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Current mechanisms in stroke
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Stroke is one of the leading causes of mortality and adult dis-
ability in the world[1–3].  The occurrence of stroke and stroke-
related illness is expected to triple by 2050[4], due to our vul-
nerable aging population and ongoing epidemics of diabetes 
and obesity[1, 5].  Disabilities associated with stroke survivors 
have had a significant social and economic impact on societies 
worldwide[2].  According to the World Health Organization, 
about 15 million people worldwide suffer a stroke every year.  
Furthermore, stroke and its related illnesses cost the healthcare 
system billions of dollars each year, thus becoming significant 
financial burden and causing economic hardship in the world.

While stroke is a major public health concern, the cellular 
and molecular mechanisms underlying brain damage fol-
lowing stroke are not yet fully elucidated.  A series of patho-
physiological events are triggered during stroke, and eventu-
ally lead to intracellular ionic imbalance and cell death[6, 7].  
Glutamate mechanisms have dominated in stroke research for 
the last two to three decades[8].  Although glutamate receptor 
antagonists are effective in reducing stroke-related neuronal 
injury in the laboratory setting, clinical trials of anti-excito-
toxic therapies have failed to benefit stroke patients[9].  Thus, 
researchers have started looking beyond glutamate mechan-
isms in cerebral ischemia and stroke.  Recent convincing and 
promising results, especially from in vivo animal studies, sug-
gest non-glutamate mechanisms are also important in causing 
ionic imbalance and cell death during cerebral ischemia[8, 10].  
Along with the traditional model of excitotoxicity focused on 
glutamate-receptor-mediated mechanisms, non-glutamate 
mechanisms are gaining considerable attention in recent 
years[8, 10].  The latter include acid-sensing ion channels[11, 12], 
TRP channels[13, 14], KATP channels[15, 16], hemichannels[17, 18], 
volume-regulated anion channels[19], adenosine receptors, 
sodium-calcium exchangers, and other ion exchangers and 
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nonselective cation channels.  
In this special issue of stroke research, we aim to cover the 

revised models of neuronal injury involving glutamate mech-
anisms and several newly identified non-glutamate mechan-
isms in stroke.  We will discuss the current understanding 
of pathophysiological roles of ion channels and exchangers 
involved in non-glutamate mechanisms in cerebral ischemia 
and stroke, as well as the potential for therapeutic interven-
tion.  We will describe new studies using recently developed 
experimental models for stroke research.  The primary scope 
of our reviews is to highlight findings from in vivo studies 
involving new strategies and drug developments for stroke 
treatment.  The in vivo experimental approaches cover state 
of the art techniques currently used in the fields including 
molecular, genomic, proteomic, in vivo functional and behav-
ioural assessments.  We intend to highlight novel therapeutic 
strategies targeting non-glutamate mechanisms to prevent 
neuronal damage in stroke and to promote neuronal survival, 
regeneration and functional recovery after stroke, thus provid-
ing long-term economic, social, and healthcare benefits world-
wide.  
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