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Introduction 
Stroke or cerebral ischemia is a leading cause of death and 
long-term disabilities worldwide.  Although major advances 
have occurred in the past decades in the prevention of brain 
ischemia, treatment is limited to the use of tissue plasminogen 
activator (tPA), which has limited success and a major side 
effect of intracranial hemorrhage[1, 2].  Searching for new cell 
injury mechanisms and effective therapeutic strategies there-
fore constitutes a major challenge for stroke research.  

It has been recognized for several decades that exces-
sive Ca2+ entry and resultant cytosolic Ca2+ overload play an 
important role in neuronal injury associated with stroke/
brain ischemia[3].  In the resting condition, free intracellular 
Ca2+ concentration ([Ca2+]i) is maintained at nanomolar levels.  
Following ischemia, [Ca2+]i can reach as high as several micro-
moles.  Excessive [Ca2+]i loading can activate enzymes such 
as proteases, phospholipases, and endonucleases.  Over-acti-
vation of these enzymes causes breakdown of proteins, lipids 
and nucleic acids, which leads to destruction of neurons[4–6].  In 
addition, overloading Ca2+ in mitochondria can cause opening 
of mitochondria permeability transition pore (PTP), a large 

conductance channel residing in mitochondrial membrane[7, 8], 
promoting apoptosis through release of cytochrome c and acti-
vation of caspases[9–11].

Ca2+ may enter neurons through various Ca2+-permeable 
ion channels (eg voltage-gated or ligand-gated channels) 
or through ion exchange systems (eg reverse Na+/Ca2+ 
exchanger).  Accumulation of [Ca2+]i can also occur through 
Ca2+ release from intracellular stores (eg endoplasmic reticu-
lum, ER).  The exact source(s) of Ca2+ loading responsible for 
ischemic brain injury, however, remains unclear.  This review 
discusses the involvement of two novel Ca2+-permeable cation 
channels, TRPM7 channels and acid-sensing ion channels, in 
ischemic brain injury.

Glutamate mediated Ca2+-toxicity 
Glutamate is the major excitatory neurotransmitter in the 
central nervous system (CNS)[12–14].  Its receptors are widely 
expressed at soma and dendrites of the CNS neurons.  Activa-
tion of these receptors is involved in a variety of physiologi-
cal functions of neurons including synaptic transmission/
plasticity, learning/memory, neuronal development and 
differentiation[12, 15].  Glutamate receptors are classified into 
two major categories: ionotropic receptors, which are ligand-
gated cation channels; and metabotropic receptors, which are 
coupled through G proteins to second messenger systems[16].  
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One subtype of ionotropic glutamate receptors, the N-methyl-
D-aspartate (or NMDA) receptor, is highly permeable to Ca2+ 
ions.  Activation of these receptors has been considered to 
play a critical role in Ca2+ toxicity associated with ischemic 
brain injury[3, 17–20].  Accordingly, blocking these receptors has 
been shown to be neuroprotective in cell culture and animal 
models of brain ischemia.  Unfortunately, none of the human 
trials using the antagonists of glutamate receptors showed a 
satisfactory protection for stroke patients.  Although multiple 
factors, including diffi culty in early initiation of treatment and 
intolerance of severe side effects, may have contributed to the 
failure of the trials[4, 21–24], recent studies suggest that Ca2+ entry 
through glutamate-independent pathways, eg TRPM7 chan-
nels and Ca2+-permeable acid-sensing ion channels (ASICs), 
may contribute to the injury of neurons associated with brain 
ischemia.  

TRPM channels and ischemic neuronal injury
Transient receptor potential (TRP) channels belong to a novel 
family of cation channels that are highly expressed in vari-
ous tissues including the brain[25, 26].  Several members of TRP 
family can be activated by oxidative stress and oxygen free 
radicals, both of which play important roles in neuronal injury 
associated with stroke/brain ischemia.  Recent work has indi-
cated that members of the melastatin subfamily (TRPM) of the 
TRP channels, particularly the TRPM7, play a key role in neu-
ronal cell death associated with brain ischemia[27–31].  

The TRP superfamily is a diverse group of voltage-inde-
pendent calcium-permeable cation channels expressed in 
mammalian cells[25, 26].  These channels have been divided 
into six subfamilies, and two of them, TRPC and TRPM, have 
members that are widely expressed and activated by oxidative 
stress.  TRPC3 and TRPC4 are activated by oxidants, which 
induce Na+ and Ca2+ entry into cells through phospholipase 
C-dependent mechanisms.  TRPM2 is activated by oxidative 
stress or TNFalpha, and the mechanism involves production 
of ADP-ribose, which binds to an ADP-ribose binding cleft in 
the TRPM2 C-terminus.  Treatment of neurons or HEK 293T 
cells expressing TRPM2 with H2O2 resulted in Ca2+ infl ux and 
increased susceptibility to cell death[27].  Inhibition of endoge-
nous TRPM2 function, in contrast, protected cell viability[27, 32].  
Nevertheless, the exact role of TRPM2 in Ca2+ toxicity associ-
ated with ischemic brain injury remains to be explored.  

The potential role of TRPM7 channels in ischemic neuronal 
death has been described recently[30, 31].  Aarts and colleagues 
fi rst examined the mechanism of neuronal cell death in isch-
emic conditions in the presence of glutamate antagonists.  
Cultured mouse cortical neurons were exposed to oxygen-
glucose deprivation (OGD), an in vitro model of ischemia 
reported to mediate neuronal death through NMDA receptor 
activation[33, 34].  Blocking the glutamate excitotoxicity in these 
cultures, however, unmasked a potent, previously unappreci-
ated mechanism of non-excitotoxic neuronal cell death, which 
became increasingly responsible for neurodegeneration as the 
duration of OGD was prolonged[30].  Further studies demon-
strated that the mechanism of cell death involved activation 

of a non-selective cation current with high permeability to 
Ca2+.  The current showed outward rectifying properties, was 
potentiated by reactive oxygen/nitrogen species (ROS), and 
was blocked by Gd3+.  The electrophysiological characteristics 
and pharmacological properties of the current suggested the 
involvement of TRPM7 channels.  Indeed, molecular biological 
approaches (eg siRNA) confi rmed the involvement of TRPM7 
channels in glutamate-independent anoxic neuronal injury[30].  
Although a specific agonist remains to be determined, these 
studies suggest that, in ischemic conditions, TRPM7 channels 
could be activated by ROS.  Ca2+ entry through these channels 
participates in neuronal injury.  A lethal positive feedback 
loop is established when Ca2+ infl ux through TRPM7 channels 
stimulates additional ROS production, causing further TRPM7 
activation[30].  Blocking TRPM7 channels or suppressing its 
expression by RNA interference was effective in preventing 
the death of neurons by OGD.  

Very recent studies by Sun and colleagues also demon-
strated involvement of TRPM7 channels in the injury of hip-
pocampal neurons in vivo in rat model of global ischemia[31].  
Suppressing TRPM7 expression in CA1 neurons by intrahip-
pocampal injections of viral vectors bearing shRNA specific 
for TRPM7 channels had no ill effect on animal survival, neu-
ronal and dendritic morphology, neuronal excitability, or syn-
aptic plasticity.  However, TRPM7 suppression made neurons 
resistant to ischemic injury and preserved neuronal morphol-
ogy and function.  Also, it prevented ischemia-induced defi -
cits in long-term potentiation and preserved performance in 
fear-associated and spatial-navigational memory tasks.  Thus, 
regional suppression of TRPM7 is feasible, well tolerated and 
inhibits delayed neuronal death in vivo.  In addition to Ca2+ 
toxicity mediated by TRPM7 channels, studies by Inoue and 
colleagues have suggested that Zn2+ permeability of these 
channels also plays a role in ischemic brain injury[35].  

Acid-sensing ion channels and ischemic brain injury
In acute neurological conditions such as brain ischemia, 
marked reduction of tissue pH takes place[36–41].  Following 
ischemia, shortage of oxygen supply promotes anaerobic 
glycolysis, leading to lactic acid accumulation and resultant 
decrease in brain pH[42, 43].  Increased ATP hydrolysis and 
release of H+ also contributes to pH drop.  At the same time, 
cessation of local circulation results in carbon dioxide accu-
mulation and carbonic acid build up, which may participate 
in the decrease of tissue pH[39].  During ischemia, decreases of 
brain pH to ~6.5 are commonly observed.  It can also fall to 6.0 
or below during severe ischemia or under hyperglycemic con-
ditions[37, 40, 41, 44, 45].  

Decrease of brain pH or acidosis has long been known to 
play an important role in ischemic brain injury[39, 42, 43, 46–48].  A 
direct correlation between the degree of brain acidosis and 
infarct size has also been described[39, 49].  However, the exact 
mechanism underlying acidosis-mediated neuronal injury 
remained vague.  Acidosis may cause non-selective denatur-
ation of proteins and nucleic acids[50]; trigger cell swelling and 
osmolysis via stimulation of Na+/H+ and Cl-/HCO3

– exchang-
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ers[51]; hinder postischemic metabolic recovery by inhibiting 
mitochondrial energy metabolism and impairing postischemic 
blood fl ow via vascular edema[52]; or stimulate pathologic free 
radical formation[53].  At the neurotransmitter level, profound 
acidosis inhibits astrocytic glutamate uptake, which may con-
tribute to excitatory neuronal injury[54].  

Interestingly, mild acidosis has been considered to be ben-
efi cial in protecting neurons from excitotoxic injury[55–57].  This 
may be explained by proton inhibition of NMDA channel 
activity[58, 59].  In contrast to its modulating effect on other ion 
channels, protons can activate a distinct family of ligand-gated 
channels, the acid-sensing ion channels (ASICs)[60–71].  ASICs 
belong to the amiloride-sensitive epithelial Na+-channel/
degenerin (ENaC/Deg) superfamily[60, 72], which are formed 
with homomultimeric or heteromultimeric subunits.  Each 
subunit contains two transmembrane spanning regions (TM1 
and TM2) flanked by a large cysteine-rich extracellular loop 
and short intracellular N and C termini[60, 61, 73–78].  To date, four 
genes encoding seven ASIC subunits have been cloned and 
characterized.  ASIC1a subunits (originally named ASIC or 
BNaC2) are widely expressed in peripheral sensory neurons 
and in CNS neurons[61, 65, 79, 80].  Pertinent to brain ischemia, 
these channels are activated by moderate decreases of pHo 

with a threshold pH of ~7.0 and a pH for half maximal activa-
tion (pH0.5) at ~6.2[61, 81].  In addition to Na+, homomeric ASIC1a 
channels are permeable to Ca2+ ions[61, 82, 83].  ASIC1β and its 
longer form variant ASIC1b are expressed only in sensory 
neurons[84, 85].  Similar to ASIC1a, homomeric ASIC1β chan-
nels have high sensitivity to H+ with a pH0.5 at ~5.9[85].  Unlike 
ASIC1a, however, ASIC1b or ASIC1β has no detectable Ca2+ 
permeability[84, 85].  ASIC2a subunits (originally named MDEG, 
or BNaC1) have widespread distribution in both peripheral 
sensory and central neurons[63, 79, 86].  However, homomeric 
ASIC2a channels have very low sensitivity to H+ with a pH0.5 
of 4.4[63, 86, 87].  It is unlikely that homomeric ASIC2a channels 
can be activated in any physiological or pathological condi-
tions in the brain.  Similarly, ASIC2b subunits (originally 
named MDEG2) are expressed in peripheral sensory and cen-
tral neurons[87].  However, they do not form functional homo-
meric channels, but may associate with other ASIC subunits (eg 
ASIC3) to form heteromultimeric channels[87].  ASIC3 subunits 
(originally also named DRASIC) are predominantly expressed 
in neurons of dorsal root ganglia[88, 89], though its expression in 
the brain has been reported[90].  Homomeric ASIC3 channels 
respond to pH drops biphasically, with a fast desensitizing 
current followed by a sustained component[88, 89, 91].  ASIC4 sub-
units are highly expressed in the pituitary gland[92, 93].  Similar 
to ASIC2b, they do not seem to form functional homomeric 
channels[93].  ASICs were initially believed to be assembled as 
tetramers[61, 77].  However, recent analysis of crystal structure 
suggested that ASICs existed as trimers[94].  

ASICs in peripheral sensory neurons are implicated in 
nociception, mechanosensation, and taste transduction[95–107].  
The presence of ASICs in the brain, which lacks nociceptors, 
suggests that these channels have functions beyond noci-
ception.  Indeed, ASIC1a has been shown to be involved in 

synaptic plasticity, learning and memory[64, 108].  Both ASIC1a 
and ASIC2a are implicated in the maintenance of retinal 
integrity[109–111].  In pathological conditions, activation of Ca2+-
permeable ASIC1a is involved in glutamate-independent, 
acidosis mediated, ischemic brain injury[71, 82, 112], and in axon 
degeneration associated with multiple sclerosis[113].  In con-
trast, increased expression of ASIC2a is associated with neu-
ronal survival following global ischemia[114], while reduced 
expression of ASIC1a is associated with neuroprotection elic-
ited by ischemic pre- and post-conditioning[115].

The presence of ASIC1a in the brain, its activation by pH 
drops to the levels commonly seen during brain ischemia, and 
its permeability to Ca2+ make it a potential player in ischemic 
brain injury.  A series of recent studies, performed in vitro 
in neuronal cell culture and in vivo in whole animal models 
of ischemia, have provided strong evidence supporting this 
hypothesis[71, 82, 112].  In cultured neurons, for example, brief 
acid incubations induced significant neuronal injury.  This 
acid-induced neuronal injury was glutamate-independent, 
but was inhibited by amiloride, a non-specifi c ASIC blocker, 
or PcTX1, a specifi c ASIC1a inhibitor.  In contrast to the neu-
rons from ASIC1+/+ mice, neurons cultured from ASIC1–/– 
mice were resistant to acid injury.  Reducing the concentration 
of extracellular Ca2+, which lowers the driving force for Ca2+ 
entry through ASICs, also decreased acid-induced injury of 
CNS neurons[71, 82].  Thus, activation of ASICs, and subsequent 
Ca2+ entry, participates in acidosis-mediated injury of neurons.  

While homomeric ASIC1a can conduct Ca2+, some stud-
ies have suggested that, a significant portion of acid-evoked 
increases of intracellular Ca2+ is not due to Ca2+ entry directly 
through ASIC1a homomers.  Rather, acidosis might induce 
Ca2+ accumulation through secondary activation of voltage-
gated Ca2+ channels due to ASIC-mediated membrane depo-
larization and/or Ca2+ release from intracellular stores[116–118].

In vivo studies also support a role for ASIC1a activation in 
acidosis-mediated, ischemic brain injury[71, 112, 119].  In rats and 
mice, intracerebral ventricular injection of ASIC1a inhibi-
tors reduced the infarct volume by up to 60%.  Similarly, 
ASIC1a gene knockout protected the mouse brain from isch-
emic injury.  Furthermore, ASIC1a blockade and ASIC1 gene 
knockout provided additional protection in the presence of 
glutamate receptor antagonist[71].  The protection by ASIC1a 
blockade has an effective time window of >5 h, and the pro-
tection persists for at least 7 d[119].  Attenuating brain acidosis 
by intracerebroventricular administration of NaHCO3 is also 
protective, further suggesting that acidosis is a mediator of 
ischemic brain injury.  

Interactions between ASIC1a and hypoxia/ischemia 
related signals contribute to ischemic brain injury 
In the normal condition, ASIC1a current desensitizes rap-
idly in the continuous presence of acidosis.  This property 
of ASIC1a argues against its role in brain ischemia in which 
acidosis is, in general, long-lasting.  Recent fi ndings showing 
that the properties of ASICs, particularly the ASIC1a chan-
nels, can be dramatically modulated by ischemia per se and/
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or ischemia-related signals have provided good explanation 
supporting the role of ASIC1a channels in ischemic brain 
injury[71, 112, 120–122].  In cultured mouse cortical neurons, for 
example, brief OGD not only increased the amplitude but 
also reduced the desensitization of the ASIC current.  Accord-
ingly, OGD treatment enhanced acidosis-mediated neuronal 
injury[71].  The cellular and molecular mechanisms underlying 
ischemia-induced increase of ASIC activity has been investi-
gated extensively by several studies.  Allen and Attwell dem-
onstrated that arachidonic acid, a lipid metabolite released 
in ischemia, increased the amplitude of the ASIC current 
in rat cerebellar Purkinje neurons[122].  Gao and colleagues 
demonstrated that an increased phosphorylation of ASIC1a 
channels by CaMKII, mediated by NMDA receptor activa-
tion, was involved in ischemia-induced enhancement of the 
ASIC responses[112].  Sherwood and Askwith demonstrated 
that dynorphins, the most basic neuropeptides abundantly 
expressed in the central nervous system, could increase the 
activities of ASIC1a channels and enhance neuronal damage 
following ischemia[120].  They do so by reducing the steady-
state desensitization of the ASIC1a channels.  Very recent 
studies by Duan and colleagues also showed that, spermine, 
one of the endogenous polyamines, exacerbated ischemic 
neuronal injury through sensitization of ASIC1a channels to 
extracellular acidosis[121].  Spermine slows down the desensiti-
zation of these channels in the open state, shifting steady-state 
desensitization to more acidic pH, and accelerating recovery 
of the channels between repeated periods of acid stimulation.  
Thus, therapeutic interventions for brain ischemia may target 
ASICs directly by using ASIC blockers/inhibitors or indirectly 
by blocking the ischemia-related signals which enhance the 
activation of ASICs.

Perspectives 
Stroke/brain ischemia is a leading health problem worldwide.  
Although in recent years enormous progresses have been 
made in the prevention of stroke, unfortunately, there is still 
no effective treatment for stroke patients.  Searching for new 
cell injury mechanisms and effective therapeutic strategies is 
therefore a major challenge in the fi eld.  Brain ischemia initi-
ates various biochemical changes such as increased glutamate 
release, production of oxygen free radicals, lactic acidosis, 
and reduced ATP synthesis, etc.  These changes may facilitate 
the opening of various Ca2+-permeable ion channels such as 
glutamate-receptor-gated channels, voltage-gated Ca2+ chan-
nels, TRPM7 channels, acid-sensing ion channels, etc.  Activa-
tion of these channels induces entry of Ca2+ and accumulation 
of intracellular Ca2+.  Intracellular Ca2+ accumulation can also 
occur through other pathways, eg release of Ca2+ from intra-
cellular stores, or entry of Ca2+ through reversed Na+/Ca2+ 
exchange system (Figure 1).  Overload of neurons with Ca2+ 

activates a panel of enzymes including proteases, phospholi-
pases and endonucleases, leading to destruction of neurons 
either through necrotic or apoptotic process.  Targeting the 
pathways responsible for Ca2+ overload may lead to effective 
neuroprotective interventions for stroke patients.  The recent 

failure of clinical trials using the antagonists of glutamate 
receptors, however, suggests that future effort should also 
consider glutamate-independent Ca2+ toxicity in ischemia, eg  
through activation of TRPM7 channels or ASICs.  
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