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Introduction
Diabetes mellitus is a major contributor to cerebrovascular and 
cardiovascular disease morbidity and mortality worldwide.  
Increased free fatty acid (FFA) levels in the plasma caused 
lipotoxicity, which is a hallmark of diabetes mellitus and leads 
to an increased risk of atherosclerosis and cardiovascular dis-
eases[1–3].  Strong evidence has suggested that elevated FFA 
levels in the plasma enhance the intracellular accumulation 
of diacylglycerol (DAG), which leads to the activation of pro-
tein kinase Cs (PKCs), inhibitor kappaB kinase (IKK), or c-Jun 
N-terminal kinase (JNK), resulting in atherosclerotic plaque 
development and instability[4, 5].  Therefore, the plasma FFA 
and intracellular DAG levels represent selective targets to pre-
vent atherosclerosis.  

Vascular smooth muscle cells (VSMCs) play a pivotal role 

in the initiation and early progression of atherosclerosis and 
plaque rupture[6, 7].  Due to the important function of synthe-
sizing components of the fibrous cap in plaques, VSMCs are 
responsible for promoting plaque stability in advanced athero-
sclerotic lesions.  Published evidence has shown that VSMC 
apoptosis precipitates a number of deleterious consequences 
in atherosclerosis, such as plaque rupture[7–12].  Therefore, anti-
apoptotic therapies for VSMCs may benefit the prevention and 
treatment of atherosclerosis[8, 10].  

Scutellaria baicalensis Georgi (S baicalensis) is a traditional 
Chinese herb (Baikal Skullcap) that is widely used for the 
treatment of inflammation, infection, cancer, hypertension, and 
cardiovascular disease[13, 14].  Wogonin (5,7-dihydroxy-8-meth-
oxyflavone) is a major bioactive component of the flavonoids 
from S baicalensis.  Pharmacological findings have highlighted 
the therapeutic potential regarding the use of plant-derived 
wogonin to modulate endothelial cell and VSMC function for 
the prevention and treatment of atherosclerosis[15–17].  How-
ever, the underlying mechanism is poorly understood.  
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In this study, our results show that wogonin attenuates lipo-
toxicity-induced apoptosis and inhibits endoplasmic reticulum 
(ER) stress by suppressing intracellular DAG accumulation, 
which perturbs the DAG/PKC pathway in cultured VSMCs.  
This novel finding supplies evidence for the potential admin-
istration of wogonin for the treatment of atherosclerosis.  

Materials and methods
Materials and reagents 
Biochemical reagents were obtained from the following 
sources: palmitic acid, tunicamycin, wogonin (C16H12O5) (Fig-
ure 1), 4-phenyl butyric acid (4-PBA) from Sigma (St Louis, 
MO, USA); the anti-CHOP antibody, anti-cleaved caspase-3 
antibody, anti-cleaved caspase-6 antibody, anti-eIF2α anti-
body, anti-phosphorylated-eIF2α Ser51 antibody, anti-Bcl-2 
antibody, anti-Bax antibody, PKC isoform antibody sampler 
kit, and phosphorylated-PKC isoform antibody sampler kit 
from Cell Signaling Technology; and secondary antibodies 
that were conjugated to alkaline phosphatase from Promega.  
The APO-BrdUTM TUNEL Assay Kit was purchased from 
Invitrogen.  The ELISA Kit for DAG was obtained from Uscn 
Life Science, Inc (Wuhan, China).  

Cell culture and treatment
Vascular smooth muscle cells (SV40LT-SMC Clone HEP-SA, 
ATCC CRL-2018™) were cultured in growth medium (Dul-
becco’s modified Eagle’s medium with 4 mmol/L L-glutamine, 
which was adjusted to contain 1.5 g/L sodium bicarbonate 
and 4.5 g/L glucose, 0.2 mg/mL G418, and 10% bovine calf 
serum).  A10 VSMCs (ATCC CRL-1476™) were incubated 
in DMEM (ATCC 30-2002) containing 10% FBS and 1.0 g/L 
sodium bicarbonate.  The culture conditions were 37.0 °C, 95% 
O2, and 5% CO2.  For treatment, the cells were serum-starved 
for 6 h and then incubated with palmitate and/or wogonin 
for the desired exposure time.  The preparation of palmitate 
was as described in our previous study[18].  Briefly, palmitic 
acid was dissolved in ethanol, mixed with 20% BSA and then 
incubated overnight at 4 ºC.  The solution was filtered, stored 
at -20 ºC and used within 2 weeks.  The same concentration of 
ethanol was mixed with 20% BSA and used as a control.  

Western blot analysis 
The cells were lysed with lysis buffer (50 mmol/L Hepes, pH 
7.6, 150 mmol/L NaCl, 1% Triton X-100, 10 mmol/L NaF, 20 
mmol/L sodium pyrophosphate, 20 mmol/L β-glycerol phos-
phate, 1 mmol/L sodium orthovanadate, 10 μg/mL leupeptin, 

10 μg/mL aprotinin, and 1 mmol/L phenylmethanesulfo-
nyl fluoride).  The cell lysates were incubated on ice for 10 
min and then centrifuged at 14 000×g for 10 min at 4 °C.  The 
supernatants were mixed with equal volumes of 2×SDS-PAGE 
sample loading buffer.  After heating at 95 °C for 4 min, the 
proteins were separated using a SDS-PAGE gel, transferred to 
a nitrocellulose membrane, and detected with the aforemen-
tioned antibodies.  

Apoptosis determination
Terminal deoxynucleotidyl transferase-mediated dUTP-
biotin nick end-labeling (TUNEL) was performed to detect 
cells undergoing apoptosis according to the manufacturer's 
protocol.  Briefly, VSMCs were treated with palmitate and/
or wogonin, washed with cold PBS three times and then fixed 
with 1% of paraformaldehyde on ice for 1 h.  After washing 
three times with PBS, the cells were treated with 70% ethanol 
and incubated at -20 °C for 24 h.  The cells were washed with 
wash buffer 3 times and incubated in DNA-labeling solution 
(including terminal deoxynucleotidyl transferase enzyme and 
BrdU triphosphate) at 37 °C for 1 h.  The cells were rinsed with 
PBS, collected by centrifugation, and incubated in anti-BrdU-
staining mix for 45 min at room temperature.  The apoptotic 
nuclei containing nicked DNA were stained brown.  To calcu-
late the apoptosis rate, 1000 nuclei were identified in 20 ran-
dom high power fields per slide.  

Extraction and measurement of DAG
Total DAG levels were measured using an ELISA Assay 
Kit (Uscn Life Science Inc, Wuhan, China) according to the 
manufacturer’s protocol.  Briefly, the serum-starved VSMCs 
(1×106 cells/well in 6-well dishes) were incubated with 
or without different doses of palmitate and/or wogonin 
for the desired time.  Total cell lipids were extracted with 
chloroform:methanol (1:2, v/v) after centrifugation at 5000×g 
for 2 min[19].  The lower chloroform phase was analyzed for 
DAG contents.  

Measurement of reactive oxygen species
Intracellular reactive oxygen species (ROS) production was 
measured using the method of Shaw et al[20].  Briefly, VSMCs 
were plated in a 24-well plate at a density of 2×104 cells/well 
in DMEM, serum-starved for 6 h, and treated with or without 
different doses of palmitate and/or wogonin for the desired 
time.  The cells were washed with modified Eagle’s medium 
without phenol red and incubated in the dark for 10 min in 
Krebs-Ringer solution containing 50 μmol/L DCHF diacetate.  
Changes in fluorescence intensity were determined using an 
Flx-800 microplate fluorescence reader (Bio-Tek Instruments) 
at excitation and emission wavelengths at 485 and 528 nm, 
respectively[19, 20].  

Statistical analysis
Three independent experiments were performed with 
each sample in triplicate.  The data were expressed as the 
mean±SEM.  Statistical analysis was performed using analysis 

Figure 1.  Chemical structure of wogonin.
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of variance followed by Student’s t-test for paired data.  P<0.05 
was considered significant.  The figures are representative of 
at least three independent experiments with similar results.

Results
Effects of wogonin on palmitate-induced apoptosis
Wogonin modulates endothelial cell and VSMC functions to 
promote its anti-atherosclerotic effects[15–17].  Considering the 
pivotal roles of VSMC apoptosis[7–12] and the elevated plasma 
FFA levels[4, 5] in atherosclerotic plaque ruptures, we investi-
gated the potential effects of wogonin on palmitate-induced 
VSMC apoptosis.  The serum-starved VSMCs were treated 
with different doses of wogonin for the desired time in the 
presence of 0.75 mmol/L palmitate for 24 h.  As shown in Fig-
ure 2A and 2B, wogonin significantly attenuated the palmitate-
induced apoptosis in a dose- and time-dependent manner.  We 
evaluated the expression levels of cleaved caspase-3 and cas-
pase-6 because activation of the caspase-3 pathway is a hall-
mark of apoptosis[21–23].  We found that wogonin inhibited the 
expression of cleaved caspase-3 and caspase-6 in a dose- and 
time-dependent manner in VSMCs that were pre-treated with 
0.75 mmol/L palmitate (Figure 2C and 2D).  The anti-apop-
totic Bcl-2 and pro-apoptotic Bax proteins are among many 
key regulators of apoptosis.  Therefore, we investigated the 
effects of wogonin on these regulatory proteins.  We treated 
A10 VSMCs with 0.75 mmol/L palmitate for 12 h followed by 
treatment with 25 µmol/L wogonin for an additional 12 h.  We 
found that wogonin restored Bcl-2 expression and decreased 
Bax expression, which consequently restored the ratio of Bcl-2 
to Bax (Figure 3).  These data suggest that wogonin protects 
VSMCs from palmitate-induced apoptosis.  

Effects of wogonin on palmitate-induced ER stress
To identify the signaling pathway that initialized apopto-
sis, VSMCs were serum-starved by culturing in serum-free 
medium.  Serum-starved VSMCs were treated with wogonin 
in a dose- and time-dependent manner in culture medium 
with 0.75 mmol/L palmitate.  The levels of CHOP expres-
sion and eIF2α phosphorylation for these cells were analyzed 
using the Western blot analysis as stated under the Materi-
als and methods.  As shown in Figure 4A and 4B, palmitate-
induced CHOP expression and eIF2α phosphorylation were 
suppressed by wogonin in a dose- and time-dependent 
manner similar to that observed in wogonin-mediated sup-
pression of cleaved caspase-3 and caspase-6 expression and 
apoptosis.  Apoptosis is initialized by extrinsic (activated by 
death ligands), intrinsic (mitochondrial pathway), or ER stress 
pathways[21–23].  We treated VSMCs to discover the potential 
anti-apoptotic effects of wogonin so that we could determine 
whether ER stress mediated the inhibitory effects of wogonin 
on apoptosis.  4-PBA (5 mmol/L) was used to inhibit ER stress 
in A10 VSMCs that were treated with 0.75 mmol/L palmitate 
and/or 25 mmol/L wogonin.  We found that administration 
of 4-PBA significantly decreased the number of apoptotic 
cells in A10 VSMCs that were treated with palmitate and that 
wogonin treatment did not further enhance the inhibitory 

effects (Figure 5).  These data suggest that palmitate-induced 
apoptosis and wogonin-mediated protection against apoptosis 
are mediated by ER stress.  Taken together, these data indicate 
that wogonin promotes anti-apoptotic effects via inhibition of 
ER stress.

Effects of wogonin on palmitate-induced ROS generation
Over-generation of ROS is responsible for apoptosis in FFA-

Figure 2.  Wogonin prevented palmitate-induced apoptosis.  VSMCs were 
cultured in serum-free medium for 6 h and treated with or without 0.75 
mmol/L of palmitate for 12 h, followed by a second treatment with or 
without 10, 25, and 50 µmol/L of wogonin for an additional 12 h (A and 
C) or 25 µmol/L of wogonin for 6, 12, and 24 h (B and D).  (A and B) The 
effects of wogonin on the percentage of apoptotic cells.  Apoptotic cells 
were visualized using TUNEL methods.  eP<0.05; fP<0.01 compared with 
the palmitate-treated group.  (C and D) The effects of wogonin on cleaved 
caspase-3 and caspase-6 expression.  In total, 5 µg/mL of tunicamycin 
(18 h) was used as a positive control.  The expression levels of cleaved 
caspase-3 and caspase-6 were detected using Western blotting.  The 
figures are representative of at least three independent experiments with 
similar results. 
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treated cells[24–27].  We addressed whether wogonin has any 
effects on palmitate-mediated ROS generation.  Serum-starved 
VSMCs were treated with wogonin in a dose- and time-depen-
dent manner in culture medium with 0.75 mmol/L palmitate 
and evaluated to measure ROS generation.  As shown in 
Figure 6A and 6B, ROS generation was increased in cells that 
were treated with palmitate and suppressed after a high dose 
(50 μmol/L) of wogonin treatment (P<0.05) and long exposure 
time (24 h) (P<0.05).  These results indicate that the inhibition 
of ROS generation by wogonin is not a major mechanism for 
its anti-apoptotic effects.

Effects of wogonin on the DAG/PKC pathway
Accumulating evidence suggests that the DAG/PKC path-
way contributes to deleterious consequences in cells, includ-
ing apoptosis in response to FFA administration[28–35].  Based 
on this evidence, we hypothesized that wogonin-mediated 
suppression of apoptosis might counter this mechanism and 
improve cell survival.  To confirm this hypothesis, serum-
starved VSMCs were treated with wogonin in a dose- and 
time-dependent manner in culture medium with 0.75 mmol/L 
of palmitate and evaluated to measure intracellular levels 
of DAG.  As expected, palmitate significantly increased the 
intracellular contents of DAG, which were suppressed by 
wogonin administration (Figure 7A and 7B).  In addition, the 
administration of wogonin at a dose of 25 μmol/L for 24 h 
inhibited palmitate-induced PKC phosphorylation for mul-

Figure 4.  Wogonin inhibited palmitate-induced ER stress.  VSMCs were 
cultured in serum-free medium for 6 h and treated with or without 
differential doses of wogonin for the indicated time in the presence of 0.75 
mmol/L of palmitate or 10 μg/mL of the ER inducer tunicamycin for 24 h.  
(A) Dose course.  In total, 10, 25, or 50 µmol/L of wogonin was added 
to the culture medium for 24 h.  (B) Time course.  In total, 50 μmol/L of 
wogonin was added to the culture medium for 6, 12, or 24 h. Western 
blot was performed to detect the expression levels of CHOP, elF2α, and 
phosphorylated elF2α.  The figures are representative of at least three 
independent experiments with similar results.

Figure 3.  Wogonin restored the ratio of Bcl-2 to Bax.  A10 VSMCs were 
cultured in serum-free medium for 6 h and treated with 0.75 mmol/L of 
palmitate (PA) for 12 h, followed by a second treatment with or without 
25 µmol/L of wogonin for an additional 12 h.  (A) Bcl-2 and Bax protein 
expression.  (B) Bar graph for the ratio of Bcl-2 to Bax. Western blot was 
performed to detect the expression levels of Bcl-2 and Bax.  The figures 
are representative of at least three independent experiments with similar 
results.  cP<0.01 compared with the control group.  fP<0.01 compared 
with the palmitate-treated group.  

Figure 5.  The effects of combined treatment of 4-PBA and wogonin on 
apoptosis.  A10 VSMCs were cultured in serum-free medium for 6 h and 
treated with or without 4-PBA (5 mmol/L) for 1 h, followed by treatment 
with or without 25 µmol/L of wogonin for 12 h in the presence of 0.75 
mmol/L of palmitate (PA) for 24 h.  (A) CHOP and cleaved caspase-3 
protein expression.  (B) Bar graph for percentage of apoptotic cells. 
Western blot was performed to detect the expression levels of CHOP 
and cleaved caspase-3.  The figures are representative of at least three 
independent experiments with similar results.  cP<0.01 compared with the 
control group; fP<0.01 compared with the palmitate-treated group.  
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tiple PKC-isozymes (Figure 7C).  These observations suggest 
that wogonin inhibits the DAG/PKC pathway, and attenuates 
apoptosis when combined with palmitate treatment.

Discussion
In this study, we demonstrate a protective effect of wogonin 
on palmitate-induced VSMC apoptosis.  Palmitate-induced 
apoptosis of VSMCs was attenuated by wogonin administra-
tion in a dose- and time-dependent manner.  The administra-
tion of wogonin inhibits the DAG/PKC pathway by down-
regulating intracellular DAG accumulation and attenuating 
ER stress.  

It is well documented that obese and diabetic patients have 
increased FFA levels, which induce atherosclerotic vascu-
lar disease.  Previous studies have shown that even minute 
increases in plasma FFA may initiate early vascular abnor-
malities that promote atherosclerosis and cardiovascular dis-
ease (CVD)[1].  The most abundant saturated fatty acid in the 
plasma is palmitate.  Studies have indicated that palmitate is 
involved in atherogenesis by increasing the extent of plaque 
formation (or plaque score)[36] and inducing extracellular 
matrix alterations[37].  In this study, we found that the admin-
istration of palmitate induced VSMC apoptosis (Figure 2).  
VSMCs synthesize components of the fibrous cap in plaques.  

Therefore, VSMC apoptosis may result in plaque ruptures[7–12].  
Our results indicate a potential mechanism for FFA-induced 
plaque rupture.  

Apoptosis can be initialized through an extrinsic pathway 
that is activated via death ligands, the intrinsic pathway (mito-
chondrial pathway), or the ER stress pathway that converges 
on the activation of caspase-3[21–23].  Our results confirm that 
palmitate significantly increases CHOP protein expression and 

Figure 6.  Wogonin suppressed palmitate-induced ROS generation.  
VSMCs were cultured in serum-free medium for 6 h and treated with or 
without different doses of wogonin for the indicated time in the presence 
of 0.75 mmol/L of palmitate for 24 h.  (A) Dose course.  In total, 10, 25, 
or 50 µmol/L of wogonin was added to the culture medium for 24 h.  (B) 
Time course.  In total, 50 μmol/L of wogonin was added to the culture 
medium for 6, 12, or 24 h.  The production of ROS was determined as 
described in the Materials and methods section.  eP<0.05, fP<0.01 
compared with the palmitate-treated group.  

Figure 7.  Wogonin ameliorated intracellular DAG accumulation and 
attenuated PKC phosphorylation.  (A and B) VSMCs were cultured in 
serum-free medium for 6 h and treated with or without 0.75 mmol/L of 
palmitate for 12 h, followed by a second treatment with or without 10, 
25, and 50 µmol/L of wogonin for an additional 12 h (A) or 25 µmol/L of 
wogonin for 6, 12, and 24 h (B).  DAG content in the cells was determined 
as described in the Materials and methods section.  eP<0.05, fP<0.01 
compared with the palmitate-treated group.  (C) VSMCs were cultured 
in serum-free medium for 6 h and treated with or without 25 μmol/L of 
wogonin for 12 h in the presence of 0.75 mmol/L of palmitate for 24 h.  
Western blot analysis was performed to detect the expression levels of 
total and phosphorylated PKC isoforms.  The figures are representative of 
at least three independent experiments with similar results.  
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eIF2α phosphorylation (Figure 4).
We detected the increased expression of cleaved caspase-3 

and caspase-6 (Figure 2), and the decreased ratio of anti-
apoptotic protein Bcl-2 to pro-apoptotic protein Bax (Figure 
3).  Furthermore, the ER stress inhibitor 4-PBA prevented 
palmitate-induced apoptosis (Figure 5), which indicated that 
palmitate-induced apoptosis of VSMCs was mediated by ER 
stress.  These data are congruent with previous studies show-
ing that palmitate is a potent inducer of ER stress[38].  Recent 
evidence shows that atherosclerosis is associated with ER dys-
function and the accumulation of unfolded proteins[39–43].  Sup-
pressing ER-stress signaling significantly attenuates acceler-
ated atherogenesis[40].  The results of the current study suggest 
that increased FFA levels enhance ER stress, which may be an 
important risk factor in the induction of VSMC apoptosis in 
atherosclerosis.  

Wogonin has recently been shown to be toxic in malignant 
cells but has no or little toxicity in normal cells[44–46].  Wogonin 
selectively induces apoptosis in tumor cells but has protec-
tive effects on glucocorticoid-induced apoptosis in normal rat 
thymocytes[46].  This selective antitumor function is largely 
due to its abilities to reduce inflammation, scavenge oxidative 
radicals, attenuate NF-ĸB activity, inhibit several genes that 
are important for regulation of the cell cycle, suppress COX-2 
gene expression, block NO, and prevent viral infections[13, 47–49].  
Our results demonstrate that wogonin attenuates palmitate-
induced apoptosis of VSMCs in a dose- and time-dependent 
manner (Figure 2), which is accompanied by the suppres-
sion of ER stress (Figure 4).  When ER stress was inhibited by 
4-PBA, the administration of wogonin did not enhance its pro-
tective effects on apoptosis (Figure 5).  Therefore, these data 
confirm that the inhibitory effects of wogonin on apoptosis are 
mediated by the suppression of ER stress.  

ER and oxidative stresses are common manifestations in 
cells that are treated with FFA.  The effect of FFA on ROS 
production has been examined in numerous cell types[50, 51].  
ER stress and ROS are proposed to be involved in cell death.  
Nevertheless, their relative involvements in the processes lead-
ing to cell apoptosis are not well elucidated.  Research groups 
have confirmed that over-generation of intracellular ROS 
might induce apoptosis in endothelial cells, beta cells, and reti-
nal pericytes[24–27].  In contrast, some data shows that apoptosis 
may not be caused by increased ROS in VSMCs and neonatal 
cardiomyocytes that are incubated with palmitate[52, 53].  Our 
results show that palmitate increases ROS generation (Figure 
6).  Although the administration of wogonin at doses of 10 
μmol/L and 25 μmol/L significantly reduced apoptosis (Fig-
ure 2), no effects where observed on ROS generation (Figure 
6).  These results suggest that palmitate-induced ROS genera-
tion may not be the major cause of apoptosis in VSMCs.  

Furthermore, we found that palmitate increased the intra-
cellular accumulation of DAG and consequently enhanced 
PKC phosphorylation (Figure 7).  This result coincides with 
previous studies showing that saturated non-esterified fatty 
acids stimulate an increase in de novo intramuscular synthesis 
and accumulation of DAG[31, 32] and the subsequent activation 

of PKCs[28–30, 33–35].  Our results show that pre-treatment with 
wogonin significantly reduces the intracellular DAG levels 
and attenuates PKC phosphorylation (Figure 7).  Because acti-
vated PKCs may contribute to altered cellular functions such 
as regulating signaling function of the ER[54, 55] and enhanc-
ing ROS production[51], our data suggest that the DAG/PKC 
pathway mediates palmitate-induced apoptosis and over-
generated ROS production in VSMCs, and that wogonin ame-
liorates palmitate-induced ER stress by inhibiting the DAG-
PKC pathway.  

In conclusion, we provide novel evidence that wogonin 
attenuates lipotoxicity-induced apoptosis by suppressing 
intracellular DAG accumulation and inhibiting PKC phospho-
rylation in cultured VSMCs.  However, further studies are nec-
essary to determine whether the administration of wogonin 
will protect in vivo VSMCs from apoptosis and the subsequent 
rupture of advanced atherosclerotic plaques.  Additional 
research into wogonin is also required to investigate the 
underlying mechanisms that suppress intracellular DAG accu-
mulation in VSMCs.
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