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β-Adrenergic receptor subtype signaling in heart: 
From bench to bedside
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β-adrenergic receptor (βAR) stimulation by the sympathetic nervous system or circulating catecholamines is broadly involved in 
peripheral blood circulation, metabolic regulation, muscle contraction, and central neural activities.  In the heart, acute βAR stimu-
lation serves as the most powerful means to regulate cardiac output in response to a fight-or-flight situation, whereas chronic βAR 
stimulation plays an important role in physiological and pathological cardiac remodeling.  

There are three βAR subtypes, β1AR, β2AR and β3AR, in cardiac myocytes.  Over the past two decades, we systematically investi-
gated the molecular and cellular mechanisms underlying the different even opposite functional roles of β1AR and β2AR subtypes in 
regulating cardiac structure and function, with keen interest in the development of novel therapies based on our discoveries.  We 
have made three major discoveries, including (1) dual coupling of β2AR to Gs and Gi proteins in cardiomyocytes, (2) cardioprotection 
by β2AR signaling in improving cardiac function and myocyte viability, and (3) PKA-independent, CaMKII-mediated β1AR apoptotic 
and maladaptive remodeling signaling in the heart.  Based on these discoveries and salutary effects of β1AR blockade on patients 
with heart failure, we envision that activation of β2AR in combination with clinically used β1AR blockade should provide a safer and 
more effective therapy for the treatment of heart failure.
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Introduction
Heart failure (HF) is a syndrome characterized by the insuf-
ficient pumping of blood to meet the need of the body.  It is 
a chronic and severely debilitating disease with people older 
than 65 composed more than 75% of all cases[1].  Regardless of 
the cause, the failing heart usually ends up in a viscous cycle 
of progressive functional decline.  Owing to its high preva-
lence, morbidity, mortality and significant health-care costs, 
HF represents a major current health problem in China and 
its prevalence is in an upward trend as atherothrombotic dis-
eases, which often lead to HF, will be the first cause of death 
in the world by 2020[2].

In congestive HF, both the activities of the sympathetic 
nervous system and the renin-angiotensin system (RAS) are 
increased[3].  Initially, the increased activity of these neurohor-
monal systems serves to compensate for the reduced blood 
pressure and cardiac output.  But long term exposure to high 
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levels of circulating catecholamines and angiotensin increases 
the workload of the heart, and causes maladaptive cardiac 
remodeling and myocyte death[4–6].  Many of these effects 
appear to be mediated by the signal transduction cascades of 
the receptors involved.

β-Adrenergic receptor (βAR) and angiotensin receptor 
belong to the superfamily of G protein-coupled receptors 
(GPCRs) or seven transmembrane receptors.  GPCRs consti-
tute the most ubiquitous of plasma membrane receptors.  They 
are involved in the regulation of many important physiologi-
cal functions and also serve as the most important drug tar-
gets[7].  Over the past 25 years, βAR antagonists (β-blockers), 
angiotensin converting enzyme inhibitors (ACEIs) and angio-
tensin II receptor blockers (ARBs), alone or in combination, 
have been used to treat HF conditions.  Their use ameliorates 
the deterioration of left ventricular function, improves symp-
toms and hemodynamics, and decreases the mortality rate and 
the need for hospitalization[8–11].  However, these therapeutic 
agents have limited effectiveness in some patient populations 
and they also have some adverse effects.  Therefore, there is a 
compelling need to develop new treatments that can improve 
clinical outcomes.
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Subtype-specific βAR signaling in the heart
βARs exist as three subtypes, β1, β2, and β3, and the former 
two are important in the regulation of excitation-contraction 
coupling of myocardium.  β1AR is the predominant recep-
tor subtype expressed in the heart.  Its stimulation results in 
the activation of the Gs-adenylyl cyclase (AC)-cAMP-protein 
kinase A (PKA) signaling cascade.  In ventricular myocytes, 
the phosphorylation of PKA substrates including phospho-
lamben, L-type calcium channel, ryanodine receptor, cardiac 
troponin I, and cardiac myosin-binding protein C results in 
the increase in calcium transient and contractility.  In pace-
maker cells, PKA-mediated phosphorylation of membrane ion 
channels and Ca2+ handling proteins increases Ca2+ cycling 
and pacing rate.  Similarly, β2AR also has a functional role in 
cardiomyocyte contraction[12].  But unlike β1AR which couples 
only to Gs, β2AR also couples to pertussis toxin (PTX)-sensitive 
Gi proteins[13].  The β2AR-Gi signaling has negative effects on 
AC activity, cAMP synthesis, PKA activation, and the inotro-
pic response mediated by Gs.

Importantly, persistent stimulation of β1AR and β2AR 
exhibits distinct outcomes under certain pathological cir-
cumstances such as HF.  Specifically, persistent stimulation 
of β1AR triggers cardiomyocyte apoptosis by a Ca2+/calmod-
ulin-dependent kinase II (CaMKII)-dependent, but PKA in-
dependent mechanism[14].  Furthermore, the β1AR-activated 
CaMKII signaling, but not the PKA pathway, is involved in 
catecholamine-induced cardiomyocyte hypertrophy in vitro[15] 
and maladaptive cardiac remodeling in vivo[16, 17].  In contrast 
to the cardiotoxic effects of persistent β1AR activation, persis-
tent β2AR stimulation is cardioprotective.  The cardioprotec-
tive effect of persistent β2AR signaling is largely mediated by 
β2AR-Gi coupling, which activates the Gβγ-phosphoinositol 
3-kinase (PI3K)-Akt cell survival pathway[18].  Although ben-
eficial in terms of cardiomyocyte viability, the protective effect 
of β2AR comes at the cost of compromised contractile support.

Heart failure-associated alterations in βAR signaling
During HF, β1AR is persistently downregulated at the mRNA 
and protein levels[19, 20].  Its density on the plasma membrane 
is reduced by 50%, while that of β2AR has no such change[21].  
The resulting change in the ratio of β1/β2AR from an 80:20 
distribution in the healthy heart to a ratio of 60:40 in the fail-
ing heart may indicate the prominent role of β2AR signaling in 
the disease condition.  In the failing heart, the selective down-
regulation of β1AR is often associated with an upregulation 
of Gi and an enhanced β2AR-Gi signaling[22, 23].  Importantly, 
the β1AR-mediated contractile response is cross-inhibited by 
the enhanced β2AR-Gi signaling in the failing heart.  Thus, the 
enhanced β2AR-Gi signaling contributes to the dysfunction of 
both β1AR- and β2AR-Gs signaling in the failing heart[24–27].

In addition, the signaling efficiency of β1AR is also mark-
edly reduced in the failing heart as a result of desensitiza-
tion[28].  This is attributed, in part, to a significant increase in 
the expression level of G protein coupled receptor kinase 2 
(GRK2)[29], the prototypical member of the GRK family.  The 
process of βAR desensitization involves a series of events, 

including (a) the translocation of GRK2 to the plasma mem-
brane facilitated by the free Gβγ subunits liberated from the 
activated heterotrimeric G proteins[30], (b) the phosphoryla-
tion of the serine or threonine residues on the C-terminal tail 
of βARs by GRK2, (c) the recruitment of β-arrestins to the 
phosphorylated receptor, the physical displacement of Gsα 
from the β-arrestin-associated receptor, and (d) the β-arrestin-
dependent internalization of the receptor (endocytosis)[31].  
While β2AR stays at a similar level in the failing heart, its 
coupling efficiency to Gs is markedly reduced[21].  Desensitiza-
tion of βARs leads to reduced Gs-mediated responses such 
as cAMP production and positive inotropic effect.  Although 
receptor downregulation and desensitization are considered to 
be protective responses against excessive sympathetic stimula-
tion during HF[32, 33], the resultant abnormality in βAR signal-
ing may lead to the activation of signaling pathways that are 
involved in cardiac remodeling, such as the PI3K cascades[34].

Indeed, in humans or animal models with HF, chronic cat-
echolamine elevation causes marked dysregulation of βARs, 
resulting in various molecular abnormalities, including the 
upregulation of GRK2[29, 35] and Gi proteins[22, 23, 36].  Upregula-
tion of both of these proteins have been implicated as causal 
factors in the development of HF.  In particular, GRK2 is the 
most abundant and best-characterized GRK in the heart[37].  
GRK2 expression and activity are markedly elevated and play 
a central role in the HF-associated defect in βAR signaling[38] 
and cardiac dysfunction[39].  Myocardial ischemia and hyper-
tension in humans and animal models have also been associ-
ated with elevated GRK2 expression and activity[40, 41].  These 
previous studies have defined GRK2 upregulation as an early 
common event in cardiac maladaptive remodeling and HF.

Emerging evidence suggests that activation of GRK2 as 
well as PKA is essentially involved in the activation of the 
β2AR-coupled Gi signaling in mammalian cells.  First, early 
work has shown that β2AR-induced activation of ERK1/2 in 
HEK293 cells is mediated by a Gi-dependent mechanism, and 
that phosphorylation of β2AR by PKA is a prerequisite for 
the switch of the receptor coupling from Gs to Gi

[42].  Second, 
our recent studies[43] have demonstrated that elevated β2AR 
phosphorylation by GRK2 acerbates the Gi signaling, whereas 
inhibition of GRK2 activity profoundly suppresses the 
β2AR-Gi coupling.  Since GRK2 upregulation occurs prior to 
the onset of HF and contributes to the development of HF[44, 45], 
enhanced GRK2 activation may play an important role in the 
exacerbated β2AR-coupled Gi signaling in the failing heart.  
Indeed, disruption of Gi signaling with PTX or inhibition of 
GRK2 with a peptide inhibitor, βARK-ct, can restore cardiac 
contractile response to βAR stimulation in multiple HF mod-
els[46–49].  

Importantly, cardiac-specific transgenic overexpression of 
a mutant β2AR lacking PKA phosphorylation sites (PKA-TG), 
but not the wild type β2AR (WT TG) or a mutant β2AR lack-
ing GRK sites (GRK-TG), led to exaggerated cardiac response 
to pressure overload, as manifested by markedly exacerbated 
cardiac maladaptive remodeling and failure, and early mor-
tality[43].  Furthermore, inhibition of Gi signaling with PTX 
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restores cardiac function in HF associated with increased β2AR 
to Gi coupling induced by removing PKA phosphorylation 
of the receptor and in GRK2 transgenic mice, indicating that 
enhanced phosphorylation of β2AR by GRK and resultant 
increase in Gi-biased β2AR signaling play an important role 
in the development of HF[43].  Altogether, our recent studies 
have demonstrated that enhanced β2AR phosphorylation by 
GRK leads the receptor to Gi-biased signaling which, in turn, 
contributes to the pathogenesis of HF, marking Gi-biased β2AR 
signaling as a primary event linking pathological upregula-
tion of GRK to cardiac maladaptive remodeling, failure and 
cardiodepression.  It is also noteworthy that, as is the case 
in the failing heart, enhanced β2AR-coupled Gi signaling is 
responsible for the defects of both β1AR and β2AR signaling in 
the GRK2 transgenic mice[43], and that the previously reported 
beneficial effects of βARK-ct in improving the function of the 
failing heart[38, 39, 50-52] is mediated, at least in part, by attenuat-
ing GRK-dependent Gi-biased β2AR signaling.

Carvedilol paradox
In clinical settings, long-term use of β-blockers improves clini-
cal symptom of HF.  Treatment with β-blockers improves 
left ventricular contractile function in the failing heart and 
reverses cardiac remodeling[8, 9].  In the molecular level, 
β-blockade may normalize βAR system through the upregula-
tion of β1AR[53] and the restoration of receptor sensitivity by 
decreasing the expression of GRK2[50].  However, the effects of 
different β-blockers are not identical.  The use of subtype non-
selective β-blockers in early years has caused some major side 
effects including bronchial and blood vessel constriction[54, 55].  
This is largely due to the inhibition of β2AR in non-cardiac tis-
sues such as the respiratory system and blood vessels.  These 
problems have been partially resolved with the introduction of 
selective β1AR antagonists, such as atenolol, metoprolol, biso-
prolol and nebivolol.  Recent clinical trials have indicated that 
only 3 out of 16 β-blockers are beneficial in terms of cardiovas-
cular survival[9, 56–58], with carvedilol emerging as the best[59].  

Apart from being a non-selective β-blocker, carvedilol also 
has several properties, such as α1-adrenergic blockade, anti-
oxidant, anti-proliferative, anti-endothelin and anti-arryth-
mogenic effects[60, 61], which may explain its higher efficacy.  
Interestingly, carvedilol has been found to be the only one 
among 16 blockers that activated ERK by a β2AR-mediated, G 
protein-independent, and β-arrestin-dependent mechanism[62].  
Moreover, among 20 β-blockers tested, only atenolol and 
carvedilol could induce the β1AR-mediated transactivation 
of EGFR and this effect is also β-arrestin-dependent[63].  It has 
been implicated that this effect may contribute to the special 
therapeutic effect of carvedilol.  In this regard, recent studies 
have shown that β-arrestin-dependent, G protein-independent 
activation of EGFR via β1AR confers cardioprotection in mice 
chronically stimulated with catecholamine[64].  These data sug-
gest that a ligand can antagonize the G protein-dependent 
activity of a GPCR and at the same time stimulates signaling 
pathways in a G protein-independent β-arrestin-dependent 
fashion[65].  They are also of great relevance to our discussion 

in the next section about the application of this principle in the 
development of novel therapeutic agents.

Biased βAR signaling and drug discovery
In the classical paradigm of GPCR signaling, ligand binding 
leads to conformational change of the receptor from an in-
active state R into a single activated state R* that results in the 
coupling of the receptor to heterotrimeric G proteins.  Receptor 
coupling facilitates the exchange of the bound GDP with GTP 
in the α subunit of the G protein complex.  This triggers disso-
ciation of the complex into Gα and Gβγ subunits.  They go on to 
activate their respective effectors such as AC, phospholipases 
and ion channels.  These receptor mediated reactions often 
generate signaling molecules called second messengers which 
activate or inhibit other components of the cellular machinery.  
Thus, receptor stimulation produces a multitude of cellular 
responses via the activation of the signal transduction path-
ways downstream of G proteins.  Agonist efficacy, a measure 
of the ability of an agonist to activate this cascade, quantita-
tively defines the agonist as partial or full.  In this scheme, 
antagonist is defined as a ligand which binds to the receptor 
but produces no receptor activation and thus has the ability to 
block agonist-stimulated G protein activation.  This unidirec-
tional understanding of agonist efficacy is contradictory to the 
aforementioned findings that a ligand for a single GPCR can 
be an antagonist for the G protein-dependent signals and also 
an agonist for the β-arrestin-dependent signals[62, 63].

Over the past fifteen years, more and more evidence has 
accumulated indicating that a ligand for a given GPCR does 
not simply possess a single defined efficacy.  Rather, a ligand 
possesses multiple efficacies, depending on the downstream 
signal transduction pathways analyzed.  Moreover, GPCR can 
be differentially activated to target a specific subset of signal 
transduction pathways by the so-called “biased ligand”.  In 
particular, research has revealed that GPCR can be stimulated 
to produce a β-arrestin-dependent but G protein-independent 
signal, which differs both spatially and temporally from the 
β-arrestin-mediated signal stemmed from receptor desen-
sitization[66].  It is believed that the β-arrestin-biased ligand 
activates the alternative signaling pathway by stabilizing the 
receptor in a distinct active conformation R*’.  Thus, in this 
new paradigm, GPCR may be stabilized by different ligands in 
distinct active conformations R*1-R*n each capable of activating 
a diverse array of signal transduction pathways and responses 
(Figure 1).  This concept, described as functional selectivity, 
collateral/pluridimensional efficacy, or biased agonism, has 
major implications for pharmacological therapeutics[65, 67–70].

To add another layer of complexity to this scheme, the sig-
nal trafficked by a biased agonist is context-dependent, too.  
Not only does the selectivity of a ligand towards different sig-
naling pathways change in different cell types, the change in 
the levels of cytosolic reactants of GPCR also has an impact on 
the functional selectivity of a ligand.  For example, the specific 
β2AR antagonist ICI-118551 has been suggested to directly 
produce a negative inotropic effect by acting as an agonist for 
the Gi-coupled β2AR in myocytes from failing human heart[71].  
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This effect is not due to the blocking of the endogenous cat-
echolamines and is also different in principle from an inverse 
agonistic effect also described for this ligand[72].  It is because 
this negative inotropic effect of ICI-118551 is PTX-sensitive, is 
observable at receptor levels with or without overexpression 
manipulation, and only becomes apparent under the condi-
tions when the levels of Gi are raised.

In a recent study using a cardiomyocyte model[49], we 
have screened a panel of β2AR agonists, including zinterol, 
salbutamol, and procaterol for their receptor-mediated con-
tractility stimulatory activities and the sensitivities of these 
effects towards PTX.  We have found that PTX augmented the 
contractile responses of most β2AR agonists but not that of 
fenoterol.  These data indicates that while most β2AR agonists 
activate both Gs and Gi, fenoterol selectively activates Gs.  This 
is the first evidence to show that different agonists can activate 
a receptor to couple to different G-proteins.  It was further 
found that fenoterol fully reversed the diminished β2AR-
mediated inotropic effect in cardiomyocytes isolated from fail-
ing spontaneous hypertensive rat hearts even in the absence 
of PTX.  This study is particularly valuable in that fenoterol 
was identified to be a unique agonist capable of selectively sta-
bilizing the coupled β2AR-Gs species in conditions that favor 
β2AR-Gi coupling.  It also reveals the therapeutic potential of 
fenoterol in the treatment of HF.

The effectiveness of fenoterol in treating HF conditions has 
been demonstrated in a number of follow-up in vivo stud-
ies[73–76].  Prolonged use of fenoterol not only improves cardiac 
function, but also retards cardiac maladaptive remodeling, and 
that the overall beneficial effects of fenoterol are greater than 

the salutary effects of β1AR blockade in a myocardial infarc-
tion induced rat model of dilated cardiomyopathy[73].  These 
studies suggest that selective activation of the β2-AR-coupled 
Gs signaling may provide a useful therapeutic target for the 
treatment of congestive HF.  We envision that new Gs-biased 
β2AR agonists, such as fenoterol and its derivatives, may be 
developed into drugs to improve the structure and function of 
the failing heart.

Fenoterol contains two chiral centers and can exist as four 
stereoisomers.  We have synthesized a cohort of fenoterol 
derivatives including the R,R-, R,S-, S,R-, and S,S-isomers[77, 78].  
While the pharmaceutical preparation of fenoterol is a racemic 
mixture of its R,R- and S,S‑enantiomers, our recent studies 
have shown that the R,R‑enantiomer is the only active isomer 
in receptor binding and cardiomyocyte contraction assays[77, 78].  
It has been known for a century that stereoisomers of cat-
echolamines differ in their potency and efficacy.  However, 
the molecular basis for the differences in the efficacies of 
GPCR ligand stereoisomers has remained poorly defined.  We 
have, therefore, used some of these fenoterol derivatives to 
examine the hypothesis that the stereochemistry of an agonist 
determines functional selectivity of a given receptor coupling 
to different G protein(s) and resultant activation of subset(s) 
of downstream signaling pathways[79].  We found that while 
R,R-fenoterol failed to activate Gi signaling, as evidenced by 
the absence of PTX-sensitivity of its contractile response and 
its inability to activate Gi-dependent ERK1/2 signaling, S,R-
fenoterol exhibited a robust PTX-sensitivity in these responses, 
suggesting that the S,R-isomer enables β2AR to activate both 
Gs and Gi.  The same conclusion holds true for some fenoterol 
derivatives.  For instance, S,R-methoxyfenoterol, but not R,R-
methoxyfenoterol, activated β2AR-coupled Gi signaling in 
cardiomyocytes[79].  Thus, in addition to receptor subtype and 
phosphorylation status, the different stereoisomers of an ago-
nist selectively activate distinct receptor-G protein interactions 
and downstream signaling events.  This finding is important 
because it is the first account to show that even the subtle 
chemical differences within a ligand stereoisomer pair are suf-
ficient to stabilize GPCR conformations with distinct G-protein 
coupling properties, highlighting how important it is to care-
fully examine both the “active” and the “inactive” stereoiso-
mer to understand the exact mechanism of action and cellular 
effects of a GPCR ligand[80].

This finding also has important clinical implications.  In 
particular, it has been shown that long-term (1 year) treatment 
with racemic fenoterol enhances the beneficial effect of β1AR 
blockade with metoprolol in a rat model of dilated cardiomyo-
pathy[75], and the combined (fenoterol+metoprolol) therapy is 
as good as the clinical combination (metoprolol+ACEI) treat-
ment with respect to mortality, and exceeds the latter with 
respect to cardiac remodeling and myocardial infarct expan-
sion[76].  It will be interesting to study the effects of different 
fenoterol derivatives[77, 78, 81] alone or in combination with β1AR 
blocker or RAS inhibitor in this model.  Continued efforts on 
this research line may lead to the development of potential 
novel therapies with greater selectivity, efficacy and fewer side 

Figure 1.  Development of the receptor theory.  In the classical paradigm, 
ligands have linear efficacies, referring to their abilities to stabilize the 
receptor into a single active state.  The emerging concept of biased 
agonism suggests that a biased ligand may stabilize the receptor into 
a distinct active state that does not activate G proteins but activates 
β-arrestins.  In the concept of functional selectivity, receptors may exist in 
multiple active conformations as stabilized by different ligands, and each 
of these conformations gives rise to different downstream signals and 
biological effects.  βArr, β-arrestin; L, ligand; R, inactive conformation of 
GPCR; R*, active conformation of GPCR.
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effects for human congestive HF.  Topics related to the trans-
lation of this novel treatment regimen have been discussed 
extensively in another recent review[82], which also contains 
a pathway map for βAR subtype signaling described in this 
article.

If suppression of β2AR-Gi signaling or enhancement of 
β2AR-Gs signaling is beneficial in HF, the next question is: 
what is the difference between β2AR-Gs signaling and β1AR-Gs 
signaling?  In a recent elegant study[83], Mangmool and co-
authors have elucidated the molecular mechanism of CaMKII 
activation by β1AR.  They found that stimulation of β1AR 
induces the formation of a β-arrestin-CaMKII-Epac1 com-
plex, allowing its recruitment to the plasma membrane, and 
whereby promotes cAMP-dependent activation of CaMKII.  
Further studies using chimeric receptors with switched car-
boxyl-terminal tails of β1AR or β2AR suggested that β-arrestin 
binding to the carboxyl-terminal tail of β1AR promotes a con-
formational change within β-arrestin that allows CaMKII and 
Epac to remain in a stable complex with the receptor.  These 
results demonstrate that only β1AR but not β2AR activates 
CaMKII significantly.  As CaMKIIδ is a common intermediate 
of diverse death stimuli-induced apoptosis in cardiomyo-
cytes[84], is required for the transition from pressure overload-
induced cardiac hypertrophy to HF[85], and promotes life-
threatening arrythmias in HF[86], this explains why activation 
of β2AR-Gs signaling is usually not accompanied with the 
adverse effects observed in β1AR stimulation.  

The molecular mechanism of the cardioprotective effect 
of β2AR-Gs signaling in HF is unclear.  One possibility is the 
crosstalk of the Gs-AC-cAMP-PKA cascade to the tyrosine 
kinase receptor-mediated Akt phosphorylation[87–89].

Concluding remark
In summary, recent studies have revealed opposing functional 
roles of β1AR and β2AR in regulating myocyte viability and 
myocardial remodeling with a cardiac protective effect of 
β2AR stimulation and a detrimental effect of β1AR stimulation.  
Unlike the sole Gs coupling of β1AR, β2AR couples to both Gs 
and Gi signaling pathways with the Gi coupling negating the 
Gs-mediated contractile support.  In the failing heart, enhanced 
expression and activity of GRK2 and Gi proteins further pro-
mote Gi-biased β2AR signaling, thus blunting both β1AR- and 
β2AR-mediated cardiac reserve function, resulting in cardiac 
maladaptive remodeling and failure.  These findings defined 
the β2AR-Gi signaling as an essential link between pathologic 
upregulation of GRK and the development of HF.  Since GRK2 
and resultant Gi-biased β2AR signaling are pathogenic fac-
tors of HF, Gs-biased β2AR agonists may present an important 
therapeutic strategy for the treatment of HF caused by various 
etiologies.
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