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Role of angiogenesis in bone engineering
In bone, the connection between cells and blood vessels is 
required to maintain skeletal integrity.  In tissue engineering, 
a vessel network is an essential pre-requisite for scaffolds to 
survive and integrate with existing host tissue.  

Activators and inhibitors of angiogenesis
Vascular development is a co-ordinated process through three 
major steps, regulating (1) sprouting of endothelial cells (ECs) 
from mature vessels, (2) assembly of vessels to vascular struc-
tures and (3) vessel maturation and subsequent induction of 
quiescence[1].  Each of these steps is regulated by molecules 
acting on specific vascular receptors.  Sprouting is induced 
by vascular endothelial growth factor (VEGF)[2], which is pro-
duced by monocytes and macrophages migrated to the site 
of the tissue lesion and stimulated by hypoxia.  Vessel cells 
become sensitive to VEGF after the hypoxia-induced bond of 
angiopoietin-2 to the endothelial receptor tyrosine kinase Tie-
2.  VEGF binds to receptors VEGFR-1 (Flt-1) and VEGFR-2 
(Flk-1/KDR) on EC membrane.  Assembly of vessels to vas-
cular structures is regulated by the ephrin ligands and ephrin 
receptor tyrosine kinases, which mediate cell-contact-depen-
dent signalling[3].  Angiopoietins[4] and Tie-1 and -2 receptors[5] 

regulate blood vessel maturation too.  Angiogenesis is also 
modulated by other growth factors (GFs), cytokines, enzymes 
and integrins, such as fibroblast growth factor 2 (FGF-2)[6], 
hepatocyte growth factor/scatter factor[7], platelet derived 
growth factor (PDGF)[8], interluekin-8 (IL-8)[9], IL-3[10], αvβ3-
integrin[11] and matrix metalloproteinases (MMPs)[12], which 
degrade extracellular matrix (ECM) facilitating EC migration.  

Angiogenesis and bone 
In bone, microvessels are essential for bone formation, 
metabolism, healing and remodelling.  Osteoprogenitors are 
always located near blood vessels.  Sinusoids surrounded by 
reticular cells secrete high amounts of chemokine CXCL12 or 
stromal cell-derived factor-1 (SDF-1), which is required for the 
maintenance of human stem cells[13].  Both intramembraneous 
and endochondral bone ossification occur in close proximity 
to vascular ingrowth.  In intramembranous ossification there 
is an invasion of capillaries that transport marrow stromal 
cells (MSCs), which differentiate into osteoblasts and in turn 
deposit bone matrix.  In endochondral ossification the avascu-
lar cartilage template is replaced by highly vascularized bone 
tissue.  The immature and proliferating chondrocytes secrete 
angiogenic inhibitors, while hypertrophic chondrocytes pro-
duce angiogenic stimulators, such as VEGF, fibroblast growth 
factor (FGF)-1 and FGF-2, thus providing a target for capillary 
invasion and angiogenesis.  Hypertrophic chondrocytes and 
migrating cells from the newly formed bone marrow secrete 
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metalloproteinases (MMPs), which in turn degrade extracel-
lular matrix (ECM), thus permitting vessel invasion.  MMP-9 
regulates also the release of VEGF-A bound to the hypertro-
phic cartilage matrix.  Once released, VEGF-A binds to its 
receptors on endothelial cells, osteoclasts and osteoblasts[14].  
The new vasculature supplies a conduit for the recruitment of 
cells involved in cartilage resorption and bone deposition[15].  
ECs produce GFs which contribute to recruit stem cells and to 
address them towards osteoblast differentiation.  

Blood vessels play a crucial role in both phases of bone 
remodelling.  In bone resorption, vessels transport osteoclast 
precursors to the sites of remodelling[16].  In bone deposition, 
vessels transport osteoprogenitor cells[17].  According to their 
phenotype, ECs produce molecules modulating bone remod-
elling, such as RANKL, osteoprotegerin (OPG), IL-6, PDGF, 
transforming growth factor-β (TGF-β), and others.  

Angiogenesis is fundamental for fracture repair.  One of 
the earliest events during bone healing is the reconstruction 
of intraosseous circulation[18].  Following trauma, disruption 
of vessels leads to acute hypoxia of the surrounding tissue, 
as well as to clotting activation.  The inflammatory response 
activates cytokines and GFs that recruit MSCs and ECs to the 
fracture site.  The latter produce PDGF-BB, which contributes 
to MSC recruitment[19].  Lack of angiogenesis is considered as a 
pathogenetic cause of non-unions[20].  

Angiogenic GFs also play roles in bone formation.  VEGF 
seems to play a key role in endochondral ossification[21], where 
its functions are mediated by cbfa-1/runx-2[22].  VEGF produc-
tion is increased by BMP-2, -4, and -6[23], and by TGF-β1[24].  
VEGF-A binds to VEGFR-1 on osteoclasts and induce osteo-
clast recruitment and bone-resorption[25].  FGF-2 stimulates the 
proliferation and differentiation of osteoblasts[26] and acceler-
ates fracture repair when added to the early healing stage[27].  

Relationships between endothelial cells and osteoblasts 
ECs and osteoblasts (OBs) communicate through three mecha-
nisms[28]: 

1. Direct interaction between membrane molecules of the 
two adjacent cells (tight junctions);

2. Gap junction communications that form direct cytoplas-
mic connections between adjacent cells;

3. Secretion of diffusible factors that diffuse freely in the 
extracellular environment and interact with the target cells 
through specific receptors.  

Gap junction communications are mediated by Cx43 on OBs 
and ECs, and by Cx40 on ECs[29, 30].  

Some diffusible factors secreted by ECs favour bone deposi-
tion, such as PDGF-AB, TGF-β1, TGF–β2, FGF-2, epidermal 
growth factor (EGF), OPG, and bone morphogenetic protein 2 
(BMP-2)[31].  When ECs are incubated with a proinflammatory 
stimulus, such as TNF, IL-1β, or endotoxin, they synthesize 
both substances inducing bone healing, such as endothelin-
1[32], and molecules favouring bone resorption, such as IL-6 
and RANK-L[33].  Moreover, ECs may stimulate osteoblasts to 
express ALP[34].  

In turn, MSCs produce angiogenic GFs, such as VEGF, par-

ticularly under hypoxic conditions, FGF-2,  insulin-like growth 
factors (IGF), PDGF, and TGF-β.  VEGF-stimulated ECs 
release prostaglandins that strongly promote VEGF release by 
osteoblasts[35].  ECs co-cultured with OBs show an increased 
production of collagen type I[36].

The interaction between ECs and OBs is variable with time, 
as it was shown in co-cultures onto a scaffold made of starch 
and polycaprolactone.  At early time points ECs formed mono-
layer patches above OBs.  At 21 days, ECs had organized into 
microcapillary-like structures, which were established among 
OBs.  The concentration profile of VEGF during 35 days in 
vitro was characterized by 3 distinct phases: (1) from day 7 to 
14 a steep increase in VEGF concentration; (2) between day 14 
and day 28 a plateau phase and (3) from day 28 until day 35 
a pronounced decrease of VEGF concentration.  In hOB mon-
oculture, the VEGF concentration curve exhibited a steady 
increase at lower magnitude as compared to co-culture until 
day 28 followed by a decrease[37].

The sonic hedgehog (Shh) pathway is involved both in bone 
repair and in neoangiogenesis.  Hedgehog morphogens play 
a pivotal role in embryonic development[38].  There is increas-
ing evidence that the Shh pathway plays a significant role in 
adults both in angiogenesis[39, 40] and in endochondral bone 
formation[41].  

Endothelial cells
ECs are classified into macrovascular and microvascular, 
according to the vessel type.

Human umbilical vein endothelial cells and other macrovascular 
endothelial cells
HUVEC are the most known among macrovascular ECs.  
Other macrovascular ECs were isolated from human saphena 
or from human, bovine or swine aorta or pulmonary artery.  
However, the latter EC types have been scarcely used for the 
evaluation of scaffolds for bone engineering.  Moreover, non-
human ECs show a different behaviour than human cells[42].  

Microvascular endothelial cells
There is evidence that ECs from different organs exhibit differ-
ent responses to stimulants - particularly, macrovascular ECs 
have different properties from microvascular ECs.  

Microvascular endothelial cells (HMVEC) were isolated 
from adipose tissue (ADEC)[43], derma (HDMEC)[44] or lung 
microvessels (HPMEC)[45].  The advantages of ADEC or 
HDMEC consist in more similar properties to bone microves-
sels than HUVEC.  Moreover, in light of a possibile clinical 
application, they may be easily isolated from the same patient 
who will receive the scaffold.  

Endothelial progenitor cells 
EPCs are adult progenitor cells that can differentiate into 
mature ECs[46] and therefore play a physiological role in vessel 
homeostasis[47].  EPCs may be identified through the expres-
sion of three cell markers (CD133, CD34, and VEGFR-2)[48].  
EPCs are mainly located in bone marrow and can be mobilized 



23

www.chinaphar.com
Cenni E et al

Acta Pharmacologica Sinica

npg

into peripheral blood[49], where they are present from 0.01% to 
0.0001% of mononuclear cells (MNCs) in healthy subjects[50].  
In culture, two distinct types of EPCs develop.  The first type, 
named early EPCs[51], appears after 3–5 days, is formed by 
spindle-shaped cells and dies after 4 weeks.  The second type, 
named late EPCs[52] or outgrowth endothelial cells (OECs)
[51], appears after 2–3 weeks, forms a cobblestone monolayer 
and lives for about 12 weeks.  Early EPCs, which derive from 
CD14+ MNCs, are myeloid cells with some endothelial prop-
erties, which stimulate neovascularization by paracrine fac-
tors but are not incorporated in the endothelial lining.  OECs 
derive from CD14- MNCs, have similar properties to mature 
ECs but a higher proliferative ability[53], and are incorporated 
into the endothelial lining of new blood vessels[54].  

One of the most therapeutically interesting features of EPCs 
is their apparently enhanced ability to be incorporated into 
newly forming microvasculature.  Although their concentra-
tion in blood is low, they have been detected in newly formed 
vasculature, contributing about 5%–35% of the endothelial 
cells in new capillaries[55].  In fact, EPCs are mobilized by tissue 
ischemia and cytokines from the bone marrow into peripheral 
blood, migrate to regions of neovascularization, differentiate 
into mature endothelial cells and promote vasculogenesis[56].  
The most known application of EPCs is the promotion of the 
therapeutic neovascularization in myocardial infarction[57] and 
liver disorders[58].  Moreover, it was shown that EPCs develop 
a favorable environment for fracture healing via angiogenesis 
and osteogenesis, through two mechanisms.  One is the osteo-
genic and endothelial differentiation potential of CD34+ cells, 
and the other one is the paracrine effect of CD34+ cells, which 
secrete VEGF[59].  For this reason, EPCs were investigated to 
specifically address the problem of delayed and atrophic non-
unions[60].  

Endothelial cell continuous cell lines
Typically, EC cultures are primary cultures and the prolifera-
tive potiential gradually decreases during passages.  There-
fore continuous cell lines were generated from angiosarco-
mas, or through cell immortalization with viral transfection 
or with fusion with neoplastic lines.  Examples of tumour-
derived endothelial cell lines are ISO-HAS from human 
haemangiosarcoma[61] and HAEND derived from hepatic 
angiosarcoma[62].  Transfection may be obtained with SV40 
virus or with the introduction of human telomerase reverse 
transcriptase (hTERT)[63].  Examples of lines obtained with 
transfection are EVLC2, derived from HUVEC[64], HMEC-1, 
developed by transfection of HDMEC with SV-40 large 
T-antigen[65], and HPMEC-ST1.6R, developed by transfection 
of HPMEC with plasmids encoding the SV-40 large T-antigen 
and human telomerase[66].  

A line obtained from the fusion of ECs with neoplastic cells 
is EA.hy926, which was developed from the fusion of HUVEC 
with human pulmonary adenocarcinoma A549[67].  

The changes resulting in the capacity of cells to replicate 
indefinitely may be accompanied by changes in the expres-
sion of specific endothelial properties, such as the induction 

of inter-cellular adhesion molecule 1 (ICAM-1), vascular cell 
adhesion molecule 1 (VCAM-1) or E-selectin with an inflam-
matory stimulus[68].  Among EA.hy926, EVLC2, HAEND, 
HMEC-1, ISOHAS-1, only HPMEC-ST1.6R exhibited the major 
constitutive and inducible endothelial cell characteristics and 
showed an angiogenic response on Matrigel[69].  

A continuous EC line was isolated from the microvessels 
of bovine foetal sternus[70].  The endothelial phenotype was 
shown by the presence of von Willebrand factor and by the 
ability to form tubular-like structures on Matrigel.  These 
cells display own distinctive characteristics, particularly they 
possess the receptor for estrogens and are able to respond to 
estrogens and parathyroid hormone  (PTH)[71–73].  

Evaluation of the angiogenic potential of the scaffold
Upon graft implantation, inflammation, which represents 
the first phase of tissue repair, favours a vascular response, 
but angiogenesis is generally limited to less than 1 mm from 
the interface implant-host tissue[74].  Moreover, the capillary 
network induced by the inflammatory process is transient 
and regress within a few weeks[75].  Neoformed vessels of the 
implant must anastomose to the systemic circulation[76].  In the 
absence of a vascular supply, the transport of nutrients occurs 
mainly by diffusion, which is only efficient for distances from 
100 to 200 micron or for tissues with a low metabolic activity, 
such as cartilage[77].  The insufficient vascularization compro-
mises the supply of oxygen and nutrients to the new-formed 
tissue and does not remove the waste products of cells[78].  The 
local accumulation of toxic substances may trigger an inflam-
matory reaction[79].  

Therefore the scaffold must not only support the growth of 
the cells that will replace the specific tissue in vivo, but it must 
also support EC adhesion and proliferation, and develop an 
effectively functioning vasculature to supply the cells with 
oxygen and nutrients.  The success of this strategy requires a 
series of consecutive events: a) EC migration to the outer sur-
face of the scaffold, b) EC migration from the outer surface to 
the inner pores of the scaffold, c) EC adhesion to the foreign 
surface and proliferation, d) ECM synthesis, e) tubular struc-
tures formation, f) recruitment of further cell types (smooth 
muscle cells, pericytes, fibroblasts) forming the vessel wall 
and g) anastomosis with the vessels of the surrounding tissue 
(Figure 1).  Moreover, endothelial cells growing on the scaf-
fold should maintain normal functions and should not exhibit 
a pro-inflammatory phenotype.  In order to obtain stable and 
durable vascular networks, ECs require the cooperation with 
perivascular cells.  It was shown that a network of stable and 
functional blood vessels was formed in mice by co-implanta-
tion of vascular ECs and mesenchymal precursor cells[80].

In the light of the critical role of angiogenesis, a preliminary 
step in the evaluation of the scaffold properties should pre-
dict its vascularization potential through the assessment of its 
interaction with ECs.

Endothelial cell seeding
ECs are seeded on the scaffold, which may be pre-condition-
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ated by immersion in culture medium for a few hours.  This 
treatment leads to protein adsorption on the artificial surface, 
and purposes to reproduce the ECM layer to which the cells 
usually adhere to live on.  Cell seeding is favoured by the fol-
lowing technique: to apply a drop of cell suspension on the 
scaffold, to incubate at 37 °C for 15–30 min in a wet chamber 
to allow initial cell attachment, then to add culture medium.  
The scaffold may be coated with gelatin or fibronectin or col-
lagen or pooled serum to favour cell adhesion.

Endothelial cell morphology
Cell morphology can be evaluated before or after staining.  
Immunofluorescence for specific antigens, such as von Wille-
brand factor or CD31, or stain with fluorescent molecules, 
such as calcein-acetoxymethylester[81] or acridine orange, may 
be used.  Cytoskeleton is shown by F-actin stain (Figure 2A) 

or by immunofluorescence for vimentin[82].  VE-cadherin is an 
adhesion molecule that mediates cell-to-cell contact between 
endothelial cells and plays a relevant role in the maintenance 
of vascular integrity[83] (Figure 2B).  The maintenance of VE-
cadherin expression on a scaffold is a good indicator of the 
proper interaction between endothelial cells and the material.  
Fluorescent staining of intracellular organelles may be evalu-
ated by confocal microscopy.  With fluorescence microscopy 
and scanning electron microscopy the relationships between 
cells and scaffold may be investigated, but no information is 
obtained on the biomaterial effects on the synthesis of specific 
molecules.

Adhesion and spreading
The scaffold could affect the synthesis of molecules for 
homotypic adhesion (CD31, VE-cadherin) or of integrin for 
the adhesion to substratum[84].  To favour EC and osteoblast 
adhesion, RGD-peptides were bound to the scaffold.  These 
peptides are formed by the arginine, glutammic acid and 
aspartic acid sequence, which is common to the integrin αvβ3 
ligands[85].  Moreover, the scaffold could decrease the expres-
sion of adhesion molecules for leukocytes (E-selectin, ICAM 
and VCAM) in response to inflammatory stimula or, vice versa, 
could induce their expression also on basal conditions[86].  Cell 
adhesion to the substratum and adhesion molecules are evalu-
ated at fluorescence and confocal microscopy with immuno-
fluorescence staining[87].  

A quantitative method to evaluate the expression of adhe-
sion molecules is an enzyme immunoassay performed directly 
on the cells adherent to the substratum (CAM-EIA)[88].  Flow 
cytometry is another quantitative assay for adhesion mol-
ecules and integrins, but it requires cell detachment, which 
could affect their expression[89].  Moreover, adhesion molecules 
and integrins may be indirectly evaluated with RT-PCR for 
their specific mRNA[90].  

Cell proliferation
The proliferation of endothelial cells on artificial scaffolds may 
be directly determined with vital stains, such as blue alamar[91] 
or calcein-acetoxymethylester[92], without detaching cells.  Ala-
mar changes from blue to pink in proportion to the amount 
of reactions of oxide-reduction of the cells and therefore in 
proportion to the cell number.  Through a standard curve with 
known cell numbers, the cell number of the unknown sample 
grown on the scaffold can be obtained with a good approxi-
mation[93].  Calcein-acetoxymethylester becomes fluorescent 
when taken up by viable cells and the fluorescence is spread 
throughout the cell.  Alternatively the cell number can be eval-
uated with tritiated thymidine[94], MTT[95], or crystal violet[96] 
assays.  

Tubulogenesis
EC grown on the scaffold can be evaluated for their ability to 
form tubular-like structures.  ECs are seeded on an inducing 
matrix, with or without GFs.  This matrix can be used also to 
coat the scaffold.  After a few hours, tubular-like structure 

Figure 1.  Neoangiogenesis on a porous scaffold.

Figure 2.  Immunofluorescent staining of endothelial cells for proteins 
specific for cytoskeleton or for adhesion molecules.  (A) F-actin stain of 
HUVEC.  Actin was stained using rhodamine-phalloidin fluorescent dye.  
Nuclei were stained with Hoechst 33258.  Magnification (×20).  (B) Immu-
nofluorescent staining for VE-cadherin.  Nuclei were stained with Hoechst 
33258.  Magnification (×20).
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formation is observed, eventually after vital staining with 
calcein-acetoxymethylester and nuclear staining with Hoechst 
33342[97].  The tube number, length and bifurcations may be 
quantificated with image analysis, in order to appreciate 
differences among scaffolds.  Matrigel (Becton Dickinson), 
formed by EMC proteins, is a well-known matrix.  Also type I 
collagen was used, which determined after 20 h the formation 
of tubular-like structures similar to capillaries[97].  

Expression of proteins acting on bone remodelling
For the evaluation of scaffolds for bone engineering, the assay 
of GFs, cytokines and other proteins produced by endothelium 
and acting on bone remodelling could be useful.  Both specific 
mRNA expression[98] and the concentration of these substances 
in the conditioned medium are determined[99].  Proinflamma-
tory markers should be assayed both on basal conditions and 
after incubation with LPS, because the biomaterial could affect 
the cell response to the proinflammatory stimulus[100].  

Co-cultures
The different co-culture systems take the different interactions 
among ECs and OBs into account (Figure 3): 

- Co-cultures with direct contact can be initiated on a 2-D 
surface or on a 3D scaffold or with spheroid systems.  With 
direct contact all the mechanisms of cell-to-cell interaction are 
evaluated (direct interaction through tight junctions, gap junc-
tion communications and secretion of paracrine factors)[28];

- Co-cultures with indirect contact evaluate only communi-
cations through paracrine soluble factors.  The two cell types 
may be put in indirect contact through a porous membrane 
with a such pore size which lets the conditioned medium pass 

but not cells[101].  Other methods consist in culturing one cell 
type in the conditioned medium of the other type or in seed-
ing a cell type over the ECM that has been produced by the 
other cell type.  

The indirect contact methods allow to easily quantificate the 
reciprocal metabolic influences, but do not give any informa-
tion on the reciprocal spatial relationships.  

With the direct contact method the relationships between 
cells into the living tissue are simulated.  2D studies provide 
detailed information of the molecular basis of cell-to-cell con-
tacts, and knowledge of cellular events governing the differen-
tiation of OBs that are in contact with ECs.  Conversely, 3D co-
cultures offer a physiologically optimized environment for cell 
survival which favors the formation of functional blood ves-
sels.  Spheroids formed when a cellular suspension in medium 
containing 20% methyl cellulose (Methocel, Dow Chemical 
Co, USA) was seeded in nonadhesive wells with U shape[102].  
HUVECs were grown as 3-D multicellular spheroids in a col-
lagen matrix.  Direct cell contact between hOBs and HUVECs 
was established by incorporating hOBs into the EC spheroids, 
thus forming heterogeneous cospheroids.  Co-culture spher-
oids differentiated spontaneously to organize into a core of 
OBs and a surface layer of ECs[103].  

Direct contact method requires the standardization of a) the 
choice of culture medium, b) the choice to seed the cell types 
at the same time or successively, and which type should be 
seeded as the first; c) the ratio between cell types, d) the sepa-
ration of the cell types during and at the end of the co-cultures.  
As culture medium, the medium of ECs, which have higher 
nutrition requirements, is usually chosen.  Both cell types may 
be seeded at the same time or ECs are seeded before OBs.  The 
optimal ratio between HDMVEC and OBs was shown to be 
5:1 or 10:1[92].  The evaluation of the relationships between 
the cell types is based on differential staining with quantum 
dots incorporated by cells before seeding and the evaluation 
at fluorescence or confocal microscopy.  Also staining for von 
Willebrand factor or CD31, specific for ECs, and ALP, specific 
for OBs, were used.  Time-lapse microscopy showed the for-
mation of a tubular-like network through the movement of 
HUVEC along hOB and their philopodia[104].  

With morphological methods the relationships between 
cells are investigated, but no information on the reciprocal 
metabolic influences is obtained.  The latter is examined with 
the assay of specific genes and protein of each cell type.  ECs 
produce VEGFR-1, VEGFR-2, CD31, Tie-1, Tie-2, but do not 
synthesize collagen I, ALP and osteocalcin.  ECs co-cultured 
with hOB stimulated ALP activity and mineralization[105], but 
down-regulated runx2, osteocalcin and Cx43[106].  The most 
serious problem is the evaluation of the relative synthesis of 
proteins because the total protein content of each cell type can-
not be distinguished.  Also gene expression cannot be normal-
ized because housekeeping genes are common to hECs and 
hOB, unless human and animal cells are co-cultured.  There-
fore it is fundamental to separate the two cell types at the end 
of co-culture.  Magnetic immunoseparation with anti-CD31 
antibodies showed upregulation of 79 genes and downregula-

Figure 3.  Cell co-culture systems.  In the direct contact model, cells are 
seeded together in 2D supports or 3D scaffolds or as 3-D multicellular 
spheroids.  In the indirect contact model, a porous membrane can be 
used, with appropriate pore size which let the conditioned medium pass 
but not cells.  Alternatively, the culture of one type of cells is supplemen-
ted with the conditioned medium of the other type.  In the third method, 
one cell type is seeded on the ECM of the other type, which has been di-
scharged after grown.
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tion of 62 genes in OBs and, particularly, the downregulation 
of the gene of PDGF receptor α after co-culture with ECs[101].  

Direct co-culture of ECs and OBs prevented the precoating 
of biomaterials with gelatin or fibronectin.  Moreover, ECs 
formed an extensive network of capillary-like structures with 
lumina only when they were co-cultured with OBs, but not 
when they were cultured on biomaterials alone even in the 
presence of an exogenously supplied angiogenic stimulus.  
Thus, a prevascularization can take place in vitro only in the 
presence of OBs[92].

Local delivery of angiogenic growth factors
Biomaterial vascularization can be promoted or by seeding 
mature ECs or their progenitors directly on scaffolds[107], or 
by locally delivering angiogenic GFs[108], which may induce 
ECs to migrate, proliferate, and produce molecules acting on 
bone remodelling.  Particularly, it was shown that VEGF-A 
increased mRNA specific for FGF-2 and decreased mRNA 
specific for IL-6[19], and increased both mRNA expression and 
surface protein expression of RANK[109].

Delivery of recombinant growth factors
The ability of biodegradable scaffolds to locally deliver GFs 
mimicks the conditions of tissue repair in vivo.  A combination 
of PDGF-BB and VEGF-165 initiated formation and matura-
tion of a significant number of blood vessels[110].  When calva-
rial defects of rats were treated with scaffolds in poly(D,L-
lactide-co-glycolide) (PLGA) bound to rhVEGF-A, a significant 
increase of blood vessel formation, bone coverage, and bone 
mineral density was observed in comparison with defects 
treated with simple PLGA[111].  The use of rhVEGF-A in bone 
defect models showed that new blood vessel formation pre-
ceded the osteogenic front and that an increased angiogenesis 
corresponded to an increased bone formation[112].  However, 
the local application of VEGF-A to rabbit tibia during distrac-
tion osteogenesis increased the blood flow in the distracted 
limb, but failed to influence bone mineral content and histo-
morphometric indices of bone regeneration[113].  A possible 
explanation was that a high level of endogenous VEGF-A had 
already been secreted during osteogenesis, reaching an opti-
mal local concentration, and therefore the additional delivery 
of VEGF-A had little or no effect[114].  

Platelet-rich plasma (PRP)
A more feasible way to administer angiogenic GFs consists 
in the application of PRP.  In fact, activated platelets release 
osteogenic and angiogenic GFs from α-granules, such as 
PDGF, TGF-β, IGF, EGF, and VEGF.  Therefore autologous 
platelets activated with thrombin were used as a source of GFs 
to stimulate tissue repair.  PRP could also favour prolifera-
tion and differentiation of the cells seeded on scaffolds, ECs 
included[115], also when they were co-cultured with hOB[116].  

Gene therapy
Ex vivo gene therapy, which consists in the transplantation of 
genetically modified MSCs secreting angiogenic GFs[117], could 

overcome the limits of conventional GF delivery.  When adi-
pose-derived stem cells (ADSCs) were transfected with adeno-
virus encoding the cDNA of VEGF, the combination of VEGF 
releasing cells and ECs resulted in a higher vascular growth 
within PLGA scaffolds[118].  

Discussion
In the last forty years, the new knowledge in cellular and 
molecular biology and the possibility of the synthesis of inno-
vative materials have determined a shift from the concept of 
an “inert” material, ie non-toxic for cells and tissues of the 
body, to the concept of a “bioactive” material, which favours 
cellular adhesion, proliferation and functions.  At the same 
time, it has been understood that angiogenesis was necessary 
not only for the treatment of obstructive vasculopathies, but 
also for the repair of most tissues and organs.  Consequently, 
it has been understood that the successful clinical outcome of 
an implanted cell-construct is dependent on the establishment 
of a functional vascular network.  Therefore, scaffolds should 
be tested for their angiogenic potential before implantation.  
Particularly, the ability to favour EC adhesion, proliferation 
and functions should be assayed with in vitro and in vivo tests.

The choice of the EC type is crucial, because they may have 
different properties according to their source.  For the evalu-
ation of scaffolds intended for bone engineering, cells with 
similar characteristics to ECs of bone vasculature should be 
chosen.  Olfactory ensheathing cells (OECs), which can be iso-
lated from the patients without invasive methods, seem to be 
the most suitable in the formation of functional vessels anasto-
mosed to the host’s vascular system[119].  

Among the different models of in vitro evaluation of the 
angiogenic potential, the co-cultures between ECs and OBs 
are the closest to the in vivo situation.  However, they allow 
to appreciate the reciprocal relationships between these cell 
types, but still need to be standardized for the quantitative 
evaluation of specific gene expression and protein synthesis.

At present, in vitro models alone cannot predict if the 
capillary-like structures pre-formed in the scaffold will estab-
lish connections in vivo with the host microvascular system.  
A co-culture of EPCs and MSCs on a scaffold followed by 
implantation in animal demonstrated improved osteogenesis 
and angiogenesis when the scaffold had been seeded with the 
two cell types, without ischemic necrosis at the center of the 
graft, while impaired osteogenesis and progressive necrosis 
were observed when the scaffold had been seeded with only 
OBs[120].  

At present, efforts are mainly focused on stabilizing neo-
vasculature and thus promoting the formation of lasting 
blood vessels.  Perivascular cells such as pericytes and smooth 
muscle cells contribute to the remodelling and maturation of 
the primitive vascular network and therefore are fundamental 
agents in the construction of a durable engineered vasculature.  
In this line of thought, the actual co-culture systems will be 
upgraded with tri-cultures among OBs, ECs and perivascular 
cells.

In conclusion, blood vessels, which are necessary to skel-
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etal homeostasis and bone repair, have a fundamental role 
to assure the incorporation of a cells-scaffold construct into 
the body.  Therefore, the ability of the scaffolds to favour EC 
adhesion and proliferation, without affecting their functions, 
should be assayed.  In in vitro tests, the source of ECs should 
be carefully considered, because it may affect their properties.  
Morphological and functional relationships between ECs and 
OBs should be evaluated with appropriate models, such as co-
cultures.  PRP and recombinant GFs may be useful for stimu-
lating neoangiogenesis.
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