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Neuroprotective role of ATP-sensitive potassium 
channels in cerebral ischemia
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ATP-sensitive potassium (KATP) channels are weak, inward rectifiers that couple metabolic status to cell membrane electrical 
activity, thus modulating many cellular functions.  An increase in the ADP/ATP ratio opens KATP channels, leading to membrane 
hyperpolarization.  KATP channels are ubiquitously expressed in neurons located in different regions of the brain, including the 
hippocampus and cortex.  Brief hypoxia triggers membrane hyperpolarization in these central neurons.  In vivo animal studies 
confirmed that knocking out the Kir6.2 subunit of the KATP channels increases ischemic infarction, and overexpression of the Kir6.2 
subunit reduces neuronal injury from ischemic insults.  These findings provide the basis for a practical strategy whereby activation of 
endogenous KATP channels reduces cellular damage resulting from cerebral ischemic stroke.  KATP channel modulators may prove to be 
clinically useful as part of a combination therapy for stroke management in the future.  
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Introduction
Potassium (K+) channels are the most ubiquitously distributed 
ion channels and are found virtually in all types of cells[1, 2].  
Because K+ ions have a negative equilibrium potential across 
the cell membrane, the opening of K+ channels stabilizes the 
membrane potential by hyperpolarizing the cell closer to 
the K+ equilibrium potential (EK).  Thus, K+ channels play a 
major role in setting the resting membrane potential and the 
duration of action potentials.  These channels also play a role 
in repetitive firing frequency, thereby suppressing the excit-
ability of a cell[1, 2].  Selective K+ permeability was originally 
described in nerve cells[3, 4].  To date, more than 80 genes for 
K+ channel subunits have been identified in mammalian cells, 
and multiple K+ channel subtypes are expressed in a single cell 
to control its K+ permeability[1, 2].  Inwardly rectifying K+ (Kir) 
channels conduct the inward rectifier current, thus hyperpo-
larizing the membrane potential[5].  

Adenosine triphosphate (ATP)-sensitive K+ (KATP) chan-
nels are members of the Kir superfamily and were originally 
described in the heart[6].  These channels were later identified 
in many other tissues, including the skeletal muscle[7], smooth 
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muscle[8], brain[9–12], pituitary gland[13, 14], kidney[15], and in pan-
creatic beta cells[16–19].  KATP channels conduct inward-rectifier 
potassium currents that are inhibited by intracellular ATP and 
couple the cellular metabolic status to the electrical activity of 
the cell membrane[6, 16, 20, 21].  An increase in the ATP/ADP ratio 
closes KATP channels (leading to depolarization), whereas a 
decrease in the ATP/ADP ratio opens KATP channels (leading 
to hyperpolarization).  Thus, KATP channels modulate many 
of the cellular events and functions under physiological and 
pathophysiological conditions.  Recently, it has been pro-
posed that KATP channels are one of the non-glutamate mecha-
nisms for stroke[22, 23].  Broad reviews of KATP channels in the 
heart[21, 24] and pancreatic cells[20, 21, 25] have been presented else-
where.  The specific role of KATP channels in the neurovascular 
unit in stroke has also been recently reviewed[26].  This review 
focuses on neuronal KATP channels and the neuroprotective 
role of KATP channels in cerebral ischemia.  

General description of KATP channels
KATP channels are heteromultimers of Kir6 and sulfonylurea 
receptor (SUR) subunits[27] (Figure 1).  They are activated by 
energy depletion and conduct a weak inwardly rectifying K+ 
current, thus playing important roles in the regulation of cel-
lular function by linking cellular metabolism to the electrical 
activity of cell membranes[20, 27–29] (Figure 2).

Review 
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KATP channel genes 
The Kir6 subfamily is a member of the weak inward rectifier 
family and has two members, Kir6.1 and Kir6.2.  The Kir6.2 
gene (KCNJ11) in humans is located on chromosome 11.  Kir6.2 
was cloned from a human genomic library and shares 96% 
amino acid identity with mouse and rat Kir6.2[30].  Kir6.1 genes 
(KCNJ8) are mainly expressed in the mito chondria[12, 31, 32].  
Two SUR subunits, SUR1 and SUR2, have been identified 
as the regulatory subunits of KATP channels[33].  The SUR1 
subunit is encoded by the ABCC8 gene, which is located on 
chromosome 11p15.1 and is mainly found in pancreatic beta 
cells and neurons[33–35].  The SUR2 subunit is encoded by the 
ABCC9 gene, which is located on chromosome 12p12.1 and is 
expressed mainly in the heart and skeletal muscles, as well as 
in some neurons[5, 36].  SUR2 has two alternative splice variants, 
SUR2A and SUR2B, which have major differences in the last 
42 C-terminal amino acid residues (C42)[37].  The C42 of SUR2B 
shows a higher homology to the C42 of SUR1[37].  

Structure of functional KATP channels 
KATP channels are heteromultimers of the Kir6 and SUR sub-

units.  These subunits are in a 1:1 ratio of stoichiometry.  The 
Kir6 subunit is the pore-forming subunit of KATP channels[30, 38].  
Kir6.2 mediates the inhibitory effect of ATP on the KATP chan-
nels.  The SUR subunits are members of the ATP-binding cas-
sette (ABC) protein superfamily[39].  The SUR subunits are sen-
sitive to the adenine nucleotides, Mg-ADP[20, 27, 29, 40].  Reducing 
the intracellular concentration of ATP or the ATP/ADP ratio 
gates the KATP channel.  

A functional KATP channel is assembled by four Kir6.x and 
four SUR subunits, forming a hetero-octameric complex 
(SUR/Kir)4.  The functional diversity of the KATP channels 
results from the assembly of different subtypes of the Kir6.x 
and SUR subunits.  Kir6.1 genes are mainly expressed in the 
mitochondria.  Kir6.1-based channels have a smaller unitary 
conductance than Kir6.2 subtype channels[27].  Kir6.2 sub-
units are found in plasmalemmal membranes (cell surface 
membranes)[12, 20, 27, 29, 32].  Most functional KATP channels contain 
the Kir6.2 subunit; thus, the heterogeneity observed between 
different KATP channels mainly arises from the differential 
expression of the SUR regulatory subunits.  SUR1- and SUR2-
based channels are differentiated by their selective sensitiv-
ity to sulfonylureas drugs (such as glibenclamide), whereas 
SUR2A- and SUR2B-based channels are differentiated by their 
selective affinity to diazoxide[27].  

Gating properties
KATP channels exhibit fast and long interburst closing kinet-
ics[41–43].  The fast gating kinetics of the channels is determined 
by an intrinsic structure within the pore-loop that is near 
the selectivity filter of the Kir6.2 subunit[41, 44].  The long last 
interburst closing kinetics requires ATP binding to the TM2 
helices[42, 45].  The conformational modeling describes one open 
and multiple closed states of the channel[36, 43].  A current con-
ducting channel requires all four Kir6.2 subunits in the open 
conformation, and ATP binding to any one of the four sub-
units will shift the channel to a closed state.  SUR subunits are 
considered the gatekeepers of the ATP-inhibited Kir6.2 pores 
because they couple their N-terminal bundle of five transmem-
brane helices (TMD0-L0) to the outer helix and N-terminus of 
Kir6.2.  This coupling bidirectionally modulates channel gat-
ing[34, 46].  

Nucleotide sensitivities of KATP channels 
KATP channels have distinctive sensitivities to the nucleotides 
ATP and ADP[27].  ATP binds to the cytoplasmic domain of 
the Kir6.2 subunit[44, 47, 48] to inhibit the channel[49].  Each Kir6.2 
subunit provides one ATP binding pocket, which is consti-
tuted by residues R50, I182, K185, R201, and G334[5, 36].  The 
interference of ATP binding releases channel inhibition and 
results in channel activation[5, 36].  Mg-ADP is the endogenous 
activator of KATP channels via the SUR regulatory subunits[5].  
Each SUR subunit has two nucleotide binding domains (NBD1 
and NBD2) and 17 putative transmembrane domains, includ-
ing an N-terminal hydrophobic region (TMD0) containing 
five TM helices and two repeats of six TM helices (TMD1 and 
TMD2).  The NBDs are found with the Walker A and Walker 

Figure 1.  A schematic illustration showing the proposed structure of a 
KATP channel in neurons.  The KATP channel is a hetero-octamer comprising 
two subunits: four pore-forming Kir6.2 subunits and four regulatory 
sulfonylurea receptor (SUR) subunits.  

Figure 2.  Schematic illustration of KATP channels function in neurons.  
KATP channels serve as metabolic sensors to couple electrical activity of 
neurons.  Under normal physiological conditions, KATP channels remain 
closed due to the high ATP/ADP ratio.  Reducing the ATP/ADP ratio by 
either decreasing ATP levels or enhancing ADP levels opens the channel 
and allows K+ ions to exit the cells, thus hyperpolarizing the neurons.  
SUR, sulfonylurea receptor.
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B motifs, which are located at the large cytosolic loops follow-
ing the TMD1 and TMD2 repeats.  Dimerization of the two 
NBDs generates the catalytic sites for ATP hydrolysis and thus 
is essential for transducing the effect of ADP to Kir6.2[50–52].  
Mutations that disrupt NBD dimerization reduce the ADP-
mediated activation of KATP channels[49].  These mutations 
include G1479R[40, 53] in the NBD2 of SUR1 and V187D[54] in the 
TMD0 of SUR1.  Under normal physiological ATP levels, the 
probability that there will be open KATP channels is less than 
0.1% if SUR regulatory subunits are absent[5, 36].  

Pharmacology 
SUR subunits are major pharmacological targets.  KATP chan-
nels have distinctive pharmacology[27].  Sulfonylureas are a 
type of potassium channel blocker that works by binding to 
SUR subunits[27, 55].  The most common sulfonylureas include 
glibenclamide, acetohexamide, tolbutamide, glipizide, and 
glimepiride.  A single serine residue (S1237) located at the 
C-terminus of the TMs of the SUR1 subunit is critical for 
the high affinity binding (Ki=2 µmol/L) of tolbutamide and 
glibenclamide to Kir6.2/SUR1 KATP channels[56].  A bivalent 
structure in the glibenclamide binding site requires the cyto-
plasmic loop 3 (between TM5 and TM6) and cytoplasmic loop 
8 (between TM15-TM16) regions of the SUR1 subunit[57].  The 
low affinity binding site (Ki=1.8 mmol/L) for tolbutamide is 
located on Kir6.2[58].  

KATP channels can be activated by a group of drugs called 
potassium channel openers.  These drugs include diazoxide, 
cromakalim, pinacidil, nicorandil and minoxidil sulfate.  Diaz-
oxide binds to SUR1 subunits and enhances K+ efflux through 
the Kir6.2/SUR1 channels in pancreatic beta-cells, resulting 
in cell membrane hyperpolarization[59].  In contrast, the drugs 
pinacidil, nicorandil and cromakalim have a high sensitiv-
ity to Kir6.2/SUR1 channels, thus leading to stronger effects 
on the Kir6.2/SUR2A subunits of cardiac KATP channels[24, 

60].  The binding site for cromakalim, pinacidil and nicorandil 
is located within the TM2 domain of SUR2.  The nucleotides 
L1249 and T1253 in SUR2A and T1286 and M1290 in SUR2B 
are necessary and sufficient for the channel opener effects[61–63].  
KATP channels in smooth muscle respond to all of these drugs.  
Recently, several new KATP channel openers, such as iptaka-
lim, have been developed.  Iptakalim showed cytoprotective 
effects[64] via activating the SUR subunits[65].  However, it is 
unknown whether iptakalim acts by regulating Kir6.2-KATP 
and/or mitoKATP channels[66].  

Cellular regulation of KATP channels 
KATP channel activity is regulated by phosphatidylinositol 
4,5-biphosphate (PIP2) via interaction with the cytoplasmic 
domain that is close to the ATP binding site of Kir6.2 (includ-
ing residues R54, R176, R177, and R206)[28, 67, 68].  PIP2 decreases 
the ATP sensitivity of the channels by preventing the chan-
nel from closing, thus stabilizing the open state.  KATP chan-
nel activity is also regulated by protein kinase A (PKA) in 
smooth muscle cells[69, 70] and cytoskeletal actin in the cardiac 

atrium[71].  KATP channel activity is suppressed by a SNARE 
protein, syntaxin 1A, via protein-protein interactions with the 
SUR subunits[72–75].  Syntaxin 1A decreases the activity[76] and 
the membrane expression level of KATP channels[77].  Syntaxin 
1A binding to the SUR1 subunit also attenuates the effect of K+ 
channel openers, such as diazoxide, NNC55-0462, P1075, and 
cromakalim[78, 79].  

KATP channels in the central nervous system
KATP channels are extensively expressed in various regions 
of the mammalian brain[9, 11, 80], including the substan-
tia nigra (SNr)[81, 82], neocortex[83], hippocampus[84], and 
hypothalamus[85, 86].  They have been detected in many cell 
types, such as glial cells[84, 87] and neurons in the hippocam-
pus[88], dorsal vagus[89], hypothalamus[85, 86, 90], and SNr[91].  
Single cell RT-PCR analysis showed that Kir6.2 mRNA is pre-
dominantly expressed in interneurons and pyramidal, granule 
and neuroglial cells of the hippocampus in the brains from 
young rats aged 10–13 d[84].  In the adult brain, Kir6.2 subunits 
have been found in hippocampal[87, 92], cortical[93], and hypo-
thalamic neurons[94], as well as in the SNr pars reticulata[95].  
Immunohistochemical studies showed that Kir6.2 subunits 
are mainly located in the somata and dendrites of the central 
neurons[92, 93, 96].  Mitochondrial KATP channels are also found in 
the rat brain, and the expression level of Kir6.1 (per milligram 
of mitochondrial protein) is six to seven times higher than that 
in the heart and liver[12].  Radioligand binding studies showed 
that regional expression of KATP channels in the brain showed 
different affinities to sulfonylureas[97].

Function of neuronal KATP channels 
KATP channels in the hypothalamus play a critical role in glu-
cose homeostasis by regulating the secretion of counter-regu-
latory hormones, including glucagon and catecholamines, via 
the autonomic nervous system[98].  However, the primary role 
of KATP channels in many other central neurons is not gluco-
sensing[84, 90, 99].  For instance, basal activity of KATP channels can 
affect neuronal excitability in non-glucosensing neurons[100, 101].  
In the dentate granule neurons in the mouse hippocampus, 
KATP channels are expressed with a high density[84, 99].  The 
single channel conductance of KATP channels is suppressed 
by strophanthidin, which is a blocker of the Na+–K+ ATPase.  
Moderate action potential firing can evoke KATP channel 
opening via Na influx and ATP depletion.  The ketone body 
R-beta-hydroxybutyrate can enhance neuronal electrical activ-
ity by opening KATP channels[102].  Similarly, single channel 
recordings in brainstem inspiratory neurons show that bursts 
of single KATP channel openings are in synchrony with the 
respiratory firing rhythm.  The probability of open channels 
(Popen) is increased by approximately 60% after a strong burst 
of action potentials[103].  Blocking the Na+–K+ ATPase reduces 
the increased Popen of KATP channels.  Thus, ATP consumption 
in response to Na+ influx from action potentials regulates the 
opening of KATP channels under physiological conditions.  
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KATP channels in dorsal root ganglia (DRG) neurons may involve 
nociception and neuropathic pain
KATP channels are also expressed in DRG neurons[104, 105].  The 
subunits Kir6.2, SUR1 and SUR2, but not Kir6.1, are identified 
in the DRG neurons using immunohistochemistry and electro-
physiology[104, 105].  The neuronal injury in axotomy decreases 
the KATP channel current in the primary afferent neurons in the 
DRG, which is mediated by CaMKII[106].  The suppressed KATP 
channels in axotomized DRG neurons are still responsive to 
the KATP channel blocker glibenclamide and opener diazoxide.  
In addition, KATP channels are activated by CaMKII activators.  
The neuroprotective role of these CaMKII-dependent KATP 
channels may inhibit excitotoxic cell injury.  KATP-mediated 
neuroprotection may be suppressed in axotomy.  Thus, open-
ing of the DRG neuronal KATP channels decreases neuronal 
excitability, inhibits neurotransmission and possibly sup-
presses hyperalgesia.  The KATP channels in the DRG neurons 
are potential therapeutic targets for antihyperalgesia in neuro-
pathic pain.  
 
KATP channels in the forebrain involving neuroprotection against 
seizure
Overexpression of SUR1 in the forebrain, including the cor-
tex, hippocampus and striatum, results in resistance to kainic 
acid-induced seizures[107].  Mice that overexpress SUR1 exhibit 
normal brain anatomy and morphology, as well as normal 
locomotor and cognitive behaviors.  The regional transgenic 
overexpression of the SUR1 subunit of KATP channels in the 
forebrain protects mice against kainic acid-induced seizure 
and hippocampal neuronal cell death.  This observation indi-
cates that the neuronal KATP channels are important mediators 
of neuroprotection in the brain and may have potential appli-
cations in protecting neurons against hyperexcitability and 
excitotoxicity during seizure and epileptic insults.

KATP channels in the substantia nigra region involving neuro pro
tec tion against hypoxiainduced seizures
The SNr plays a crucial role in the propagation of seizures[108], 
which can be evoked by insults such as hypoxia and hypo-
glycemia.  The KATP channels expressed in the SNr region are 
composed of the Kir6.2/SUR1 subunits[109], which display high 
affinity binding to sulfonylureas[97, 110].  KATP channels are pre-
dominantly expressed in GABAergic neurons[11].  A decrease 
in glucose levels leads to the opening of presynaptic KATP 
channels and suppression of GABA release[11].  KATP channels 
are involved in protecting the brain against seizures and medi-
ating ischemic preconditioning in the brain[11].  A brief hypoxia 
(90 s) hyperpolarizes the membrane potential and decreases 
the firing rate by 30% in wild-type SNr neurons.  In contrast, 
hypoxic conditions depolarize the membrane potential and 
increase the firing rate in the Kir6.2−/− neurons, suggesting 
that the KATP channel-mediated suppressive effect on SNr 
activity is sufficient to reverse hypoxia-induced superactivity 
of the neurons.  In addition, neurons deficient for Kir6.2 show 
more susceptibility to hypoxic damage than their wild-type 
counterparts[95].  The Kir6.2–/– mice exhibit generalized seizures 

in response to the same period of hypoxia, whereas wild-type 
mice revive normally[95].  KATP channels suppress the neuronal 
activity in the SNr.  This suppression may determine the sei-
zure threshold under hypoxic conditions[95].  SUR1–/– mice also 
exhibit hypersensitivity to hypoxic insult[111].  Thus, the KATP 
channels in SNr neurons act as a metabolic sensor to mediate 
hypoxic hyperpolarization, and in turn, prevent seizure prop-
agation during hypoxic stress.  This may have implications in 
human epilepsy[112, 113].

KATP channels and their neuroprotective role in cerebral 
ischemia
Similar to that observed in cardiac ischemia[55, 60, 114], a neuro-
protective role of KATP channels has also been suggested in 
focal and global ischemia models twenty years ago[115].  KATP 
channels in a large number of central neurons remain closed, 
except under conditions of severe metabolic deprivation, such 
as anoxia or ischemia (Figure 2).  

Activation of mitochondrial KATP channels initiates ischemic 
pre-conditioning and prevents the mitochondrial dysfunction 
associated with Ca2+ overload during ischemic reperfusion 
in the heart[116–118].  In adult animals, application of mitochon-
drial KATP openers, such as diazoxide or BMS-191095, reduces 
neuronal death (rats: [116, 119–121]; mice: [122]), whereas a selective 
mitochondrial KATP channel blocker, 5-hydroxydecanoate, pre-
vents preconditioning-induced neuronal protection in middle 
cerebral artery occlusion (MCAO) focal cerebral ischemia[123].  
In contrast, xenon-induced preconditioning is not associated 
with the mitochondrial channels, but rather, is mediated by 
plasmalemma KATP channels[124].  The mechanisms underlying 
the mitochondrial KATP channel-related neuroprotective effects 
remain unclear.  However, SUR1 subunits may not be directly 
involved because adult SUR1 knockout mice exhibit precondi-
tional ischemic tolerance[124].  

Activation of the plasmalemmal KATP channels hyperpolar-
izes neurons (Figure 3) and may stabilize the resting mem-
brane potential during ischemic insults and stress[125], which, 
in turn, can protect neurons against neuronal damage and 
neurodegeneration that is caused by anoxic membrane depo-
larization and excitotoxicity[115, 126].  Expression of KATP channel 

Figure 3.  Opening of KATP channels lead to K+ ion efflux and hyper-
polarization of the cell membrane, resulting in a decrease in cell 
excitability.  This hyperpolarization occurs by making the membrane 
potential more negative, which brings it towards the potassium equilibrium 
potential (EK).  Hyperpolarization suppresses and inhibits cell excitability.
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genes and proteins have been detected by PCR[84] and immu-
nohistochemistry in different neuronal populations in the 
hippocampus of adult rats[87].  KATP channels are preferentially 
expressed in the interneurons, CA3 neurons, and granule 
cells that are resistant to ischemic injury, especially in global 
ischemia[127, 128].  However, the underlying mechanism is not 
yet understood.  

Under normal physiological conditions, neuronal KATP 
channels are presumably closed due to high intracellular ATP 
levels (Figure 2).  During the initial phase of hypoxia and isch-
emia, energy failure reduces the ATP/ADP ratio, which acti-
vates neuronal KATP channels, causing hyperpolarization of the 
neuronal cell membrane and suppression of neuronal activity 
(Figure 2).  Similar to previous reports[88, 95, 129, 130], we reported 
that membrane hyperpolarization was induced during the 
first 5 min of ischemia in both hippocampal and cortical neu-
rons[92, 93].  Using Kir6.2 knockout mice, we further reported 
that hippocampal CA1 neurons that were deficient for Kir6.2 
revealed rapid depolarization and increased neuronal activ-
ity in response to hypoxia.  In contrast, neuronal suppression 
occurred in wild-type neurons under similar conditions[92].  
Hypoxic hyperpolarization in wild-type hippocampal CA1 
neurons could be prevented by the KATP channel blocker tolbu-
tamide.  Depending on the length of the hypoxic challenge, 
wild-type neurons initially demonstrate hypoxic hyperpo-
larization, which is then followed by speedy recovery and 
stabilization of the cell membrane potential.  Our in vivo study 
also showed that cortical neurons lacking the Kir6.2 gene are 
more vulnerable than wild-type neurons to ischemic insults by 
middle cerebral artery occlusion[93].  Our findings provide the 
first convincing evidence that Kir6.2 containing KATP channels 
are important for neuroprotection against cerebral ischemia.

An independent group, using knock-in (KI) mice overex-
pressing Kir6.2-containing KATP channels, further confirmed 
the crucial role of Kir6.2 in neuroprotection against hypoxia-
ischemia[131].  Specifically, overexpression of Kir6.2 reduced 
the spontaneous electrical activity recorded in hippocampal 
and cortical neurons.  In this study, the resting membrane 
potentials for both animals were not described.  In response 
to hypoxia-ischemia challenge, the infarction in Kir6.2 over-
expressing animals was smaller compared to that of the wild-
type animals.  The findings using overexpression of Kir6.2 in 
Kir6.2 KO mice strongly support the notion that Kir6.2 is neu-
roprotective against ischemia.

In addition to neurons, KATP channels are also found in 
astrocytes and microglial cells.  Recent studies show that the 
SUR1 receptor is upregulated in response to pro-inflammatory 
signals, and the KATP channel blocker, glibenclamide, exerts 
neuroprotective effects through its action on non-neuronal 
cells in the MCAO model in rat[132, 133].  Because glibenclamide 
also has non-KATP channel effects, mechanisms underlying the 
effect of glibenclamide remain to be further investigated.  

Summary and therapeutic aspects 
Kir6.2 of KATP channels is ubiquitously expressed in the brain.  
Studies using Kir6.2 knock-in or knock-out mouse models 

indicate that the opening of KATP channels shifts the cell mem-
brane potential more negatively (hyperpolarization) towards 
the EK, leading to suppression of neuronal activity and excit-
ability.  Thus, opening KATP channels under metabolic stress 
can protect neurons against neuronal injury during cerebral 
ischemia and stroke.  While the functional roles of Kir6.1, 
SUR1 and SUR2 in neuroprotection necessitate further evalua-
tion, it has been suggested that KATP channels may be involved 
in the remodeling of neurovascular units in stroke[26].  Kir6.2-
containing KATP channels regulate the membrane potential 
and contribute to the pathophysiological hyperexcitability of 
neurons induced by hypoxia and ischemia incidents.  Thus, 
Kir6.2-containing KATP channels may have therapeutic poten-
tial as a target for stroke.  It is anticipated that KATP channel 
modulators will be useful in the treatment of stroke.  
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