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What can we learn about stroke from retinal 
ischemia models?
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Retinal ischemia is a very useful model to study the impact of various cell death pathways, such as apoptosis and necrosis, in the isch-
emic retina.  However, it is important to note that the retina is formed as an outpouching of the diencephalon and is part of the central 
nervous system.  As such, the cell death pathways initiated in response to ischemic damage in the retina reflect those found in other 
areas of the central nervous system undergoing similar trauma.  The retina is also more accessible than other areas of the central ner-
vous system, thus making it a simpler model to work with and study.  By utilizing the retinal model, we can greatly increase our knowl-
edge of the cell death processes initiated by ischemia which lead to degeneration in the central nervous system.  This paper examines 
work that has been done so far to characterize various aspects of cell death in the retinal ischemia model, such as various pathways 
which are activated, and the role neurotrophic factors, and discusses how these are relevant to the treatment of ischemic damage in 
both the retina and the greater central nervous system.
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Introduction
Ischemia is broadly defined as the loss of blood supply to a 
biological tissue resulting in energy depletion and cell death, 
both of which are mediated by intermediate factors such as the 
release of excess excitatory amino acids, free-radical forma-
tion, and inflammation[1].  Ischemia is one of the key factors 
that determines the pathophysiology of many brain and reti-
nal diseases[2].  As the retina is an extension of the diencepha-
lon, retinal blood vessels share similar anatomic, physiological 
and embryological properties with the brain, and possess a 
blood-retinal barrier analogous to the blood-brain barrier[3].  
Retinal ischemia is a common cause of visual impairment and 
blindness, and is a characteristic feature of various clinical reti-
nal disorders such as ischemic optic neuropathies, obstructive 
arterial and venous retinopathies, carotid occlusive disorders, 
retinopathy of prematurity, chronic diabetic retinopathy and 
glaucoma[4].  At the cellular level, retinal ischemia consists of 
a self-reinforcing pro-apoptotic cascade involving neuronal 
depolarization, calcium influx, oxidative stress, energy deple-
tion, and glutamatergic stimulation.

A number of animal models and analytical techniques have 
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been used to study retinal ischemia, and an increasing num-
ber of treatments have been shown to interrupt the resulting 
cell death cascades and attenuate their detrimental effects; 
however, our knowledge remains incomplete and treatments 
can be improved.  A more thorough understanding of the 
molecular mechanisms behind ischemic damage is essential 
to improving potential therapies, and can provide insight into 
the pathophysiology of other neurodegenerative conditions as 
well, most notably of cerebral stroke[5].

The pathophysiology of retinal ischemia
Retinal ischemia occurs when the retinal circulation is insuffi-
cient to meet metabolic demands.  It can be caused by general 
or, more commonly, by local circulatory failure.  The meta-
bolic demands of the retina are the highest of any tissue within 
the body, and so maintaining a consistently high blood supply 
is essential[4].  The degree of damage sustained by retinal tis-
sue during ischemia depends on the severity and the duration 
of the obstruction to blood flow.  The area most prominently 
supplied by the occluded blood vessel comprises the infarct 
core, while areas perfused by collateral circulation form the 
ischemic penumbra.  Areas within the ischemic core are most 
severely affected by the ischemic injury, while those in the 
penumbra are much less affected and can retain a degree of 
function based on the amount of damage they have sustained.  
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If circulation is not quickly restored to the affected area how-
ever, the penumbra is gradually incorporated into the isch-
emic core and becomes completely non-functional[6, 7].  The 
penumbra, therefore, represents the main therapeutic target 
for acute ischemia therapies.

There are many pathogenic mechanisms which contribute to 
the cell death cascades experienced during ischemia, such as 
energy failure, elevation of intracellular calcium, excitotoxicity 
and spreading depression, generation of free radicals, blood-
retinal barrier disruption, inflammation and apoptosis.  The 
latter process is a complex cascade of cellular factors which 
contribute to tissue injury and impair the cellular mechanisms 
required to maintain ionic gradients[2].  Initially, the reduc-
tion in blood flow results in the depletion of substrates such 
as oxygen and glucose, which in turn causes the accumulation 
of lactate via anaerobic glycolysis.  The depletion of energy 
results in neuronal depolarization, causing the activation of 
glutamate receptors, and thereby altering the ionic gradients 
of Na+, Ca2+, Cl–, and K+[8].  As the intracellular concentration 
of Ca2+ is increased by the dysregulation of its ionic gradient, a 
variety of intracellular enzymes, such as lipases, proteases and 
endonucleases, experience increased activity.  As a result, oxy-
gen free radicals are generated and contribute to apoptotic cell 
death.  Oxygen free radicals are also produced by the enzy-
matic conversion of arachidonic acid to prostanoids and the 
degradation of hypoxanthine during blood reperfusion of the 
ischemic area[9].  The formation of free radicals recruits pro-
inflammatory factors, such as interleukins, platelet activating 
factor, and tumor necrosis factor α (TNF α).  As well, during 
ischemic conditions, mitochondrial permeability transition 
pores are formed, which cause the release of free radicals and 
pro-apoptotic molecules[10].  The infiltration of pro-inflamma-
tory factors also increases the formation of free radicals.  The 
consequences of free radicals are lipid peroxidation, mem-
brane damage, dysregulation of cellular processes and muta-
tions of the genome[8].

The retinal blood supply
Reflecting its embryological origins, the human retina has a 
dual blood supply.  The photoreceptors, including their cell 
bodies in the outer nuclear layer and the majority of the outer 
plexiform layer, are supplied via the choriocapillaries.  These 
vessels are richly anastamotic and correspond to the pia-
arachnoid vessels in the rest of the brain.  The inner retinal 
layers, such as the ganglion cell layer, are nourished by the 
central retinal artery (CRA), which arises from the ophthalmic 
artery in the region of the optic foramen, and which in turn 
originates directly from the internal carotid artery, proximal 
to the origin of the middle cerebral artery[2].  The CRA runs 
alongside the optic nerve, until approximately 10 mm from 
the globe of the eye, at which point it enters the optic nerve.  
Once it has entered the optic disc, the retinal arteries divide 
irregularly and dichotomously.  The main retinal vessels form 
2 capillary plexuses: the superficial capillary network, which 
is found within the nerve-fiber layer, and the deep capillary 
network lying between the boundary of the inner nuclear 

layer and the outer plexiform layer.  Due to the connections in 
bloodflow between these 2 systems, complete retinal ischemia 
requires occlusion of the ophthalmic artery, the principal ves-
sel supplying all vasculature of the retina[2].

Animal models of retinal ischemia
A number of in vivo and ex vivo animal models have been 
developed to study retinal ischemia.  In order to best extrapo-
late the data from animal model to human clinical situation, 
the model which most closely resembles human retinal isch-
emia is preferred.  An immediately limiting factor to potential 
model suitability is the structure of the retinal vasculature in 
various species.  While higher primates share virtually identi-
cal retinal vascular patterns with humans, financial and ethical 
considerations prohibit their widespread use[11].  More com-
monly seen are small rodent models, and of these the rat is the 
most similar to humans.  The pattern of vascular supply in the 
rat retina is holangiotic, as in primates and humans, and this 
makes it a suitable candidate as a model for study[12].

Certainly, differences do exist between rat and human 
retinas.  The principal blood supply to the rat retina is via a 
single posterior ciliary artery which runs along the ventrome-
dial aspect of the optic nerve, and which divides into three 
branches at the optic nerve head: a central retinal artery sup-
plying the retina, and medial and lateral long retinal arteries 
supplying the choroid[12].  Complete transection of this vessel 
causes severe trauma and ocular inflammation, and wide-
spread retinal infarction; permanent occlusion of this vessel 
does not correspond to CRA occlusion in humans, and even a 
temporary occlusion in rats probably causes more widespread 
injury.  Hence, the degree of damage done in the process of 
a study must be taken into account, as it may not accurately 
reflect the degree of damage which occurs in the human eye.  
Previous work has found that in order to cause reproducible, 
irreversible and functional ischemic injury in the Wistar rat, at 
least 20 min of sustained ischemia are required[4, 13, 14].

In order to induce retinal ischemia, several methods are 
currently used.  The high IOP (Intraocular Pressure) model of 
ischemia is frequently used as it is fairly simple to adminis-
ter and can be used as a model to study glaucomatous injury 
to the eye.  The basic method for this technique consists of 
introducing sterile fluid into the vitreous chamber of the 
eye.  The addition of liquid into the chamber increases the 
pressure within the eye and compresses the vasculature pass-
ing through the optic disc and supplying the retina .  Blood 
contained within these vessels is thereby expelled, cutting 
off the supply to the retinal tissue[15, 16].  Such an intervention 
can be accomplished via cannulation of the eye, which is then 
connected to an elevated pressure liquid reservoir, which 
increases IOP to the level of the reservoir.  

Another common method of inducing retinal ischemia is 
vascular ligation.  Carrying out this intervention requires 
surgical procedures very similar to those used for optic nerve 
transection, whereby the investigator dissects the contents of 
the ocular orbit to reach the optic nerve and administer the 
damage[17, 18].  At its simplest, this method involves placing 
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a suture around the optic nerve bundle, thereby ligating the 
posterior ciliary vessels.  Due to the close association between 
the optic nerve and these vessels, selective compression of the 
vasculature is imperfect and it commonly causes the axons of 
the optic nerve to be compressed and damaged.  A technically 
more demanding version of this intervention is to separate 
the optic nerve and posterior ciliary vessels, thereby freeing 
the vasculature to be ligated independently of the optic nerve.  
This method produces results more appropriate to retinal 
ischemia without the confounding effects of optic nerve dam-
age[19].  

A relatively non-invasive method of retinal vessel occlusion 
involves the intravenous injection of Bengal Rose, a photore-
sponsive dye, followed by intense retinal illumination.  The 
principle behind this method was introduced by Watson et al 
in 1985[20], when they proposed that by inducing a photo-
chemical reaction within the vasculature, a thrombosis could 
be created.  This method has since been used to study ischemic 
injury, particularly in the brain[21], as well as in the retina[22–24].  
There are several advantages to this method, namely that 
animal preparation does not require mechanical manipula-
tion of vasculature or parenchyma.  As well, the lesion size 
and location can be modulated by altering the irradiating 
intensity, duration of light exposure, beam position and dye 
concentration[20, 25].  However, this method produces variable 
histologic injury, which is difficult to quantify[26], and it may 
also cause secondary damage due to neurotoxicity in addition 
to ischemic damage[25].  It is also worth noting that it is not an 
ideal method for the study of ischemia/reperfusion injury as 
the lesion created is resistant to the reintroduction of blood 
flow[25].

Molecular analysis of retinal ischemia
The intensity of damage which occurs due to an ischemic 
injury is critically dependent on the duration of the insult.  
Several prominent molecular changes are observed within the 
retina over the course of such an injury, altering the protein 
expression patterns of the cellular population.  The resulting 
protein signatures have many similarities with those resulting 
from optic nerve crush or transection injuries[27, 28].  One of the 
prominent molecular changes found in retinal ischemic injury, 
as well as optic nerve crush and transection, is the transient 
increase in growth-associated factor 43 (GAP-43)[29].  Specifi-
cally, after ischemic injury GAP-43 was found to be increased 
in retinal ganglion cells (RGCs) at 3 and 7 days following rep-
erfusion[30].  GAP-43 is most recognized for its expression dur-
ing CNS synaptogenesis: it is a membrane-associated protein 
which is up-regulated in neuronal growth cones, but which 
is down-regulated after synaptogenesis in almost all brain 
regions, except for those few which preserve plasticity[31].  
Throughout the CNS, GAP-43 expression is increased in neu-
rons with damaged axons[32].  In the retina, GAP-43 is normally 
localized to the inner plexiform layer due to its expression 
by RGCs and a subset of amacrine cells[33], and its increased 
expression in response to ischemic injury suggests structural 
remodeling in the inner plexiform layer of the retina in order 

to preserve retinal function[34].  

Mechanisms of cell death during retinal ischemia
Following retinal ischemia, there are two modes of cell death 
which occur: necrosis and apoptosis[35].  Both are often found 
playing parts in insults to the CNS, and each has discrete bio-
chemical and histological features[35].  Necrosis, long consid-
ered a form of caspase-independent cell death (CID), or “acci-
dental” cell death, is the pathological process that occurs when 
cells are exposed to an extreme physical or chemical insult or 
any other serious disruption to their normal physiology[35].  It 
is characterized by a rounding of the cell, a gain in cell vol-
ume, mitochondrial swelling, dissolution of organelles, con-
densation of chromatin around the nucleus, and irreparable 
damage to the plasma membrane both by external influences 
and by the release of intracellular lytic enzymes in response 
to the insult[36–38].  The crux of necrotic damage appears to be a 
compromised plasma membrane due to ATP-mediated energy 
depletion.  The process begins with an impairment of the cell’s 
ability to maintain homeostasis, leading to the influx of water 
and extracellular ions, thus drastically altering intracellular 
ion concentrations and severely disrupting the ionic gradient 
which exists across the plasma membrane[35].  Intracellular 
organelles, most notably mitochondria, become inactive, and 
the entire cell becomes dysfunctional.  Owing to all of these 
disruptions, the cell eventually lyses and the cytoplasmic 
contents, including lysozomal enzymes, are released into the 
extracellular space.  As a result, necrotic cell death is often 
associated with extensive tissue damage and inflammation[35].  
Recent investigations into the processes of necrosis, however, 
have yielded evidence indicating that at least a part of the 
damage attributable to this process may be executed by a 
mechanism termed “necroptosis”[39, 40].  

Necroptosis is a recently discovered, caspase-independent 
form of regulated cell death.  It shares morphological features 
with necrosis, such as membrane and organelle swelling fol-
lowed by cell lysis, and is activated by death receptors such 
as TNF α, FasL, and TRAIL, the very same ligands which 
can activate the extrinsic apoptotic pathway[39–41].  Thus, the 
activation of these receptors may initiate alternative death 
pathways[42–44].  Research indicates that the key modera-
tors between necrosis and apoptosis are receptor-interacting 
protein kinase 1 (RIPK1)[39, 45, 46], and RIPK3[47–51].  The abil-
ity of RIPK1 to switch between these 2 pathways appears to 
rest on its serine/threonine kinase activity; its activation is 
essential for the activation of necroptosis, but it is dispens-
able for both NF-κB activation and initiation of the apoptotic 
pathways[45].  The small molecule inhibitor necrostatin-1 
(Nec-1), has been shown to be a potent inhibitor of RIPK1 and 
of necroptosis[46, 52].  Treatment with Nec-1 has demonstrated 
a reduction in infarct volume in mouse models of middle 
cerebral artery (MCA) occlusion, suggesting the importance 
of necroptosis in CNS ischemic injury[39].  As well, recent work 
has supported the impact of necroptosis in the retina as Nec-1 
treatment was able to attenuate retinal thinning and RGC loss 
after ischemic injury[40].
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While necrosis is more dominant in the ischemic core, apop-
tosis becomes more common in the penumbra as the cells are 
found further away from the core[2].  Apoptosis is a normal 
process during development, and is also a defense mecha-
nism which occurs during immune reaction or when cells are 
damaged; it is the other primary method by which cells die 
during ischemia[2, 53].  In contrast to the uncontrolled degenera-
tion which occurs by necrosis, apoptosis is a strictly regulated 
process.  It plays a significant role in both acute and chronic 
neurodegenerative conditions, such as glaucoma, retinitis 
pigmentosa, cataracts, and retinoblastoma[36, 54].  Many stud-
ies have found that following ischemia-reperfusion injury, 
treatment with anti-apoptotic agents is effective at preserving 
cellular populations throughout the retina[55].  There are many 
distinct morphological changes which are common to apopto-
sis: early on there is a reduction in cell volume and chromatin 
condensation occurs, followed by extensive plasma membrane 
blebbing and the detachment of cell fragments to form apop-
totic bodies[56, 57].  Macrophages or microglia then engulf the 
apoptotic bodies and degrade them[58].  In contrast with necro-
sis and necroptosis, there is no inflammatory reaction associ-
ated with apoptosis because the degraded cells are quickly 
phagocytosed and therefore do not release their contents into 
the extracellular space, and there is no release of pro-inflam-
matory cytokines[59, 60].

There exist 2 main apoptotic pathways: the extrinsic death 
receptor pathway, and the intrinsic, or mitochondrial, path-
way.  Both are linked, and considerable interplay occurs 
between them[61].  There is also an additional pathway which 
relies on the infiltration of immune cells into the tissue under-
going apoptosis.  In this final case, the granzyme and perforin 
released by the invading immune cells degrades the cellular 
proteins and chromatin[62].  Both the extrinsic and intrinsic 
pathways involve an energy-dependent cascade of molecular 
events which result in biochemical modifications throughout 
the cell, such as protein cross-linking, DNA breakdown and 
phagocytic breakdown[63].  

Caspases, a family of cysteine proteases, have been found 
to be major regulators in the degeneration of RGCs by 
apoptosis[64–66].  Initially, caspases are expressed as inactive 
proenzymes, which are cleaved into their active form.  This 
allows them to in turn activate other caspases downstream, 
and thus initiate a protease cascade.  Traditionally, the pri-
mary caspases involved in the apoptotic degeneration of RGCs 
after axotomy have been caspase-3 and caspase-9[67–72].  While 
neither caspase-3 nor caspase-9 was found to be involved in 
axonal degeneration[73, 74], it now appears that caspase-6 and 
caspase-8 both play prominent roles in this process, as well as 
in RGC apoptosis[75, 76].  As well, caspase-2 has recently been 
shown to be involved in RGC apoptosis following optic nerve 
damage, most likely at the stage of apoptosis initiation[77].  
Once caspases have been initiated, there appears to be an irre-
versible commitment to cell death[58].  To date, 10 major cas-
pases have been identified and broadly categorized into initia-
tor caspases (caspase-2, -8, -9, and -10), executioner caspases 
(caspase-3, -6, and -7), and inflammatory caspases (caspase-1, 

-4, and -5)[78, 79].
The extrinsic pathway of apoptosis involves transmembrane 

receptor-mediated interactions in order to initiate apoptosis.  
Most notably, it involves receptors that are part of the TNF 
superfamily[80].  Members of the TNF superfamily share a 
similar cysteine-rich intracellular domain, called the “death 
domain”, which is essential for transmitting the death signal to 
intracellular pathways[81].  So far, the majority of the research 
into this pathway’s ligand/receptor combinations has been 
directed towards FasL/FasR, TNFα/TNFR1, Apo3L/DR3, 
Apo2L/DR4, and Apo2L/DR5[82–86].

The extrinsic phase of apoptosis is defined by the bind-
ing between these cell-surface receptors and their specific 
ligand.  There is clustering of the receptors, and through this, 
cytoplasmic adapter proteins exhibiting the corresponding 
death domains are recruited.  Among the recruited proteins 
are FADD, TRADD, RIP, and pro-caspase-8[87].  The result-
ing structure is termed the death-inducing signaling com-
plex (DISC), and results in the autocatalytic activation of 
pro-caspase-8, and the triggering of the execution phase of 
apoptosis[88].  At this point, there is also a regulator of the 
process, the protein c-FLIP, which will bind to FADD and 
caspase-8, rendering them ineffective[89, 90].

Activation of apoptosis by TNFα is a 2 step process.  Under 
apoptosis-competent conditions, TNFα stimulation sequen-
tially induces the formation of 2 protein complexes, complex 
I and complex IIa, which stimulate NF-κB activation and 
apoptosis, respectively[91, 92].  Initially, TNFα binding to the 
TNF receptor 1 (TNFR1) induces the recruitment of TRADD, 
RIP1 and TRAF2 to the receptor’s intracellular domain, thus 
forming complex I[91].  Subsequently, these RIP1 and TRADD 
undergo posttranslational modifications and the entire com-
plex I dissociates from TNFR1[91].  The addition of Fas-associ-
ated death domain (FADD) and caspase-8 forms complex IIa.  
The signal which stimulates the transition from complex I to 
complex IIa is currently unclear, however, it is known that an 
alternate multiprotein aggregate, Complex IIb, may form in 
apoptosis-deficient conditions, particularly in the presence of 
caspase-8 inhibitors.  This contains at least one additional com-
ponent: RIPK3.  Interaction between RIPK1 and RIPK3 plays 
a critical role in mediating downstream apoptotic events[93].  
Treatment with Nec-1 prevents recruitment of both RIPK1 and 
RIPK3 to Complex IIb, indicating the importance of RIPK1 in 
the apoptotic process[47, 48].

The intrinsic pathway involves a diverse array of non-recep-
tor mediated stimuli that produce intracellular signals that act 
directly on intracellular targets, most notably mitochondria.  
This results in the opening of the mitochondrial permeability 
transition pore, loss of mitochondrial transmembrane poten-
tial, and the release of pro-apoptotic proteins which are nor-
mally sequestered within the mitochondria[94].  Among these 
proteins are cytochrome c, Smac/DIABLO, and HtrA2/Omi, 
which activate the caspase-dependent mitochondrial path-
ways[95].  Other pro-apoptotic proteins released by the mito-
chondria are AIF, endonuclease G, and CAD, however this 
only occurs once the cell is irrevocably committed to die[58].
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The regulation of these pro-apoptotic mitochondrial events 
is through members of Bcl-2 family of proteins[96].  This family 
of proteins regulates mitochondrial membrane permeability.  
They can be either pro-apoptotic or anti-apoptotic, and there-
fore have a crucial role to play as they can either enhance the 
signals inducing cell death, or inhibit them.  

Preserved retinal function by neurotrophic factors
Neurotrophic factors are recognized as playing key roles 
in the development and survival of tissues within both the 
central and peripheral nervous system[2].  As well, they play 
an important role in countering the complex mechanisms of 
apoptotic neuron death in the retina[97–99].  Several investiga-
tions have been carried out to determine the efficacy of growth 
factors in promoting survival following ischemic injury in the 
retina.  Recently, bFGF (basic fibroblast growth factor) has 
been found to support neuronal survival and promote neurite 
outgrowth, as well as play an essential role in the maintenance 
of neurons within the spinal cord and cerebral cortex[100].  The 
factor bFGF has previously been found to induce both meso-
dermal and neuroectodermal tissue regeneration, as well as 
induce the outgrowth of fibers in cultured retinal ganglion 
cells in cultured RGCs[101], and it has also been shown to delay 
the degeneration of rat photoreceptors[102].  It has also been 
demonstrated that bFGF is effective at rescuing RGCs, as 
well as other cellular populations in the retina from ischemic 
injury induced by elevated intraocular pressure[103].  Other 
neurotrophic factors, such as brain-derived neurotrophic fac-
tor (BDNF) and ciliary neurotrophic factor (CNTF) have also 
been studied and have been found to protect the retina from 
pressure-induced ischemic injury[104].

Another neurotrophic factor that has protective effects fol-
lowing retinal ischemia is glial cell line-derived neurotrophic 
factor (GDNF).  In retinas subjected to ischemic injury, intraoc-
ular administration of virus encoding recombinant GDNF 
has yielded a preservation of retinal thickness, indicating that 
cellular populations were better preserved; and specifically, it 
was found that RGCs survived in greater numbers.  In agree-
ment with these findings, eyes receiving increased GDNF 
retained more functionality following ischemic injury, as mea-
sured by electroretinogram[105].

Neurturin (NRTN) is a member of the GDNF family of 
ligands.  It is one, among many, factors which interacts with 
members of the GDNF family of receptors (GFRαs), and 
activates intracellular signaling via the Ret receptor tyrosine 
kinase[106].  The Ret receptor tyrosine kinase then activates 
essential pro-survival intracellular signaling pathways such as 
the mitogen activated protein kinase (MAPK), phosphoinosit-
ide 3-kinase (PI3K)-Akt, and phospholipase Cγ pathways[107].  
It has been shown that GFL-mediated Ret signaling plays a 
critical role in the maintenance of multiple central and periph-
eral neurons[108], and that within the retina, it is expressed in 
the ganglion cell layer and inner nuclear layer[109].  Through 
these studies, it was shown that NRTN, and the activity it 
induces in Ret, are important for the normal function of the 
retina, specifically for its actions on horizontal cells, amacrine 

cells, and RGCs[106].
Many studies have concentrated on the efficacy of BDNF 

in promoting the survival of RGCs following injury to the 
retina or optic nerve, and in using it to develop therapeutic 
strategies for ocular diseases[110].  So far, research has indicated 
that, among all the neurotrophic factors, BDNF is the most 
effective at directing injured RGCs towards survival, a fact 
attributed to the high levels of expression of tyrosine recep-
tor kinase B (TrkB; the BDNF receptor) which is expressed by 
these cells[111–113].  BDNF was found to be beneficial to RGCs in 
several injury models, including in promoting survival both 
in vitro and in vivo[114, 115], and in stimulating the growth of 
regenerating neurites[116].  Intravitreal injections of BDNF have 
proven to slow the loss of RGCs in a rat chronic hypertension 
model[117], and to support the survival of retinal ganglion cells 
for up to 1 week following axotomy[112, 118].  Most recently, 
BDNF was incorporated into rat mesenchymal stem cells 
(rMSCs), which were then administered to the retina following 
axotomy or increased intraocular pressure[119].  In both experi-
mental models, levels of BDNF were successfully increased 
by the treatment, and surviving RGC populations were sig-
nificantly larger.  Whether this effect could be increased by 
also increasing expression of TrkB in the target cell population 
remains to be seen, however it has been shown that following 
axotomy, combined upregulation of BDNF along with TrkB 
does have additive effects on retinal ganglion cell survival[120].

The neurotrophic factor Nerve Growth Factor (NGF) has 
been shown to be present normally within the eye, along with 
its receptors TrkA and p75.  All 3 factors have, in fact, been 
shown to be expressed by the rat lacrimal gland tissue[121, 122] in 
vivo, and in vitro it has been shown that conjunctival cells (epi-
thelial cells, goblet cells, immune cells and fibroblasts) all pro-
duce, store, release, and utilize NGF.  The diverse activity of 
NGF appears to modulate the activity of these cells, and there-
fore affect the secretion of cytokines and other growth fac-
tors[123–125].  Due to its wide-ranging effects, NGF is believed to 
be implicated in a variety of ocular diseases[126].  As well, it has 
previously been shown that NGF is able to enhance RGC sur-
vival following optic nerve transection[115], as well as following 
ischemic insult.  In the latter situation, NGF was also able to 
promote the functional recovery of RGCs[127].  More recently, 
studies have demonstrated that in a model of elevated intraoc-
ular pressure, NGF is effective at preventing RGC death in 
a rat model[128].  While this study used elevated intraocular 
pressure to mimic the hallmark symptom of glaucoma, it must 
also be noted that increased intraocular pressure also reduces 
blood-flow to the retina by increasing pressure on retina vas-
culature.  Therefore, it may be the case that some of the effects 
of NGF are due to its impact on ischemic injury.  NGF has 
also been examined in conjunction with novel neuroprotective 
strategies to combat ischemia-induced excitotoxicity[129].  It was 
found that the neurosteroid dehydroepiandrosterone (DHEA) 
is able to protect RGCs from excitotoxicity, a main mechanism 
by which cells die as a result of ischemia[4].  The results also 
showed that DHEA works via the NGF/TrkA pathway to 
promote RGC survival via a cascade of events which are as yet 
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unclear[129].
Neurotrophin-3 (NT-3) is a neurotrophin which controls 

neuronal survival in both the peripheral and central nervous 
systems[130].  It, along with BDNF and NGF, is recognized as 
one of the principal neurotrophic factors in the central ner-
vous system; the principal ligand is TrkC[131].  Currently, evi-
dence points towards TrkC actually inducing apoptosis in the 
absence of NT-3, as the lack of its binding partner allows the 
intracellular domain of TrkC to become susceptible to cleavage 
by locally activated caspases, especially caspase-9[132, 133].  Neu-
rotrophins, including BDNF, GDNF and NT-3, are known to 
be shuttled anterogradely in RGC axons[134].  During ischemia, 
it is possible that the drop in oxygen supplied to neurons can 
result in a lack of ATP, which can induce a loss of the cell’s 
ability to maintain its axonal transport system[135], and this loss 
of pro-survival signaling by neurotrophic factors will induce 
apoptosis[136, 137].  Recent work in cerebral ischemia has shown 
that increased levels of NT-3 improve cell survival and neuro-
logical status following transient middle cerebral artery occlu-
sion by reducing the initial damage caused by the ischemic 
event[138].

Neurotrophin 4 (NT-4) is also commoly known as Neu-
rotrophin-5 (NT-5), or as NT-4/5[98, 139].  NT-4/5 forms part 
of the complex network of growth factors, along with BDNF, 
NGF, and NT-3, of retrogradely transported neurotrophins 
which orchestrate the generation and maintenance of neu-
ron populations[131].  NT-4/5 binds selectively to the cellu-
lar receptor TrkB[131, 140].  NT-4/5 is known to have roles in 
the stimulation of GAP-43 and T-α1-tubulin to induce axon 
regeneration[139].  More recent work has also shown that, along 
with promoting the regeneration of axons, NGF, BDNF and 
NT-4/5 all play a role in the formation of dendrites, and the 
establishment of synapses within the sympathetic ganglia[141].  
In support of this, transgenic mice with a knockout of NT-4/5 
showed a marked decrease in axon elongation during 
regeneration[142, 143].  Studies of this factor have demonstrated 
that it does command some neuroprotective abilities, such as 
when it is administered to rubrospinal tract neurons following 
cervical axotomy[139].  As well, treatment with NT-4/5 has been 
shown to reduce infarct size in rats with middle cerebral artery 
occlusion[144], however, unlike BDNF, it was unable to prolong 
survival of damaged RGCs over a prolonged period[145].

Ciliary Neurotrophic Factor (CNTF) is known to play 
an essential, cooperative role in motoneuron survival and 
function[146].  It is expressed almost exclusively within the 
nervous system, however at much higher levels within the 
PNS than in the CNS, and in the latter is produced mostly 
by astrocytes[147–149].  It has demonstrated protective abilities 
in multiple sclerosis[150], and has been previously used in a 
therapeutic trial for the treatment of motor neuron disease and 
amyotrophic lateral sclerosis[151, 152].  CNTF, along with other 
neurotrophic factors such as GDNF and BDNF, has become 
widely recognized for its capacity to rescue RGCs following 
a variety of different lesions, such as ischemia, traumatic, or 
metabolic injury[153–155].  In addition to its anti-apoptotic effects 
within the retina, CNTF has been established to have regen-

eration-promoting properties, as it appears to stimulate neu-
rogenesis when adenovirally delivered to injured RGCs[156, 157].  
More recently, CNTF gene transfer via adeno-associated virus 
(AAV) has been found to protect RGCs in the rat from a vari-
ety of acute ischemia models[158].  Recent work indicates that 
expression of CNTF by CNS astroglia may depend on the con-
tact between astroglial cells and neurons: binding of astroglial 
integrin receptors would suppress CNTF expression, while 
loss of this contact would induce its production[159].

Insulin growth factor (IGF) is found both systemically and 
in the CNS.  Most studies on its effects have been conducted 
systemically, and it has been found to inhibit apoptosis in 
various cell types such as cardiomyocytes[160–162].  While it is 
acknowledged that the intracellular pathways activated by 
IGF may vary based on cell type and applied stress[163], its 
activity appears to involve both the Erk[164, 165], and PI3K/Akt 
pathways[166, 167].  Current research also suggests that the IGF-1 
pathway is a promising avenue for therapeutics to improve 
repair after ischemia/reperfusion events in cardiac tissue[163], 
raising the possibility of potential applications regarding reti-
nal ischemia.  Supporting this perspective is work showing 
that IGF contributes to retinal neovascularization following 
diabetic retinopathy[168].

Epidermal Growth Factor (EGF) binds to EGFR to induce 
cellular proliferation, differentiation and survival[169].  The 
binding of EGF to EGFR has been shown to have a major 
impact on determining pluripotent stem cell fate within the 
retina[170].  More recent work has further examined this concept 
and has found that in zebrafish, heparin-binding epidermal-
like growth factor (HB-EGF) is necessary and sufficient to 
induce the dedifferentiation of Mueller glia into multipotent 
progenitors capable of regenerating other cell types within 
the retina[171].  Studies on de-differentiation of Mueller glia in 
mammals, however, are not able to produce cells which can 
then re-differentiate into any cell type, only into myelinating 
oligodendrocytes[172].  Further work has also suggested that 
p53 plays a role in the limited ability of these “false MSCs”, 
halting them from fully re-entering the mitotic cycle[173].  How-
ever, recent studies indicate that EGF may have a function in 
aiding RGC survival;  it has been found that Nell2, an EGF-re-
lated gene, supports RGC survival after optic nerve injury[174].  

Vascular endothelial growth factor (VEGF) exists as several 
isoforms, VEGF-A, -B, -C, and -D; the most well characterized 
of which is VEGF-A[175].  Administration of VEGF-A has been 
shown to enhance the formation of blood vessels following 
traumatic and hypoxic damage[176, 177].As well, previous studies 
have shown neuroprotective and neuroproliferative proper-
ties for VEGF-A[175, 178–180].  The major anti-apoptotic pathways 
activated by VEGF-A are the MAPK and PI3K pathways[181].  
It is important to note that in order to achieve this protection, 
VEGF-A splice variants must be expressed at biological ratios, 
as improper ratios result in hyper-permeable vasculature and 
increased edema[182, 183].  Doing so, it has been shown that an 
increase of VEGF-A enhances recovery after spinal cord com-
pression injury[40] and increases RGC survival in the retina 
after ischemic injury[175].
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Excitotoxicity and ischemic injury in the retina
In the normal physiological state, neurotransmitters are only 
found at very low levels in the extracellular space.  This is due 
to the restricted ion gradient maintained across the neuronal 
membrane, as well as the efficient and effective removal of 
neurotransmitters from the synaptic clefts by glia.  During reti-
nal ischemia, however, the concentration of neurotransmitters, 
notably glutamine, in the extracellular space increases dramat-
ically[184, 185].  It is also worth noticing that during reperfusion, 
the increased levels of neurotransmitters in the extracellular 
space will activate their receptors and contribute to the death 
of RGCs[186].

While glutamate has long been recognized as the major 
excitatory neurotransmitter in the CNS, it has also been nota-
ble for its ability to kill neurons under certain conditions[187, 188].  
This ability has been attributed to the large presence of NMDA 
receptors on susceptible cells, such as RGCs.  However, there 
has been work suggesting that excitotoxicity following isch-
emia does not directly affect RGCs after all[189].  Rather, this 
work suggests that amacrine cells would be the likely target 
for this type of degeneration, and that is the loss of these cells 
which indirectly leads to the degeneration of the RGC popula-
tion.  

Regardless of whether or not excitotoxicity is directly 
responsible for RGC loss during ischemic injury, it must be 
acknowledged that it does play a role in retinal degeneration.  
New work has recently proposed that it participates in a com-
plex interplay along with oxidative stress and the disruption 
of mitochondrial dynamics all leading towards retinal degen-
eration[190].  Despite the complexity of this interplay leading 
towards cell death, recent publications have suggested pos-
sible treatments to offer neuroprotection against it.  Work on 
opioids has shown that depending on the duration and sever-
ity of the ischemic challenge, they may counter the effects of 
inflammatory cytokines, such as TNF-α, and glutamate.  This 
protection would be based on the activation of the PKC, ERK, 
and PI3K/Akt pro-survival pathways[191].  

Ultimately, the end result of glutamate excitotoxicity which 
would lead to cell death is the imbalance of intracellular 
gradients of ions such as Ca2+, K+, Na+, and Cl–[192].  It is com-
monly believed that Ca2+, particularly, is a major mediator of 
neuronal death[193, 194].  During ischemic injury, the intracellular 
concentration of Ca2+ increases.  There appear to be several 
mechanisms which contribute to this, including the opening of 
receptor-operated, and voltage-operated Ca2+ channels, efflux 
from intracellular stores, and a breakdown of Ca2+ buffering 
mechanisms[195–198].  One process which has been hypothesized 
to help in the prevention of cell death due to Ca2+ de-regula-
tion is preconditioning.  Preconditioning is accomplished by 
introducing small amounts of the supposed stressor to a group 
of cells prior to an insult[199].  It has been shown that precon-
ditioning is an effective method of preventing cell death dur-
ing hypoxic and ischemic insults in liver tissue[200], as well as 
in myocardial tissue[201].  As well, the effects of drug-induced 
preconditioning against NMDA or glutamate were shown to 
induce neuroprotection in rat hippocampal tissue[202].  More 

recent work has followed up on the hypotheses that acetylcho-
line (ACh) and nicotine may be neuroprotective against exci-
totoxicity in the retina[199, 203, 204].  Work on the neuroprotective 
abilities of ACh and nicotine indicate that it hinges on their 
activation of nAChRs, which in turn activates the pro-survival 
PI3K/Akt, Bcl-2, NF-κB, and MAPK pathways[205].

One of the hallmarks of the apoptotic response is cell 
shrinkage[57, 206].  Potassium has received considerable attention 
for its role in this aspect of apoptosis as it is the most abundant 
and osmotically important cation within the cell[207].  In most 
mammalian cells, there is a high concentration of K+ within 
and high concentration of Na+ without, thus a gradient exists 
for the loss of intracellular K+ and the gain of extracellular Na+.  
This gradient is maintained by various channels and ionic 
transporters which cross the cell membrane, most notably the 
Na+/K+ ATPase[208].  Research has revealed that the loss of cell 
volume during apoptosis is largely dependent on a loss of 
intracellular K+ [209, 210].  

A large family of voltage-gated potassium channels (Kv) 
have been found in mammalian brains.  They are involved in 
the mediation of K+ efflux upon membrane depolarization, 
and have been shown to play a role in mediating apoptotic cell 
death; of these, the most prominent appear to be Kv1.1, Kv1.3, 
and Kv2.1[211–213].  Inhibition of Kv1.1 and Kv1.3 by use of 
siRNAs was able to successfully inhibit their expression, and 
protect RGCs from apoptosis in optic nerve transection.  As 
well, it was noted that Kv1.1 depletion increased levels of the 
antiapoptotic gene Bcl-xL, whereas depletion of Kv1.3 reduced 
expression of caspase-3, caspase-9 and Bad, all of which are 
pro-apoptotic[211, 212].

Kv2.1 expression has also been shown to increase following 
damage, but before the appearance of apoptosis[208, 214].  Inhibi-
tion of Kv2.1 has been shown to inhibit apoptosis in vitro[215], 
as well as in vivo[216].  Following cerebral ischemia, it was also 
found that Kv2.1 participates in promoting apoptosis[217].  

Conclusions
Ischemia in the CNS is undoubtedly a complex problem with 
many facets.  It is made all the more challenging to study 
due to the nature of CNS tissues, which are difficult to reach 
and to submit to consistent injury and treatment.  The retinal 
model of ischemic injury addresses these problems as the 
retina is much more accessible than other CNS tissues and yet 
conserves the features that characterize neuron degeneration.  
The retina develops from the diencephalon, and so remains 
part of the CNS; retinal ischemia activates the same pathways 
as ischemic injury in other CNS areas, and can therefore offer 
strong evidence regarding the pathological processes follow-
ing injury.  This makes the study of retinal ischemia useful 
for discovering the ways in which ocular diseases such as 
glaucoma and diabetic retinopathy affect retinal cell popula-
tions, but also for building our knowledge of the processes 
of ischemic damage in other CNS areas.  Much has already 
been discovered using the model of retinal ischemia, and its 
continued use will only serve to increase our understanding of  
ischemic injury and further characterize the complex cascade 
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of processes and factors involved.
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