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GPCRs and cancer
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G-protein-coupled receptors (GPCRs), which represent the largest gene family in the human genome, play a crucial role in multiple 
physiological functions as well as in tumor growth and metastasis.  For instance, various molecules like hormones, lipids, peptides and 
neurotransmitters exert their biological effects by binding to these seven-transmembrane receptors coupled to heterotrimeric G-pro-
teins, which are highly specialized transducers able to modulate diverse signaling pathways.  Furthermore, numerous responses medi-
ated by GPCRs are not dependent on a single biochemical route, but result from the integration of an intricate network of transduction 
cascades involved in many physiological activities and tumor development. This review highlights the emerging information on the 
various responses mediated by a selected choice of GPCRs and the molecular mechanisms by which these receptors exert a primary 
action in cancer progression.  These findings provide a broad overview on the biological activity elicited by GPCRs in tumor cells and 
contribute to the identification of novel pharmacological approaches for cancer patients.
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Introduction
The seven-transmembrane G protein-coupled receptors 
(GPCRs), which belong to the largest superfamily of signal 
transduction proteins, regulate multiple biological functions 
coupling to a heterotrimeric G-protein associated with the 
inner surface of the plasma membrane[1].  The heterotrimer 
that is composed of the Gα, Gβ, and Gγ subunits, binds to the 
guanine nucleotide GDP in its basal state.  Upon activation by 
ligand binding, GDP is released and replaced by GTP, which 
leads to subunit dissociation into a βγ dimer and the GTP-
bound α monomer[2] (Figure 1).  On the basis of the sequence 
identity, the Gα subunit has been classified into four families: 
Gαs, Gαi, Gαq, and Gα12.  Each Gα family can relay the GPCR 
signal stimulating different downstream effectors[2].  Some 
GPCRs, such as the lysophosphatidic acid (LPA) receptors, 
can couple to more than one G protein triggering consequen-
tly diverse signaling cascades, whereas other GPCRs like 
sphingosine-1-phosphate (S1P) receptor 1 (S1P1) couple exclu-
sively to one G protein[3, 4].  

An increasing number of studies links aberrant GPCR 
expression and activation to numerous types of human mali-
gnancies[5, 6] (Figure 1).  For instance, several GPCRs are ove-
rexpressed in different tumors[6] and GPCR variants can lead 
to increased cancer risk.  In this regard, it should be mentio-
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ned that in genetic association studies melanocortin-1 receptor 
(MC1R) polymorphisms were associated with an enhanced 
threat of skin cancer[7].  In addition, an aberrant activation of 
GPCRs by high levels of ligands like LPA, S1P and chemoki-
nes was involved in cell transformation, proliferation, angio-
genesis, metastasis and drug resistance[6].  Conversely, some 
members of GPCRs, such as the orexin receptor OX1R, were 
shown to mediate a pro-apoptotic action in various cancer 
cells[8].

Cross-talk among different receptors including GPCRs trig-
gers relevant biological functions in normal and neoplastic 
cells[9].  In this context, it has been reported that many GPCRs 
activate numerous signaling pathways interacting with 
other plasma membrane receptors[9] (Figure 1).  For example, 
the cross-talk between acetylcholine muscarinic receptors 
(mAChRs) and epidermal growth factor (EGFR) as well as 
platelet-derived growth factor (PDGFR) receptors leads to the 
activation of mitogenic pathways which mediate cell prolifera-
tion, differentiation and survival[10].  In addition, several GPCR 
ligands like bradikinin (BK), LPA, Gastrin-releasing peptide 
(GrP) and bombesin (BN) transactivate EGFR, then inducing 
stimulatory effects in different types of tumors[6].  

Currently,  many agents targeting GPCRs, such as 
gonadotropin-releasing factor and somatostatin receptors, are 
used for cancer treatment on the basis of valuable experimen-
tal data and clinical benefits[11, 12].  Moreover, various inhibi-
tors of GPCRs are currently under evaluation in clinical trials 
as anticancer agents (http://www.clinicaltrials.gov/).  This 
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review recapitulates our current understanding regarding the 
mechanisms through which various GPCRs may contribute to 
tumor progression.  On these bases, GPCRs may be considered 
as promising targets in novel pharmacological approaches for 
cancer patients.  

GPCRs activated by bio-active lipids 
GPCRs activated by the bio-active lipids LPA and S1P have 
been implicated in aberrant signaling in a wide range of 
tumors.  LPA1, LPA2 and LPA3 represent the most widely 
expressed and well-characterized receptors for LPA and its 
analogues[3].  Upon binding to these receptors, LPA triggers a 
variety of signaling pathways engaging the heterotrimeric G 
proteins and their downstream effectors[3].  As a consequence, 
the transcriptional activation of multiple cancer-associated 
genes leads to cell survival and proliferation, migration, che-
motaxis, vascular remodeling and angiogenesis[13].  Aberrant 
expressions and mutations of LPA receptors have been found 
in several types of tumors, suggesting their involvement in the 
growth advantage of cancer cells[3, 14, 15] .  For instance, LPA1 
was inversely correlated in breast cancer tissues with the 
Nm23 metastases regulator[16] and contributed to bone meta-
stasis in breast cancer xenografts[17].  Furthermore, LPA indu-
ced migration in breast cancer cells by activating LPA1, which 
promoted the phosphorylation of nonmuscle myosin II (NM 
II) light chain through the activation of ROCK and RhoA acti-
vity[18].  In addition, the expression of LPA1, LPA2, and LPA3 
in mammary epithelium of transgenic mice induced a high 
frequency of late-onset, estrogen receptor (ER)-positive, inva-
sive and metastatic mammary cancer[19].  LPA stimulated also 
tumorigenesis and metastasis in ovarian malignancy[20].  For 
instance, LPA exerted a growth factor-similar action and pre-
vented apoptosis in ovarian cancer cells through redox-depen-
dent activation of ERK, Akt and NF-κB-dependent signaling[21].  

Recently, the LPA/LPA1-induced Rac activation as well as 
the integrity of SOS1/EPS8/ABI1 tri-complex were required 
for ovarian cancer metastasis[22].  Closely resembling the LPA-
effects in human ovarian cancer cells, LPA induced metastasis 
of epithelial ovarian cancer in immuno-competent mice[23].  
As other GPCR ligands, LPA promoted stimulatory effects in 
different types of tumors by transactivating EGFR and trig-
gering a functional cross-talk between its cognate receptors 
and EGFR-mediated signaling[6].  In this regard, it should be 
mentioned that EGFR activity was required for the activation 
of Gi-dependent cellular responses induced by LPA in ovarian 
cancer cells[24].  Moreover, a cross-talk between LPA receptors 
and EGFR occurred in ovarian cancer cells as demonstrated by 
the increase of LPA production following ligand-dependent 
EGFR transactivation[25].  In addition to breast and ovarian 
malignancies, LPA was involved in other types of tumors.  In 
a murine xenograft model of lung adenocarcinoma, mesen-
chymal stem cells were recently shown to stimulate angioge-
nesis through a LPA1-dependent mechanism[26].  Likewise, an 
engineered three-dimensional tumor xenograft model of non-
small cell lung cancer (NSCLC) in nude mice regressed and 
lost vascularity in response to BrP-LPA, which acts as a LPA 
receptor antagonist and autotaxin inhibitor[27].

The bio-active lipid S1P has been involved in various aspects 
of tumor development, including cell proliferation, motility 
and invasiveness, apoptosis, differentiation, angiogenesis and 
inflammation[28].  However, S1P can mediate both prolifera-
tive[29] and antiproliferative[30] effects in neoplastic cells.  These 
opposite responses to S1P were attributed to the different 
activities exerted by its five receptors, which are coupled to 
distinct members of the G protein family and display a specific 
tissue expression pattern[28].  In particular, S1P1 mediated pro-
migratory effects[31], whereas S1P2 inhibited cell migration[32].  
An increased S1P1 expression, which was recently induced by 

Figure 1.  Agonist binding to GPCRs promotes the dissociation 
of GDP bound to the Gα subunit and its replacement with GTP 
leading to the activation of the heterotrimeric G proteins and 
the subunit dissociation into a βγ dimer and the GTP-bound 
α monomer.  Both subunits activate multiple downstream 
effectors which induce gene transcription and relevant biological 
responses.  A cross-talk between several GPCRs and other 
membrane receptors as Epidermal Growth Factor Receptor 
(EGFR) contributes to the growth stimulation and invasion of 
cancer cells.  
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the activator of transcription-3 (STAT3), up-regulated IL-6 and 
accelerated tumor growth and metastasis[33].  In glioblastoma 
and in Wilms tumor cells S1P-dependent S1P1 signaling indu-
ced cell migration and invasion[34, 35], whereas in glioblastoma 
and melanoma cells S1P-dependent S1P2 pathway negatively 
directed migration and invasion[32, 36].  Paralleling the afo-
rementioned observations, S1P1 and S1P2 exerted opposite 
effects on tumor angiogenesis.  For instance, S1P1 stimulated 
angiogenesis[37] and accordingly the administration of mono-
clonal anti-S1P antibody prevented tumor growth by inhibi-
ting angiogenesis and motility, survival and proliferation[38].  
In addition, S1P1 was shown to be up-regulated in vessels at 
sites of tumor implantation, whereas S1P1 silencing resulted in 
the inhibition of tumor growth[39].  In contrast to the Gi-depen-
dent S1P1 stimulation of tumor angiogenesis, S1P2 mediated 
inhibitory effects on tumor angiogenesis through G12/Rho 
signaling[40].  Together, these data suggest that the different 
action elicited by S1P1 and S1P2 may serve for novel pharma-
cological strategies based on therapeutics able to inhibit S1P1 
and to activate S1P2 simultaneously.

GPCRs activated by peptides
The endothelin receptors (ETAR and ETBR) have been broadly 
involved in the regulation of mitogenesis, cell survival, angio-
genesis, lymphangiogenesis, invasion and metastatic dissemi-
nation as well as epithelial-to-mesenchymal transition (EMT) 
in diverse types of malignancies[41].  Accordingly, high plasma 
endothelin-1 (ET-1) levels correlated with the tumor stage in 
cancer patients, suggesting that ET-1 can also serve as a prog-
nostic marker[41, 42].  Emerging data demonstrate that interfer-
ing with the ET receptors-dependent pathways may provide 
a significant chance for the development of novel anticancer 
strategies, in particular using ETAR antagonists in combination 
with EGFR inhibitors as well as cytotoxic drugs[43].  Neverthe-
less, antagonists of ET receptors, like atrasentan and ziboten-
tan (ZD4054), used alone have also gained considerable inter-
est in human clinical trials on the basis of their potential anti-
cancer activity[43].  For instance, the ETAR blockade with the 
specific ETAR antagonist zibotentan restored drug sensitivity 
to cytotoxic-induced apoptosis and inhibited ovarian cancer 
cell invasion[44].  

The four receptors for the Gastrin-releasing peptide 
(GrP) were shown to be able to transactivate EGFR in lung, 
head and neck squamous tumor cells[45, 46].  In addition, 
ligand-stimulation of GrP receptors contributed to the growth 
of several malignancies through the activation of diverse 
phospholipases and protein kinases[47].  As GrP receptors were 
found overexpressed in a wide variety of tumors, their inhi-
bition has been suggested as a promising objective in some 
malignancies[47].  Hence, the use of antagonists of GrP receptors 
represents a potential approach to inhibit the GrP-dependent 
effects on tumor growth.  In this regard, it was demonstrated 
that the anti-tumor activity of GrP antagonists involves dif-
ferent mechanisms as the reduction of EGFR and Her2 levels, 
the alteration of MAPK, PKC, pAkt, and COX-2 signaling, 
the attenuation of c-fos and c-jun expression, the modulation 

of wild-type and mutated forms of p53 along with an altera-
tion of Bcl-2/BAX ratio, the inhibition of vascular endothelial 
growth factor (VEGF)[47].  Radiolabeled GrP analogues rep-
resent another chance in targeting GrP receptors, thus they 
are currently considered promising radiopharmaceuticals for 
detection and treatment of different types of tumors[48, 49].

Protease-activated receptors (PARs) are a unique class of 
GPCRs that are activated by proteolytic cleavage of their extra-
cellular domains[50].  PAR-1 exerted a functional role in the 
growth, migration and metastasis in various tumors[51-53].  For 
instance, its proteolytic activation by thrombin caused persis-
tent activation of EGFR/ERK signaling, promoting thereafter 
breast carcinoma cell invasion[54].  Moreover, PAR-1 negatively 
regulated the expression of the Maspin tumor-suppressor 
gene contributing to the metastatic phenotype of melanoma[55].  
It has been recently reported that metalloprotease-1 (MMP1) 
may function as a protease agonist of PAR-1 which then 
stimulates migration, invasion and angiogenesis in breast and 
ovarian malignancies[56, 57].  

Activation of the canonical Wnt pathway occurs through 
the seven-transmembrane Frizzled (Fzd) family receptors and 
the co-receptors lipoprotein receptor-related protein (LRP) 
in order to initiate the β-catenin signaling cascade[58].  The 
activated β-catenin translocates from the cytoplasm to the 
nucleus inducing the transcription of Wnt-responsive genes[58].  
Numerous studies have shown that the dysregulation of the 
canonical Wnt pathway may lead to cancer development and 
progression[58].  In this regard, mutations of β-catenin, axin 
and other components of the Wnt pathway[59] as well as the 
activation of tissue-specific Wnt target genes[60, 61] were found 
in a variety of human tumors.  In addition, the non-canonical 
Wnt pathways that act independently of β-catenin promote 
the invasiveness and progression of tumors[62].  Several Fzd 
receptors are highly expressed in a variety of malignancies 
and involved in cancer cell growth, survival and invasion 
through both canonical and non-canonical Wnt pathways[6].  
For instance, the pharmacological inhibition of Fzd7, which is 
frequently overexpressed in hepatocellular carcinoma (HCC), 
displayed anti-tumor properties by involving β-catenin and 
PKCδ signals[63].  Fzd7 was also crucial through the canonical 
Wnt pathway for cell proliferation and invasiveness in triple 
negative breast cancer cells as well as for tumor formation in 
xenograft models[64].  Moreover, the increased expression of 
Fzd4 through the up-regulation of β-catenin dependent Wnt 
signaling promoted in invasive glioma cells the acquisition of 
glioma stem cell-like properties and resistance to apoptosis[65].  
Next, a cross-talk between Wnt pathways and EGFR signaling 
occurred in multiple stages of cancer development[59].

The Hedgehog (Hh) signaling, which plays a key role in 
embryonic development, has been involved in the develop-
ment of multiple malignancies[66].  Hh ligands are secreted 
from different tissues at various stages of development and 
generate intracellular signaling by binding to and inactivating 
the Hh receptor Patched-1 (Ptch1), which relieves its catalytic 
inhibition of the GPCR-like signal transducer Smoothened 
(Smo).  The activation of Smo triggers downstream events 
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that culminate in the stimulation of the glioma-associated 
oncogene homologue (GLI) transcription factors, the up-reg-
ulation of target genes like cyclins, Bcl-2 and SNAIL and the 
production of VEGF and angiopoietins[66].  Consequently, Hh 
signaling contributes to cancer cell proliferation and survival, 
angiogenesis and metastasis[66].  In addition, mutations in 
components of the Hh pathway, such as Smo and Ptch1, lead 
to a constitutively activated Hh signaling in the absence of 
ligands in diverse cancer types, including basal cell carcinoma, 
medulloblastoma and non-small cell lung carcinoma[66–68].  The 
overexpression of Hh ligands have been also identified in sev-
eral tumors as a stimulating factor acting in an autocrine man-
ner to induce cell proliferation and survival[69].  Likewise, Hh 
ligands produced by stromal cells can promote tumor growth 
and survival in a paracrine manner[69].  Conversely, tumor cells 
can produce Hh ligands which activate transduction pathways 
in stromal cells[69].  Several small molecule antagonists for Smo 
have been developed with a promising preclinical efficacy in 
multiple tumors.  For instance, the Smo inhibitor CUR61414 
inhibited in mice skin the Hh signaling, blocked the induc-
tion of hair follicle anagen and shrank in basal cell carcinomas 
(BCCs), although in a phase I clinical study it did not show 
any activity in human superficial or nodular BCCs[70].  Sev-
eral other Smo antagonists, such as IPI-926, BMS-833923 and 
GDC-0449, are currently under evaluation in clinical trials as 
anticancer agents (http://www.clinicaltrials.gov/).  In par-
ticular, GDC-0449 produced promising antitumor responses 
in a phase I study in patients with advanced BCCs as well as 
in a 26-year-old man with metastatic medulloblastoma which 
was unmanageable by conventional therapies[71].  However, 
the response of this patient to GDC-0449 treatment was only 
transient due to a mutation of Smo[71].  Recently, a number of 
Hh pathway antagonists targeting Smo mutants[72] as well as 
inhibitors able to block both wild-type and Smo mutants have 
been identified[73].  In addition to Smo antagonists, other inhib-
itors were used to block Hh signaling like the small molecule 
inhibitor of GLI1 and GLI2 transcription factors, GANT61, 
which induced colon carcinoma cell death in a higher extent 
respect to the conventional Smo inhibitor cyclopamin[74].  The 
treatment with GANT61 reduced also the expression of the 
target gene Patched and decreased the viability of chronic 
lymphocytic leukemia cells[75].  Recently, the systemic antifun-
gal itraconazole which failed to bind to Smo at the same bind-
ing site of cyclopamine, showed a potent antagonism for the 
Hh signaling pathway associated with anti-tumor activity in a 
mouse medulloblastoma allograft model[76].

GPCRs activated by chemokines
Besides their functions in the immune system as mediators 
of leukocyte migration, chemokines and the cognate recep-
tors play a critical role in tumor initiation and progression, 
including angiogenesis, attraction of leukocytes and induction 
of cell migration and homing in metastatic sites[77].  The first 
described angiogenic chemokine, CXCL8/IL-8, which binds 
to CXCR1 and CXCR2[78], is secreted by a variety of normal 
and tumor cells exposed to pro-inflammatory cytokines like 

IL-1 and TNF-α[79].  CXCR2 was associated to multiple signal-
ing pathways involved in tumorigenesis, angiogenesis, pro-
liferation and metastasis in several malignancies, including 
melanoma[80], lung[81], pancreatic[79, 82], gastric[83], and ovarian[57] 
tumors.  For instance, the overexpression of CXCR2 induced 
an aggressive phenotype of melanoma cells consisting with 
an enhanced proliferation, migration and tumor growth in 
mice[84].  

The homeostatic chemokine stromal cell-derived factor-1, 
CXCL12/SDF-1, which regulates cardiac and neuronal devel-
opment, stem cell motility and neovascularization, was also 
involved in diverse tumorigenic processes[77].  The CXCL12/
SDF-1 interaction with the widely expressed tumor cell sur-
face receptor CXCR4 initiates divergent signaling pathways 
which can result in a variety of responses like chemotaxis, cell 
survival, proliferation and metastasis[80].  CXCR4 is capable 
of orchestrating a complex signaling network, including the 
up-regulation of E-cadherin and c-myc as well as the modula-
tion of molecules facilitating mammary epithelia cell transfor-
mation[85].  Enhanced CXCR4 signaling was also involved in 
the resistance to endocrine therapy in breast cancer[86] and in 
the drug resistance of colon[87] and pancreatic cancer cells[88].  
Of note, CXCR4 expression and phosphorylation has been 
considered a negative prognostic marker in various types of 
cancer including acute myelogenous leukemia and B-acute 
lymphoblastic leukemia, breast and colon carcinomas, as 
it correlated with worse prognosis and decreased survival 
of patients[86, 89–92].  Increased levels of VEGF, the activation 
of nuclear factor kappa B (NF-ĸB) and some oncoproteins 
up-regulate CXCR4 expression, in particular during cancer 
progression[93, 94] and under hypoxic conditions[95].  CXCR4/
SDF-1 contributes to tumor progression also through the 
activation of tumor-associated integrin and the production 
of matrix metalloproteases[93], as observed in human basal 
carcinoma cells[96] and oral squamous cell carcinomas[97].  
Recently, CXCR7/RDC1 has been identified as a novel recep-
tor for CXCL12/SDF-1 and CXCL11[98], although its coupling 
to G-proteins remains controversial.  CXCR7 is expressed in 
diverse cell types including malignant cells[98] as well as in 
tumor-associated blood vessels[99].  CXCR7-dependent signals 
promote the growth of breast and lung tumors, enhance lung 
metastasis and tumor aggressiveness in prostate cancer[99, 100].  
Antagonists of CXCR7 prevented tumor growth in animal 
models, hence validating this receptor as a potential target for 
the development of novel anti-cancer therapeutics[98].

GPCRs activated by hormones
Numerous hormone-activated GPCRs are overexpressed in 
hormone-dependent and independent tumors and trigger 
multiple transduction pathways, which mediate relevant bio-
logical effects in diverse cancer cells.  For instance, angiotensin 
II (Ang-II) and bradykinin (BK) receptors are overexpressed 
in prostate cancer[101, 102] and mediate cell growth through Gαq 
and/or Gα13 which activate RhoA-dependent signaling[103].  In 
this regard, it was shown that Rho is involved in the andro-
gen-like activity of androgen receptor (AR) antagonists[104] and 
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able to sensitize AR to low androgens levels[105].  On the basis 
of these studies, it can be assumed that GPCRs may contribute 
to androgen-dependent and independent growth of prostate 
cancer[103].  Recently, Ang-II exhibited in vitro and in vivo the 
potential to enhance the expression of AR in prostate cancer 
cells through angiotensin II type-1 receptor (AT1R)[106].  In 
addition, Ang-II and BK receptors have been implicated in 
the development, growth, angiogenesis and metastasis in a 
wide number of tumors[101, 102, 107–111].  For instance, Ang-II and 
BK stimulated DNA synthesis in pancreatic cancer cells[112].  In 
the context of this malignancy, a cross-talk between insulin/
insulin like growth factor-I (IGF-1) receptors and Ang-II and 
BK-activated GPCRs has been reported[111-114].  In particular, 
insulin induced the potentiation of Ang-II and BK-dependent 
signaling through the PI3K/Akt/mTOR transduction path-
way[113].  Metformin, which is one of the most used drug in the 
treatment of type 2 diabetes, disrupted in pancreatic cancer 
cells the cross-talk between insulin receptor and GPCR sig-
naling through the activation AMP kinase, which negatively 
regulated mTOR function[113].  Further supporting these obser-
vations, metformin prevented the growth of pancreatic cancer 
cells in xenograft models[114, 115].  Cumulatively, these findings 
suggest that the cross-talk between insulin/IGF-1 receptors 
and GPCR-activated signaling can be considered as a mecha-
nism involved in the development of certain tumors and a 
promising target for novel anti-cancer strategies.

As it concerns the renin-angiotensin system, an abundant 
generation of Ang-II stimulated by the angiotensin-converting 
enzyme (ACE) and the up-regulation of AT1R have been 
demonstrated in various tumors[110, 116].  In this respect, ACE 
inhibitors and angiotensin II receptor blockers (ARBs) have 
recently acquired an increasing interest as chemopreventive 
agents[110, 117, 118].  Of note, ARBs have been associated with 
reduced cancer occurrence in patients with essential hyper-
tension and a longer exposure to ARBs has been related with 
major benefits in cancer patients[119].  Nevertheless, ARBs did 
not show the ability to reduce considerably cancer develop-
ment in a meta-analysis of randomized controlled trials[120].

Among the GPCR family members, the gonadotropin-
releasing hormone (GnRH) receptor is a well established 
target in the clinical practice of cancer treatment[121].  Several 
antagonist analogues of GnRH have been clinically tested and 
numerous orally active antagonists are under development[121].  
The GnRH receptor is one of the smallest GPCRs as it lacks the 
characteristic intracellular carboxyl-terminal domain with a 
very short extracellular amino-terminus.  GnRH receptors are 
expressed not only in the pituitary and in normal peripheral 
tissues[122], but also in various tumor cells like melanoma, pros-
tate and endometrial carcinomas, leiomyomas, leiomyosarco-
mas, breast cancer, choriocarcinoma, epithelial and stromal 
tumors of the ovary[122, 123].  The activation of the peripheral 
GnRH receptor, which is coupled to the Gi protein in uter-
ine leiomyosarcoma, ovarian and endometrial carcinomas, 
decreased intracellular cAMP levels leading to a down-regula-
tion of gene transcription and antiproliferative effects in tumor 

cells[122].  Indeed, the repressive action of GnRH-I receptor on 
cell proliferation has been demonstrated in hormone-related 
tumors like prostate, breast, ovary and endometrium can-
cer[124].  GnRH and the cognate receptors were also involved 
in the stimulation of motility and invasion in ovarian cancer 
cells[125, 126], however several studies suggested a protective role 
elicited by GnRH analogues against gonadal damage during 
chemotherapy in diverse types of tumors[122].  On the basis of 
these findings, GnRH analogues are used in many endocrine-
dependent malignancies such as breast, endometrial, epithelial 
and stromal ovarian cancer.  The antitumor activity of GnRH 
analogues was presumed to result from desensitization and/
or decrease of GnRH receptors in the pituitary, with the conse-
quent decline in gonadotropin secretion and gonadal hormone 
production.  Nevertheless, GnRH analogues were shown to 
suppress directly the growth of endometrial, ovarian, breast 
and prostate tumors and uterine leiomyoma[122, 127, 128].  Like-
wise, the growth of prostate cancer cells in vitro and in tumor 
xenografts was inhibited by activating the GnRH receptor 
or by GnRH receptor blockade[129].  In line with these obser-
vations, phase III trial data have demonstrated that GnRH 
agonists are effective and well tolerated in the treatment of 
hormone-sensitive prostate cancer[130].  Recently, the possibility 
of using GnRH analogues to carry cytotoxic agents directly to 
cancer cells expressing GnRH receptors has been evaluated[131].  
For instance, AN-152 conjugate which is made from doxorubi-
cin being linked to [D-Lys6]GnRH agonist, reduced the prolif-
eration of breast, ovarian and endometrial cancer cells in vitro 
and in xenografted nude mice[132, 133].

Estrogens influence many physiological processes, but are 
also implicated in the development or progression of various 
types of cancer[134].  The multiple biological actions elicited by 
these hormones have traditionally been attributed to the clas-
sical nuclear estrogen receptor (ER)α and ERβ, which act as 
ligand-activated transcription factors[134].  Surprisingly, a mem-
ber of the GPCR family, GPR30/GPER, was recently shown to 
mediate the multifaceted actions of estrogens in different tis-
sues including cancer cells[135].  Importantly, GPER overexpres-
sion was associated with lower survival rates in endometrial 
and ovarian cancer patients and with an elevated risk of devel-
oping metastases in patients with breast cancer[136-138].  GPER 
by transactivating EGFR triggers numerous transduction path-
ways including the intracellular cAMP, calcium mobilization, 
MAPK, PI3-K and phospholipase C activation in a variety of 
cell types[139].  Moreover, it has been shown that the activation 
of the Gαs protein by GPER is responsible for the estrogen, 
phyto- and xenoestrogens stimulation of adenylate cyclase and 
the ensuing increase in cAMP in breast cancer cells[140, 141].  The 
signaling events upon GPER activation by both estrogens and 
notably ER antagonists can lead to gene transcription as well 
as to the growth and migration in diverse hormone-sensitive 
tumors like breast, endometrial and ovarian cancer[142–149].  
Notably, GPER was also involved in the stimulatory effects 
elicited by estrogens and ER antagonists in cancer-associated 
fibroblasts[147, 150].
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GPCRs activated by neurotransmitters
Emerging findings support the hypothesis that the develop-
ment, progression and responsiveness to treatments in most 
tumors is strongly influenced by an imbalance in stimulatory 
and inhibitory neurotransmission[151].  The neurotransmit-
ters adrenaline and noradrenaline act as powerful regulators 
of numerous cellular and tissue functions and can promote 
tumor growth and metastases through the β-adrenergic recep-
tors (β-AR), which are Gs-protein coupled receptors[152–154].  
For instance, noradrenaline stimulates tumor progression in 
diverse types of malignancies activating β-AR which in turn 
induces the production of VEGF, interleukin-6 (IL-6) and 
matrix metalloproteinases[153, 155].  

As for β-adrenergic compounds[156], the action of musca-
rinic acetylcholine receptors (mAchRs) on the proliferation 
of cancer cells is still questioned[157].  In fact, these receptors 
interact with distinct G protein subunits triggering various 
cellular functions through specific downstream effectors.  As 
it concerns M2 and M4 receptors, they interact with Gi pro-
teins inhibiting adenylyl cyclase-dependent signaling.  On the 
contrary, M1, M3 and M5 receptors coupled with Gq proteins 
activate phospholipase C, PKC and induce an increase of 
intracellular calcium[153].  These mAchR subtypes can protect 
cells from the apoptosis subsequent to DNA damage, oxi-
dative stress and mitochondrial dysfunction[158].  Although 
muscarinic receptor expression was identified in cells derived 
from brain, breast, colon, lung, ovary, pancreas, prostate, skin, 
stomach and uterus malignancies[157], only for some of these 
receptors a functional role has been demonstrated.  In ovar-
ian cancer the expression of muscarinic receptors was associ-
ated with reduced survival[159], while in leukemia cells their 
activation resulted in increased intracellular calcium and up-
regulation of the oncogene c-fos[160].  Activation of M3 receptor 
by cholinergic agonists stimulated proliferation of primary 
astrocytoma cells in a ERK and NF-κB dependent manner[157].  
In breast cancer cells, M1 and M2 receptors were involved in 
angiogenesis and cell proliferation, whereas M3 receptor was 
associated only with cell growth[161].  Agonist binding to M3 
receptor resulted in the activation of EGFR/MAPK transduc-
tion pathway, which then stimulated the proliferation in colon 
cancer cells[162].  

Somatostatin receptors (SSTRs), particularly SSTR subtype 
2, were found highly expressed in many neoplastic cells and in 
tumoral blood vessels[163].  SST analogues decreased tumor cell 
growth and angiogenesis as well as stimulated apoptosis in 
cancer cells[164].  These findings contributed to develop various 
cytotoxic SST conjugates that displayed relevant anti-tumor 
abilities targeting selectively SSTR2-specific sites[165].

β-arrestins: novel transducers of GPCR signals
The sensitivity of GPCRs is regulated by G protein-coupled 
receptor kinases (GRKs) and β-arrestins families, that are 
known to exert a central role in GPCR endocytosis, intra-
cellular trafficking, desensitization and resensitization[166, 167].  
As it concerns β-arrestins, they can also function as molecular 
mediators of G protein-independent signaling by activating 

a variety of transduction proteins like Src family kinases and 
components of the MAPK cascades[166, 168, 169].  On the basis of 
these findings, β-arrestins were included among the signal-
ing factors mediating the action of diverse GPCRs in can-
cer[170].  For instance, β-arrestin/Ral signaling was involved in 
the migration and invasion of breast cancer cells induced by 
LPA[170].  In addition, prostaglandin E2 induced the association 
of prostaglandin E receptor 4 with β-arrestin 1 and c-Src, that 
formed a signaling complex able to induce the migration and 
metastasis of colorectal carcinoma cells[171].  In accordance with 
these data, β-arrestin 1 interacting with Src and ETAR triggered 
EGFR transactivation and β-catenin phosphorylation, which 
stimulated invasion and metastasis in ovarian cancer cells[172].  
Moreover, β-arrestin 1 forming a trimeric complex with ETAR 
and axin contributed to the inactivation of glycogen synthase 
kinase (GSK)-3 and stabilization of β-catenin[172].  Collectively, 
these results indicate that β-arrestins exert an important role 
in GPCR-mediated signaling as well as a pivotal role in cancer 
invasion and metastasis.  Novel pharmacological approaches 
targeting the β-arrestins pathway would provide further ther-
apeutical opportunities in diverse types of tumors.

Orphan GPCRs and cancer
Relevant efforts were recently made in the deorphanization 
of the over 130 GPCRs for which ligands have not yet been 
identified.  Some of these GPCRs have been linked to cancer 
development and progression on the basis of their overex-
pression and/or up-regulation by diverse factors[173–175].  For 
instance, an elevated expression of the orphan G-protein-
coupled receptor GPR49 was involved in the formation and 
proliferation of basal cell carcinoma[176], while GPR18 was 
found associated with melanoma metastases[177].  In lung, 
cervix, skin, urinary bladder, testis, head and neck squamous 
cell carcinomas were detected high levels of GPR87[178, 179] for 
which UDP-glucose, cysteinyl-leukotrienes and LPA exhibited 
binding properties[180].  In breast and colon cancer cells, DNA 
damage has been recently found to regulate GPR87 expression 
in a p53-dependent manner[173].  Taken together, these results 
suggest that GPR87 may elicit survival and anti-apoptotic 
actions, while its overexpression plays a pivotal role in the 
development and progression of diverse types of tumors.  On 
the contrary, GPR56 inhibited prostate cancer progression and 
suppressed tumor growth and metastasis in melanoma xeno-
grafs[181].  Moreover, GPR56 inhibited VEGF production from 
melanoma cells and prevented melanoma angiogenesis and 
growth[182].  Accordingly, the expression of GPR56 has been 
found inversely correlated with melanoma malignancies, sug-
gesting its potential role in cancer development and metasta-
sis[175, 182].

Targeting deorphanized GPCRs also in combination with 
well-known anti-cancer agents would be expected to increase 
the effectiveness of the current therapeutical approaches.  In 
this regard, extensive studies are required to completely deci-
pher the biology of these receptors in order to provide the 
basis for the design and use of new drugs in different types of 
human tumors.
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Concluding remarks
Despite GPCRs form the largest superfamily of cell surface 
receptors involved in signal transmission, in clinical practice 
only few anticancer compounds are currently used in order to 
interfere with GPCR-mediated signaling.  Although the role 
played by GPCRs and their ligands in tumor pathophysiol-
ogy is intricate, an increasing body of evidence has recently 
emerged linking indubitably these molecules to the develop-
ment and progression of cancer.  Consequently, GPCRs and 
their downstream-activated effectors represent a rich source of 
potential drug targets for innovative strategies in tumor pre-
vention and treatment.  Next, the identification of the trans-
duction network maps connecting several GPCR-dependent 
signals with other transduction pathways will facilitate further 
investigations regarding the biological potential of these recep-
tors, opening in the mean time a new valuable scenario for the 
discovery of novel anti-cancer therapeutics.  Finally, the ongo-
ing efforts to fully characterize the numerous orphan GPCRs 
will certainly lead in the near future to the identification of 
new targets toward innovative pharmacological strategies in 
cancer patients.
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