.  The Bayesian 
classification technique was widely used in ADME/T pre-
dictions[23–25].  In our modeling process, the “good” samples 
(blockers) must be labeled first; then the model learns to dis-
tinguish the good samples from the bad samples (nonblock-
ers).  The learn-by-example process worked as follows: given 
a sample compound structure, the features of the sample were 
generated and then converted into Boolean forms.  A bin was 
defined to count the frequency of the fingerprints and continu-
ous values in a given range.  Finally, the number of occur-
rences of each feature in the blocker subset, as well as in all 
samples, was collected.  In addition, for each feature, a weight 
was calculated using the Laplacian-adjusted probability esti-
mate.  The Laplacian-adjusted process can be summarized as 
follows (Eq 2, 3, 4): 

P(A|B) = P(B|A)P(A)                                   (1)                       P(B)

Pcorr(Active|Fi) =
 A+P(Active)*K                          (2)                                     B+K

Pfinal(Active|Fi) =
 Pcorr(Active|Fi)                          (3)                                   P(Active)

(4)

where a feature Fi is contained in B samples, and A of those 
B samples are active.  K is a constant [virtual samples of 
P(Active) were added K times to stabilize the estimator to 
ensure more weight was assigned to the features that occurred 
more frequently and little weight was assigned to those that 
occurred less frequently].  When n features of a compound 
were generated, a cumulative score of feature contributions 
to the actives likeness (Pcombined) was computed.  More details 
concerning the method have been described by Xia et al[26].  

Two different models were built: one used simple molecular 
properties as descriptors, and the other used simple molecular 
properties and ECFP fingerprints as descriptors.  The Bayes-
ian models with leave-one-out (LOO) validation were built 
with the training set and then evaluated with external test sets 
using the performance metrics described below.

Model evaluation
To evaluate the performance of the models, we used the 
parameter sensitivity (SE, also referred to as recall or the true-
positive rate, the percentage of active compounds correctly 
predicted), specificity (SP, also known as the true-negative 
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rate, the percentage of inactive compounds correctly pre-
dicted) and the global accuracy (AC, the total percentage cor-
rectly predicted).  These parameters are defined as follows (Eq 
5, 6, 7): 

In Eqs 5–7, TP is the number of true positives (active com-
pounds that are correctly predicted), TN is the number of true 
negatives (inactive compounds that are correctly predicted), 
FN is the number of false negatives (active compounds that 
are incorrectly predicted to be inactive), and FP is the number 
of false positives (inactive compounds that are incorrectly pre-
dicted to be active).  The above parameters were calculated for 
the training and the test sets.

Results and discussion
Bayesian classifiers
The leave-one-out (LOO) statistical results for the training set 
for Bayesian classifiers are summarized in Table 1.  The first 
Bayesian model based on the four simple descriptors (Model 
1) showed a high sensitivity of 91% but with poor specificity 
of 70%.  Then the ECFPs fingerprint descriptors were added to 
the simple descriptors; the best classifier was the model based 
on the simple descriptors+ECFP_14 (Model 2), which had a 
sensitivity of 96%, a specificity of 96%, and an overall accuracy 
of 96%，outperforming the best model of Doddareddy et al.

The two models were then validated with test set I, which 
comprised 255 molecules.  As shown in Table 2, the sensitivity 
and specificity for Model 2 were 90% and 92%, respectively.  
Model 1 also gave a good sensitivity of 91% but a relatively 
poor specificity of 75%.  Model 1 performed well on the block-
ing molecules but poorly on the non-blocking molecules.  The 
performance was improved when ECFP_14 was added, espe-

cially for the predictive capability for nonblockers.  This result 
suggested that ECFP_14 is useful for identifying the common 
structural features of compounds that may avoid interaction 
with the hERG channel.  

Molecular features important for hERG
Many molecular descriptors have been proven to be help-
ful for hERG blockage prediction, including 2D descriptors, 
such as ClogP, compound molar refractivity (CMR), polariz-
ability，partial positive/negative surface area, compound 
diameter, topological polar surface area, static polar surface 
area, fragment fingerprints and shape descriptors, 3D descrip-
tors, such as GRIND descriptors，and 4D descriptors, such 
as 4D-FPs[8–12, 25, 27–49].  Analysis of our simple, interpretable 
molecular properties for the compounds in the training set 
indicated that the molecular weight (MW), fractional polar 
surface area (FPSA), lipophilicity (ALogP) and pKa of the most 
positive basic nitrogen (pKa_basic) can preliminarily predict 
hERG blockage.  The means and the standard deviations for 
the four descriptors in the training and test sets are summa-
rized in Table 3.  As shown, hERG blocking molecules have a 
larger molecular weight (mean value of approximately 430) 
compared with the nonblockers (mean value of approximately 
330).  In addition, compared with the nonblockers, the hERG 
blocking molecules have a lower FPSA value, a larger ALogP 
value and more basic nitrogen pKa.  The mean values of the 
four molecular properties for the training set were listed in 
Figure 2.  A test for significant differences is also shown.  The 
four properties for the blockers are all significantly different 
from those for nonblockers (P≥0.01).  The models also gen-
erated the features’ statistics of the normalized probability 
contribution to the model (Figure 3).  The features’ normal-
ized probability is the final contribution of a feature to the 
model’s prediction, which means that the presence of a feature 
increases or decreases the likelihood for a compound to be 
a member of the good subset.  The four molecular proper-
ties and their contributions to the activity identification were 
mapped.  A positive normalized probability means that a 
molecule with the corresponding property value is likely to be 

Table 1.  LOO results of the Bayesian models for the training set. 

                                        No of 
       Model                           molecules     TP/FN           SE           SP         AC
                                             in training     FP/TN
                                                  set
 
Doddareddy’s best model  2389 811/193 0.81 0.89 0.86
(SVM-ECFP_6)  151/1234 

Model 1: 2389 910/94 0.91 0.70 0.79
Simple descriptors  409/976 

Model 2: 2389 962/42 0.96 0.96 0.96
Descriptors+ECFP_14  54/1331

Table 2.  Results of the Bayesian models for the test set I. 

                                       No of 
       Model                           molecules     TP/FN            SE           SP         AC
                                                in test        FP/TN
                                                  set I
 
Doddareddy’s best model 255 90/18 0.83 0.92 0.88
(SVM-ECFP_6)  12/135 

Model 1: 255 98/10 0.91 0.75 0.82
Simple descriptors  37/110 

Model 2: 255 97/11 0.90 0.92 0.91
Descriptors+ECFP_14  11/136

SE=    TP                                                         (5)       TP+FN 

SP=     TN                                                       (6)        TN+FP 

AC=        TP+TN                                            (7)         TP+TN+FP+FN 
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hERG blockers, and a negative normalized probability means 
a molecule is likely to be nonblockers.  From this figure, we 
can clearly find the favorable distribution ranges for properties 
of different molecules that cause a molecule to be more likely 
to be blockers or nonblockers.  For example, molecules with an 
ALogP of -11.97~-1, MW of 0~227, FPSA of 0.43~1.00, and pKa_
basic of 0~1.54 are likely to be nonblockers.

Previous studies have revealed that most hERG inhibitors 
have two main characteristics: hydrophobic groups form-
ing π–π stacking and protonated groups forming cation-π 
interaction with hERG channel residues[50, 51].  It has also been 
suggested that, with increasing hydrophobicity and molecu-
lar diameter, the hERG inhibitory effect of a compound 
increases[9, 37].  In our study, we found that molecules with 
larger ALogP and MW but smaller FPSA are more likely to 
be blockers, which could be ascribed to the large pore size in 
hERG as well as the lipophilic character of the pore cavity[37].  
Generally, a nitrogen positive ionizable center has been con-
sidered a common feature for many hERG blockers[7, 50, 51, 52].  
We calculated the pKa value of the most basic nitrogen of 
compounds (pKa_basic) and found that the pKa_basic of non-
blocking molecules is likely to be zero.  The basic site with a 

large pKa is more likely to be protonated, and molecules with 
nitrogen positive ionizable centers are more likely to form a 
cation-π interaction with hERG channel residues.

During Laplacian-modified Bayesian modeling, the follow-
ing statistics for each feature were calculated: the number of 
molecules in which the feature occurred, the number of those 
molecules that were blockers, and the measure of how differ-
ent this is from the hit rate as a whole (the ratio that would 
be expected if the feature was occurring randomly across the 
blockers and nonblockers).  The Bayesian score represents the 
final contribution of a feature to the model prediction, which 
takes into account the total number of occurrences of the fea-
ture, ensuring more weight is placed on features that occur 
more often and little weight on those for which there are very 
few occurrences.  The top 20 fingerprint features that made 
the most positive contribution to the model and the top 20 
that made the most negative contribution were generated as 
good and bad features.  These fingerprint features are shown 
in Figure 4.  The top 10 good features have a Bayesian score 
of 0.636, which matches to all 37 blockers (Figure 4A).  These 
molecules are a series of 1,2,4-triazol-3-yl-thiopropyl-tetrapy-
drobenzazepines, which are potent and selective dopamine 
D3 receptor antagonists.  It has been reported that D3 receptor 
antagonists tend to exhibit hERG toxicity[53].  The top 11–20 of 
the good features are from sertindole analogues, Wombat-PK 
database molecules and h5-HT2A receptor antagonists, which 
are mostly strong hERG blockers[48, 54, 55].  The good features 
can be used as structural alerts for hERG toxicity. The top 20 
bad fingerprint features are listed in Figure 4B: all of these fea-
tures only occurred in the nonblockers.  From the prediction 
results we can see that the prediction for the nonblockers has 
been improved significantly when fingerprints were added 
into the descriptors: this may play important role in identify-
ing nonblockers.  For example, a series of sertindole analogues 
were included in our data set[50], in which the most inactive 
analogue (compound 5) contains the fragment B13 (Figure 
5B), which occurred 104 times in the whole data set but only 2 
times in the blockers.  As seen from the Figure 6, the two mol-
ecules (compound 4, 5) are different from each other only at 
one group, but the hERG channel IC50 values show a 100-fold 
difference.  Thus, it can be hypothesized that the existence of 
the B13 fragment regulates the molecule to avoid the binding 
of the hERG channel.  These fragments may affect the hERG 
binding affinity of compounds by changing their entire molec-

Table 3.  Mean physicochemical properties for the training set and test set molecules.

                                                                                  Training set                                                                                       Test set
       Descriptor                                            Inactive                                       Active                                          Inactive                                        Active
                                                                   (n=1385)                              (n=1004)                             (n=147)                           (n=108)
 
 MW 335.26±131.68 437.50±95.96 324.42±124.09 438.51±96.40
 FPSA      0.24±0.16     0.17±0.06      0.26±0.16      0.16±0.07
 ALogP      1.40±2.61     3.05±1.71      1.07±2.64      2.87±1.71
 pKa_basic      6.20±4.11     8.12±2.83      5.47±4.08      8.70±2.62

Figure 2.  The mean value of (A) ALogP, (B) MW, (C) FPSA, and (D) pKa_
basic of the training set.  cP<0.01 vs inactive.
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ular shape and other physicochemical properties.  Combined 
with the good features, the bad features may act as regula-
tory factors for the structural alerts listed in Figure 4A, which 
increases the overall accuracy of hERG toxicity prediction.

Prediction on an external dataset
We also applied our models to Doddareddy’s experimentally 
validated dataset, (hereafter referred to as test set II), which 
contained 50 compounds predicted as blockers from the 
Chembridge database and 10 in-house predicted nonblockers.  
In Doddareddy’s study, hERG blockage activity was measured 
by radioligand binding assays of displacement of [3H]astem-
izole binding to cell membranes expressing the hERG channel 
at 10 μmol/L concentration.  Eighteen compounds of 50 pre-
dicted hERG blockers showed more than 50% displacement 
of [3H]astemizole in a single-point assay and 4 of those 18 
showed a low micromolar and even lower nanomolar activity.  
We categorized the dataset into 18 blockers and 42 nonblock-
ers based on Doddareddy’s experimental results.  The predic-
tion results are listed in Table 4.  Model 1 was able to identify 
16 of 18 blockers, corresponding to a TP rate of 0.89, which 
showed a higher sensitivity than Doddareddy’s.  The 4 high 
activity compounds, VH01, VH06, VH19, and VH47, were also 
identified.  In contrast, Model 2 correctly predicted 11 of 18 
blockers and showed an increased SP of 0.57.  The compounds 
in test set II were measured by a radioligand binding assay 
based on the displacement of [3H]astemizole binding, which is 
different from the assays used for the training set and test set I.  

From both Doddareddy’s and our studies, we found these dif-
ferent assays show some variability in measuring hERG block-
age, which may account for the lower prediction accuracies of 
these models on test set II.  Doddareddy et al also developed 
models individually from patch clamp data and radioligand 
binding data, but obtained far fewer correct prediction results 
than the models generated using combined data from different 
assays.  Nevertheless, compared to Doddareddy’s results, our 
models showed more balanced results for identifying active 
and inactive hERG inhibitors, and they can avoid missing too 
many blockers during early screening.

Table 4.  Results of the Bayesian models for the test set II.

                                      No of 
      Model                           molecules      TP/FN            SE          SP         AC
                                               in test         FP/TN
                                               set II
 
Doddareddy’s result  60 18/50 0.36 1.00 0.47
(SVM-ECFP_6)  10/10 

Model 1: 60 16/2 0.89 0.36 0.52
Simple descriptors  27/15 

Model 2: 60 11/7 0.61 0.57 0.58
Descriptors+ECFP_14  18/24 

Figure 3.  The normalized probability of the four molecular properties (A) ALogP, (B) MW, (C) FPSA, and (D) pKa_basic of the training set.
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Figure 4A.  The good features (A) generated in the model.  For the annotation of each fragment, G (good features) are bin IDs, the string of numbers 
show the bin value defining the fingerprints feature, the second line shows the frequencies this feature occurred in “good” samples and in the entire 
data set.  The Bayesian score shows the final contribution of the feature to the model prediction. 



1100

www.nature.com/aps
Liu LL et al

Acta Pharmacologica Sinica

npg

Conclusion
In this study a Laplacian-modified Bayesian model was devel-
oped for a large data set using physicochemical properties and 
extended connectivity fingerprints as descriptors, and a good 
predictive performance was achieved, which was better than 

the results of the reference studies.  The four simple descrip-
tors (MW, FPSA, ALogP, pKa_basic) preliminarily predicted 
hERG blockage.  Some structural alerts for hERG blockage 
and some regulating fragments contained in nonblockers were 
proposed.  This work may provide guidance for medicinal 

Figure 4B.  The bad features (B) generated in the model.  For the annotation of each fragment, B (bad features) are bin IDs, the string of numbers show 
the bin value defining the fingerprints feature, the second line shows the frequencies this feature occurred in “good” samples and in the entire data set.  
The Bayesian score shows the final contribution of the feature to the model prediction. 
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chemists working in drug discovery and lead optimization.
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