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Introduction
The neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) 
mediates many of physiological responses and pathological 
processes in both the peripheral and central nervous system 
and has diverse effects on appetite, sleep and general metabo-
lism[1].  The dysfunction of serotoninergic neurotransmission 
causes many psychiatric disorders such as depression, anxi-
ety and migraine[2].  Serotonin exerts its functions primarily 
by interacting with different types of serotonin receptors 
(5-HT receptors)[3–6].  The 5-HT receptors are a subfamily of G 
protein-coupled receptors (GPCRs) with the exception of the 
5-HT3 subtype, which is a ligand-gated ion channel[7].  At least 
14 distinct 5-HT receptors have been identified to date that 
can be divided into seven subtypes (5-HT1~5-HT7) based on 
the molecular cloning, amino acid sequence, pharmacologi-
cal properties and signal transduction[8].  The 5-HT1A recep-
tor, which is mainly distributed in the frontal cortex, septum, 
amygdala, hippocampus, and hypothalamus[9, 10], is one of 

the best characterized members in the family and is a crucial 
modulator of serotonergic signaling in the central nervous sys-
tem[11].  

Accumulating results indicate that the 5-HT1A receptor 
participates in the regulation of various physiological and 
pathophysiological processes such as psychosis, cognition, 
feeding/satiety, temperature regulation, depression, anxiety, 
sleep, pain perception and sexual activity[12, 13].  It has become 
one of the most attractive targets for the development of drugs 
treating numerous neurological and psychiatric disorders.  
Currently, five drugs primarily targeting this receptor have 
already been launched, and dozens of others are in various 
clinical stages.  Among these launched drugs, buspirone is 
the earliest 5-HT1A receptor agonist that was launched in 1985 
by Bristol-Myers Squibb (BMS) for the management of anxi-
ety disorders.  Although no 5-HT1A antagonists have been 
launched, previous studies have shown that 5-HT1A receptor 
antagonists may be useful in the treatment of Alzheimer’s 
disease and other cognition disorders[14].  In view of the signifi-
cant differences in physiological functions between the 5-HT1A 
receptor agonists and antagonists, identification of agonistic or 
antagonistic properties of 5-HT1A receptor ligands has become 
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an important issue for drug development.
Some experimental methods have been established to 

identify the function of known ligands[15, 16].  However, these 
methods are time-consuming or expensive.  Furthermore, the 
assays cannot be employed unless a compound is available.  
Therefore, a reliable computational model would be beneficial 
to accurately predict the physiological function of a compound 
before it is synthesized.  To the best of our knowledge, no such 
model has been reported to date.  

In this study, a genetic algorithm optimized the support 
vector machine (GA-SVM) method was adopted to construct 
a computational model for the identification of agonists or 
antagonists of the 5-HT1A receptor using 259 agonists and 
antagonists collected from the literatures.  The constructed 
SVM model displayed high predictive accuracy for training 
and test sets.  The application of the model to an external data-
set that comprised 25 recently reported ligands revealed that 
our predicted data were in good agreement with their biologi-
cal functions of the reported ligands, demonstrating that our 
model was reliable for identifying agonists and antagonists of 
the 5-HT1A receptor.  This approach may also be employed to 
construct models to predict agonists or antagonists of other 
GPCR members.

Materials and methods
Data sets 
A total of 259 5-HT1A receptor ligands were collected from pre-
vious studies[1, 15–47], which are composed of 137 agonists and 
122 antagonists with diverse structural classes such as amino-
tetralins, indolylalkylamines, ergolines, aporphines, arylpip-
erazines and aryloxyalkylamines (Tables S1 and S2 in Supple-
mentary Information).  Because we aimed to build a binary 
classifier, the partial agonists of the 5-HT1A receptor were clas-
sified as agonists.  When provided with biological data con-
taining conflicting information for the same compound from 
different research groups, we used the latest results or the 
results from the research group with a long history of study-
ing 5-HT1A receptor ligands as our raw data.  All of the 259 
function-known ligands were randomly divided into training 
and test sets with the ratio of 4:1 (207:52) (Table 1).  The train-
ing set was used to develop the prediction model, whereas the 
test set was used to assess the performance of the generated 
model.  The structures of these compounds were created and 
optimized using Sybyl6.8[48].  

Support vector machine
The support vector machine (SVM), which was originally 

developed by Vladimir Vapnik et al, is based on the structural 
risk minimization principle from the statistical learning theory 
and is a supervised learning method that can be applied to 
classification and regression[49].  Simply speaking, a SVM 
model is constructed based on a given set of training inputs 
belonging to two different classes.  Then, the model is used 
to predict the class of a new input.  A data input is regarded 
as a multi-dimensional vector, and the goal is to determine 
a hyperplane to separate the inputs, which are the sets of 
agonists or antagonists in this study.  In particular, the popu-
lar Library for Support Vector Machines (LIBSVM2.89) was 
employed in this study[50].

There are two parameters, C and r, that must be carefully 
adjusted to develop a robust SVM model.  C is a global param-
eter, which regulates the trade-off between maximization of 
the margin and minimization of the training error.  Small C 
values are prone to highlight the margin and overlook the 
outliers in the training set.  However, large C values may lead 
to overfitting of the training set.  The parameter r indicates the 
radial basis function (RBF), which is the kernel function used 
in this study[51].  Here, we optimized the value of C and r using 
our in-house method (detailed below) to build the best classifi-
cation model.

Molecular descriptors
Molecular descriptors are generally used for quantitative 
representation of the structural and physicochemical features 
of compounds[52, 53].  Depending on the 3D structure of each 
compound, 292 molecular descriptors including topological, 
graph-theoretical, quantum-chemical and electro-topological 
state (E-state) descriptors were calculated using Discovery 
Studio 2.1[54].  In addition, the value of every descriptor was 
scaled to [-1, 1] (see Supplementary Information, Excel S1).

Feature selection and parameter optimization
Usually, only a few of the calculated molecular descriptors are 
essential to develop a SVM model.  To select the most impor-
tant descriptors and optimize model parameters simultane-
ously, an in-house program was coded in our laboratory using 
genetic algorithm (GA)[55].  GA is a method that randomly ini-
tializes a population of solutions and then improves it through 
repetitive operations of mutation, crossover and selection.  
Each possible solution is referred to as a chromosome, which 
consists of two parts, the feature mask and the SVM parame-
ters (C and r).  The value of the feature mask is 0 or 1, where 0 
represents the corresponding descriptor is abandoned while 1 
indicates to keep the descriptor.  Although the value of C and 
r are real numbers, only specific discrete values were consid-
ered in this study, where C and r were represented as 2m and 
2n with m and n integers.  

When developing the classification model, 5-fold cross-
validation was adopted to explore the reliability of the sta-
tistical models.  The training set of 207 ligands in this study 
was randomly split into five subsets of approximately equal 
size.  In each validation, one subset was used for test while the 
rest four were used for training the model.  This process was 

Table 1.  Number of agonists and antagonists in training set and test set. 

Data sets      Number of agonists    Number of antagonists    Total number 
 
Training set 109 98 207
Test set   28 24   52 
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repeated five times so that each subset could be used for the 
prediction once.

Model validation
After the model was built, we adopted different means to 
evaluate its performance.  Receiver-operating-characteristics 
(ROC) curve is generally used to assess the classification 
power of computational models[56, 57].  To plot a ROC curve, 
only the true positive rate (TPR) and false positive rate (FPR) 
were required.  TPR, which is also called sensitivity and is 
calculated with equation (1), defines how many true positive 
results appear among all of the positive inputs during predic-
tion.  Instead, FPR determines how many false positive results 
emerge among all of the negative inputs.  FPR is equal to (1– 
specificity), where the specificity is calculated with equation 
(2).

In these equations, TP represents the number of correctly 
predicted agonists, TN represents the number of correctly pre-
dicted antagonists, FP represents the number of antagonists 
that are incorrectly predicted as agonists and FN represents 
the number of agonists that are incorrectly predicted as antag-
onists.

The quality of our SVM model was also measured using the 
Matthews correlation coefficient (MCC), which is defined by 
equation (3)[58, 59].  It returns a value between –1 (worst model) 
and 1 (perfect model) while 0 represents a random model.  

                                             (3)

To fully examine the performance of the developed model, the 

overall accuracy is calculated using equation (4).

Results
Feature selection and model performance
Using our in-house feature selection program, 13 descriptors 
were finally selected (Table 2), which was roughly divided into 
five classes.  The optimized values of C and r were both 1 in 
the SVM model with a cross-validation r2 of 0.826.  As shown 
in Table 3 (before refinement), the overall predictive accuracy, 
sensitivity and specificity for training and test sets were all 
higher than 0.8, indicating that the developed model was reli-
able and robust.  Indeed, the calculated MCC was 0.783 for the 
model.

To view the results more intuitively, the quality of the 
results was illustrated using ROC plots (Figure 1).  The (0,1) 
point in the upper left corner of the ROC space represented 
100% sensitivity (no false negatives) and 100% specificity (no 
false positives).  A random classifier would give us a diago-
nal line (the so-called line of no-discrimination) from the left 
bottom to the top right corner.  Finally, we explored another 
parameter that was represented as the Area-Under-the-ROC-
Curve (AUC).  The AUC values for the training and test sets 
were 0.883 and 0.906, respectively.

Model refinement
To further improve the performance of the developed model, 
the probability estimate factor was used as a criterion to 
remove those ambiguous compounds with a threshold of 
the factor less than 0.7.  Thus, two probability estimates, 
namely agonist probability estimate and antagonist prob-
ability estimate, were calculated for each compound, and the 
sum of them was equal to 1.  The larger probability estimate 

Sensitivity=     TP                                         (1)                     TP+FN 

Specificity=    TN                                          (2)                    TN+FP 

Accuracy=         TP+TN                                  (4)                   TP+FP+TN+FN

Table 2.  List of optimized 13 molecular descriptors used in the SVM and their descriptions and classes.

                         
Descriptor                                                                                                Description

                                                          Descriptor
                                                                                                                                                                                                                                                   Class 
 
 HOMO_Eigenvalue_VAMP The eigenvalue of the highest occupied molecular orbital A
 QsumHal_Propgen_VAMP The sum of the electrostatic potential-derived atomic charges on halogen atoms A
 No_of_surface_points_with _+ve_ESP_Propgen_VAMP The number of surface points with positive electrostatic potential A
 Octupole_XXY_VAMP The XXY component of octupole moment A
 ES_Sum_sssCH The sum of the electrotopological state value for atom type sssCH B
 ES_Sum_aaaC The sum of the electrotopological state value for atom type aaaC B
 ES_Sum_dsN The sum of the electrotopological state value for atom type dsN B
 ES_Sum_aaN The sum of the electrotopological state value for atom type aaN B
 ES_Sum_sssN The sum of the electrotopological state value for atom type sssN B
 Num_Aromatic Bonds Bonds in aromatic ring systems C 
 Energy The energy of the molecule's current 3D conformation D
 Shadow_XZ The area of the molecular shadow in the xz plane E
 Shadow_YZ The area of the molecular shadow in the yz plane E

A, semi-empirical quantum mechanical properties (VAMP optimized with AM1, propgen method); B, estate keys (s, sing bond; d, double bond; t, triple 
bond; a, aromatic bond); C, molecular property counts; D, molecular properties; E, shadow indices.
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is regarded as the probability estimate factor of a specific 
compound.  Figure 2 shows the probability estimate distribu-
tion for compounds in the training and test sets.  There were 
195 compounds in the training set and 41 compounds in the 
test set that remained in the refined datasets, demonstrating 
that the majority of the compounds had a probability estimate 
higher than 0.7.  Then we reevaluated our model using the 
refined datasets, which yielded an improved accuracy, sensi-
tivity and specificity (>0.9, after refinement in Table 3).  

Application of the SVM model to an external dataset
To validate the reliability of our SVM model for identifying 
agonists and antagonists of the 5-HT1A receptor, we applied 
the model to an external dataset including 25 ligands that 
were collected from very recently published literatures.  In 
conclusion, 15 compounds were predicted to be antagonists, 
and 3 compounds were predicted as agonists with probability 
estimate higher than 0.7 (Table 4).

Discussion
As shown in Table 2, 13 molecular descriptors were selected 
as the most relevant descriptors for discriminating between 
5-HT1A receptor agonists and antagonists, including VAMP/
AM1 semi-empirical quantum-chemical, electro-topological 
state (E-state), molecular property and shadow index descrip-
tors.  Several selected descriptors reflected the corresponding 
structural information that was closely related to the func-
tion of these ligands.  For example, the E-state indices were 
efficient descriptors to describe the affinity of 5-HT1A receptor 
antagonists[60].  Our results demonstrate that another impor-
tant descriptor, the “number of surface points with positive 
electrostatic potential”, is in agreement with the data that most 
of the agonists or antagonists of 5-HT1A receptor are positively 
charged.  None of the descriptors alone could completely 
describe the differences between agonists and antagonists.  
However, the collective use of the descriptors yielded a more 
accurate model.  Thus, a group of diverse, comprehensive and 
representative descriptors were used to develop a powerful 
SVM model which could effectively distinguish agonists from 
antagonists of 5-HT1A receptor.

Another highlight of our study was the consideration of the 
probability estimate factor while establishing the SVM model.  
For example, an agonist with the probability estimate of 0.9 is 
more likely to be an agonist than the one with the probability 
of 0.6, which is also true for antagonists.  Based on the prob-
ability estimate distribution for the compounds of the training 
set, the threshold of the probability estimate was set to 0.7 
for more reliable classification.  Then, the compounds with 
probability estimate less than 0.7 were removed from training 
and test sets.  The predictive accuracy for the refined datasets 
was significantly increased, especially for the test set, from 
0.865 to 0.927.  These results demonstrate an improved predic-
tive power after introducing the probability estimate factor.  
Moreover, differences in accuracy, sensitivity, and specific-

Table 3.  The value of accuracy, sensitivity and specificity before and after 
refinement.

  
Parameters

      Before refinement                    After refinement
                  training set          test set         training set      test set
 
 Accuracy  0.942 0.865 0.954 0.927
 Sensitivity  0.936 0.893 0.943 0.917
 Specificity  0.949 0.833 0.967 0.941

Figure 2.  Probability estimate for training set (white) and test set (black).  
There are only 12 ligands with probability estimate lower than 0.7 among 
all 207 ligands in training set, so the threshold of probability estimate 
factor is chosen to be 0.7.  Moreover, the probability estimate of 11 
ligands from test set are less than this threshold, indicating that the 
predicted result may be unreliable.

Figure 1.  ROC curves for training set (A) and test set (B).  The solid line 
represents ROC curve and the area under the curve is characterized 
by AUC, whose value for training set and test set are 0.883 and 0.906, 
respectively.  The dash line is diagonal line, which describes a random 
model.
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ity between the training and test sets after refinement were 
much smaller than those before refinement, suggesting that a 
more balanced model between the training and test sets was 
achieved.  

The probability estimate is an important parameter for 
judging the reliability of the predicted result.  For instance, 
HT01~HT10, a series of carboxamide and sulfonamide alkyl[61], 
were predicted to be antagonists with high probability.  
Indeed, they are structurally similar to WAY-100635 (Figure 
3), a well-known antagonist of the 5-HT1A receptor, indicat-
ing that HT01~HT10 are likely to function as antagonists of 
the 5-HT1A receptor.  These results show that our SVM model 
has an instructive role for exploring agonists and antagonists 
of the 5-HT1A receptor.  Besides, a group of newly discovered 
N-phenylpiperazine derivatives, HT11~HT17, were predicted 
to function as agonists or antagonists with high probability 
estimate.  For example, compound HT13 was predicted to be 
an agonist by our model, which was also believed to stimu-
late 5-HT1A receptor activity like an agonist by other research 
group[62], indicating that similar structures may play different 

roles in regulating the function of the receptor.
On the other hand, those compounds with only moder-

ate or poor 5-HT1A receptor affinity in biological tests were 
predicted to be binders with lower probability estimates.  For 
instance, the probability estimates of compounds HT18~HT22, 
which are weaker binders[63], were approximately 0.7.  There-
fore, further biological research on these compounds may not 
be urgent.  Similarly, the predicted results for compounds 
HT23~HT25 with lower probability estimates are contrary 
to the known biological functions.  Actually, they had been 
proved to be weak agonists or partial agonists of the 5-HT1A 
receptor[63].  These conflicts indicate that our SVM model may 
have problems with applicability of chemical space similar to 
other computational models and requires further optimiza-
tion.  

In summary, based on 13 molecular descriptors that were 
derived from previously known agonists and antagonists, we 
developed a robust SVM model with great predictive capabil-
ity.  Moreover, the predictive accuracy for the training and test 
sets (especially for the test set) were significantly increased 
when we considered the compounds with probability estimate 
higher than 0.7.  Then we applied the model to an external 
dataset for validation, which confirmed that our GA-SVM 
method is effective for the classification of agonists and antag-
onists of the 5-HT1A receptor.  The strategy and methods used 
in this study may be extended to other GPCR members.  

Table 4.  Detailed predicted results of 25 external compounds.

Compound           Predicted             Probability              
Ki (nM)d      Name in

  name               result      estimate                   reference
 
 HT01 antagonist 0.839       1.69   1a

 HT02 antagonist 0.918       5.19   2a

 HT03 antagonist 0.868       4.59   3a

 HT04 antagonist 0.789       4.64   4a

 HT05 antagonist 0.849       2.75   5a

 HT06 antagonist 0.870       4.1   6a

 HT07 antagonist 0.833     11.1   7a

 HT08 antagonist 0.678       8.53   8a

 HT09 antagonist 0.806       6.15   9a

 HT10 antagonist 0.790       2.87 10a

 HT11 antagonist 0.868   480   5b

 HT12 agonist 0.844   120   8b

 HT13 agonist 0.843     60 10b

 HT14 antagonist 0.846   890 16b

 HT15 antagonist 0.781 7980 19b

 HT16 antagonist 0.872 2780 21b

 HT17 agonist 0.848 4210 23b

 HT18 agonist 0.532      36.1 17c

 HT19 antagonist 0.660   NAe 23c

 HT20 antagonist 0.666   NAe 27c

 HT21 antagonist 0.704     41.5 29c

 HT22 antagonist 0.647   NAe 33c

 HT23 antagonist 0.585     12.7 38c

 HT24 antagonist 0.708     11 40c

 HT25 antagonist 0.612       5.14 42c

a Compounds collected from reference 61.
b Compounds collected from reference 62.
c Compounds collected from reference 63.
d Data retrieved from the corresponding reference.
e No activity data was detected.

Figure 3.  Chemical structures of WAY-100635 (A) and compounds 
HT01~HT10 (B).  As shown, they are structurally similar, all of them 
contain ing a [4-(2-methoxyphenyl)-1-piperazinyl]ethyl structure fragment.  
WAY-100635 is believed to act as a selective 5-HT1A receptor antagonist, 
so compounds HT01~HT10 may also be antagonists of 5-HT1A receptor.
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