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Type 2 diabetes mellitus (T2DM) is a progressive, complex 
metabolic disorder mainly characterized by insulin resistance 
and hyperglycemia[1].  The prevalence of diabetes, of which 
T2DM accounts for more than 90% of patients, is rising at an 
alarming rate in certain parts of the world[2].  Although the 
exact incidence in China is arguable, the age-adjusted preva-
lence of diabetes and pre–diabetes was reported to be 9.7% 
and 15.5%, respectively[3, 4].  T2DM has thus become a global 
heath concern due to its complications, such as cardiovascular 
conditions that result in increased morbidity and mortality.  
While the currently available anti-diabetic agents are effective 
in lowering glucose, some of them, including insulin, sulfo-
nylureas and thiazolidinediones, are often limited by weight 
gain and/or hypoglycemia.  However, recent emergence of 
incretin-based therapies, exemplified by glucagon-like pep-
tide-1 (GLP-1) mimetics and dipeptidyl peptidase-4 (DPP-4) 
inhibitors, will drastically transform the landscape of diabetes 
care[5].  GLP-1 maintains glucose homeostasis through several 
mechanisms that include, but not limited to, stimulating insu-
lin secretion, suppressing glucagon production, improving 
β-cell mass and function, inhibiting food intake and slowing 
gastric emptying[6].  Therefore, GLP-1 based incretin therapy is 

designed to target the fundamental defects of T2DM, capable 
of reducing both glycosylated hemoglobin (HbA1c) and body 
weight, and has potential benefits on blood pressure, lipids, 
and other surrogate markers, leading to decreased cardiovas-
cular risk[7, 8].

The native GLP-1 has a very short half-life (<2 min) mainly 
because of the degradation by DPP-4 and neutral endopepti-
dase (NEP)[9].  Two approaches have been employed: GLP-1 
receptor agonists that mimic the effects of native GLP-1 
and DPP-4 inhibitors that increase endogenous GLP-1 lev-
els[7].  The former is represented by two peptidic mimetics, 
Exenatide[10, 11] and Liraglutide[12], approved by the US Food 
and Drug Administration (FDA) for the treatment of T2DM.  
Other peptides that are under development include long-
acting human GLP-1 analog CJC-1131[13], GLP-1 analog-Fc 
fusion protein LY2189265[14] and pegylated GLP-1 analog 
LY2428757[15], recombinant human serum albumin exendin–4 
conjugated protein CJC-1134-PC[16], Taspoglutide[17], as well as 
AVE0010[18].  

Unlike peptidic  mimetics  that  require  in ject ions, 
DPP-4 inhibitors (such as Sitagliptin, Vildagliptin and 
Saxa gliptin)[19–21] are small in molecular nature, orally active, 
and transported and stored at ease.  Administration of DPP-4 
inhibitor has led to improved plasma concentrations of endog-
enous GLP-1 and marked reduction of HbA1c, but its effect 
on body weight has been neutral[21].  Thus, oral formulation of 
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GLP-1 analogs remains a development option[22].  
It is conceivable that an orally active, non-peptidic GLP-1 

receptor agonist could resolve the issues mentioned above.  
Indeed, this has been the focal point of drug discovery efforts 
in many multinational pharmaceutical companies.  Such 
efforts have not resulted in any success thus far.

The GLP-1 receptor belongs to the glucagon-secretin 
B family of the G protein-coupled receptors (GPCRs).  A 
characteristic structural feature of this family is a long and 
structurally complex extracellular amino-terminal domain 
(N-domain) containing six conserved cysteine residues that 
form disulfide bonds important for stabilizing the folded pro-
tein.  The N-domain is connected to a juxtamembrane domain 
(J-domain) of the seven membrane-spanning α-helices with 
intervening loops and a C-terminal tail[23].  From a biological 
perspective, class B GPCRs are highly attractive therapeutic 
targets, but the search for non-peptidic modulators (agonists 
in particular) has been met with great difficulties.  Very few 
‘druggable’ small molecule ligands have been identified for 
this class of GPCRs.  With reference to GLP-1 receptors, only 
a very small number of non-peptidic agonists have been 
reported over the years as summarized below in Table 1.

Of the compounds listed, diallylmethylamine derivative 
is more like a DPP-4 inhibitor than a GLP-1 receptor ago-
nist, based on the limited information available in the public 
domain[29].  The remaining eight molecules possess fairly 
diverse structural features.  Despite what were described by 
the inventors for these compounds in terms of orthosteric, 
allosteric, ago-allosteric, inverse, or partial/full agonists, their 
functional varieties are manifested in the following manners: 
(1) inducing both biochemical and cellular responses with-
out in vivo activities[24, 27]; (2) behaving like an antagonist in 
cell-based assays (eg, T0632)[27]; (3) promoting native ligand 
binding to the receptor in vitro[32]; (4) demonstrating a full 
range of GLP-1 properties including in vivo efficacy[25, 26]; and 
(5) enhancing GLP-1 activities via binding to the receptor[33].  
Since no distinct commonality could be found in the structures 
of these five types of compounds, their binding to the GLP-1 
receptor must be realized via different sites.  Among them, 
Boc5 is the only one that demonstrated therapeutic benefits 
in vivo[25,26].  While peptidic GLP-1 mimetics displayed some 
side effects such as nausea and vomiting in the clinic[9], both 
normal and diabetic db/db mice are highly tolerable to Boc5[25] 
such that a similar reaction on the conditioned taste aversion 
required a dose well beyond the therapeutic window[26].  Long-
term toxicity (≥3 month) has yet to be determined.  It appears 
that Boc5 is neither metabolized by nor interacts with the cyto-
chrome P450 in vivo exhibiting a half-life ranging from 12.1 to 
35.4 h in mice and rats, respectively when injected intraperito-
neally.  However, its oral bioavailability is extremely poor due 
to metabolism by esterase in the gut (unpublished data). 

The current binding model of GLP-1 receptor is a two-step 
mechanism where initially the C-terminal part of the peptide 
ligand interacts with the N-domain of the receptor, thereby 
conferring high affinity.  In the second step, the N-terminal 
part of the ligand interacts with the core domain of the recep-

tor (transmembrane helices and connecting loops), leading to 
activation and signal transduction[23].  Both the N-domain and 
J-domain of the receptor are needed for this interaction, and 
the former is also critical for ligand selectivity between gluca-
gon and GLP-1.  Molecular elucidation of such an interaction 
is nearly impossible due to the inherent complexity of GPCR 
structures.  However, attempts were made using both the crys-
tal structure of human GLP-1 receptor N-terminal extracellu-
lar domain[34] and computational simulation[35].  These studies 
have implicated that activation of GLP-1 receptor by an ago-
nist is related to some intrinsic conformation changes.  There 
may be two major states of the GLP-1 receptor structure: (1) 
the inactive state, in which the orthosteric agonist-binding site 
is partially blocked as the consequence of the relative motions 
between the N-domain and the transmembrane domain; and 
(2) the active state, in which the orthosteric agonist-binding 
site is fully accessible[35].  Binding of an agonist makes a GLP-1 
receptor stay in the latter state, as in the case of Boc5[25], while 
interaction with an inverse agonist such as T0632 favors the 
former state[23, 27].  Compound 2 (quinoxaline derivative), 
which binds the GLP-1 receptor at an allosteric site, rigidifies 
its structure with an open binding site to improve the activity 
of a full agonist[35].

Obviously, the exact requirements needed for a small mol-
ecule to fully mimic GLP-1 have yet to be understood.  Com-
pounds that confer the conventional wisdom[36] such as ‘Rule 
of 5’ do not display any in vivo bioactivities, while molecules 
that demonstrate therapeutic benefits in animal models of 
T2DM and obesity such as Boc5 are considered not druggable 
because of poor oral bioavailability.  Serendipitous discovery 
of substituted cyclobutanes represented by Boc5 as a new class 
of GLP-1 receptor agonists led us to believe that a small mol-
ecule approach to class B GPCR agonism is no longer a fantasy 
but a reality[37].  

Nonetheless, major obstacles still pose great challenges 
in terms of developing an orally active non-peptidic GLP-1 
receptor agonist.  To what extent should such a molecule look 
like from a medicinal chemistry point of view?  Can it possess 
a suitable molecular size that meets the requisite ADME/T 
profile while maintaining a full range of incretin-like efficacy? 
Can it be produced economically, so that it can sufficiently 
compete against its peptidic counterparts?  These are the ques-
tions that must be addressed in order to sustain the vitality of 
a research program in this particular area.  
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                                         Structure                                                      Receptor binding                    Cellular effect                     Animal study 
 
   Not reported Not reported Enhanced blood 
    concentrations
    of GLP-1 30 min 
    after dosing

 [29]

  Enhanced GLP-1 binding  EC50: 0.16 µmol/L  Not reported
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   a perfused rat pancreas[32]
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