Inflammation and Immunopharmacology

Felodipine attenuates vascular inflammation in a fructose-induced rat model of metabolic syndrome via the inhibition of NF-κB activation

Abstract

Aim:

Metabolic syndrome is associated with an increased incidence of atherosclerosis. Clinical studies have shown that calcium channel blockers (CCB) inhibit the progression of atherosclerosis. However, the underlying mechanism is unclear. We investigated the inhibitory effect of felodipine on adhesion molecular expression and macrophage infiltration in the aorta of high fructose-fed rats (FFR).

Methods:

Male Wistar rats were given 10% fructose in drinking water. After 32 weeks of high fructose feeding, they were treated with felodipine (5 mg·kg-1·d-1) for 6 weeks. The control rats were given a normal diet and water. The aortic expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) and the infiltration of macrophages were measured by real-time RT-PCR and/or immunohistochemistry. NF-κB activity was measured by electrophoretic mobility shift assay (EMSA).

Results:

After 32 weeks of high fructose feeding, FFR displayed increased body weight, systolic blood pressure (SBP), serum insulin, and triglycerides when compared with the control rats. The aortic expressions of ICAM-1 and VCAM-1 were significantly increased in FFR than in the control rats and accompanied by the increased activity of NF-κB. FFR also showed significantly increased CD68-positive macrophages in the aortic wall. After treatment with felodipine, SBP, serum insulin, and the homeostasis model assessment decreased significantly. In addition to reducing ICAM-1 and VCAM-1, felodipine decreased macrophages in the aortic wall. EMSA revealed that felodipine inhibited NF-κB activation in FFR.

Conclusion:

Felodipine inhibited vessel wall inflammation. The inhibition of NF-κB may be involved in the modulation of vascular inflammatory response by CCB in metabolic syndrome.

References

  1. 1

    Eckel RH, Grundy SM, Zimmet PZ . The metabolic syndrome. Lancet 2005; 365: 1415–28.

    CAS  Article  Google Scholar 

  2. 2

    Zhong M, Tan HW, Gong HP, Wang SF, Zhang Y, Zhang W . Increased serum visfatin in patients with metabolic syndrome and carotid atherosclerosis. Clin Endocrinol (Oxf) 2008 Mar 20. [Epub ahead of print] doi: 10.1111/j.1365-2265.2008.03248.x.

  3. 3

    van Zwieten PA, Mancia G . Background and treatment of metabolic syndrome: a therapeutic challenge. Semin Cardiothorac Vasc Anesth 2006; 10: 206–14.

    Article  Google Scholar 

  4. 4

    Garni AS, Witt BJ, Howard DE, Erwin PJ, Garni LA, Somers VK, et al. Metabolic syndrome and risk of incident cardiovascular events and death: a systematic review and meta-analysis of longitudinal studies. J Am Coll Cardiol 2007; 49: 403–14.

    Article  Google Scholar 

  5. 5

    Kullo IJ, Cassidy AE, Peyser PA, Turner ST, Sheedy PF II, Bielak LF . Association between metabolic syndrome and subclinical coronary atherosclerosis in asymptomatic adults. Am J Cardiol 2004; 94: 1554–8.

    Article  Google Scholar 

  6. 6

    Tzou WS, Douglas PS, Srinivasan SR, Bond MG, Tang R, Chen W, et al. Increased subclinical atherosclerosis in young adults with metabolic syndrome: the Bogalusa Heart Study. J Am Coll Cardiol 2005; 46: 457–63.

    CAS  Article  Google Scholar 

  7. 7

    Delbosc S, Paizanis E, Magous R, Araiz C, Dimo T, Cristol JP, et al. Involvement of oxidative stress and NADPH oxidase activation in the development of cardiovascular complications in a model of insulin resistance, the fructose-fed rat. Atherosclerosis 2005; 179: 43–9.

    CAS  Article  Google Scholar 

  8. 8

    Ross R . Atherosclerosis—an inflammatory disease. N Engl J Med 1999; 340: 115–26.

    CAS  Article  Google Scholar 

  9. 9

    Nageh MF, Sandberg ET, Marotti KR, Lin AH, Melchior EP, Bullard DC, et al. Deficiency of inflammatory cell adhesion molecules protects against atherosclerosis in mice. Arterioscler Thromb Vasc Biol 1997; 17: 1517–20.

    CAS  Article  Google Scholar 

  10. 10

    Benitez MB, Cuniberti L, Fornari MC, Rosso LG, Berardi V, Elikir G, et al. Endothelial and leukocyte adhesion molecules in primary hypertriglyceridemia. Atherosclerosis 2008; 197: 679–87.

    CAS  Article  Google Scholar 

  11. 11

    Haubner F, Lehle K, Munzel D, Schmid C, Birnbaum DE, Preuner JG . Hyperglycemia increases the levels of vascular cellular adhesion molecule-1 and monocyte-chemoattractant-protein-1 in the diabetic endothelial cell. Biochem Biophys Res Commun 2007; 360: 560–5.

    CAS  Article  Google Scholar 

  12. 12

    Nissen SE, Tuzcu EM, Libby P, Thompson PD, Ghali M, Garza D, et al. Effect of antihypertensive agents on cardiovascular events in patients with coronary disease and normal blood pressure: the CAMELOT study: a randomized controlled trial. JAMA 2004; 292: 2217–25.

    CAS  Article  Google Scholar 

  13. 13

    Pitt B, Byington RP, Furberg CD, Hunninghake DB, Mancini GB, Miller ME, et al. Effect of amlodipine on the progression of atherosclerosis and the occurrence of clinical events. PREVENT Investigators. Circulation 2000; 102: 1503–10.

    CAS  Article  Google Scholar 

  14. 14

    Dai S, McNeill JH . Fructose-induced hypertension in rats is concentration-and duration-dependent. J Pharmacol Toxicol Methods 1995; 33: 101–7.

    CAS  Article  Google Scholar 

  15. 15

    Zhao C, Wang P, Xiao X, Chao J, Chao L, Wang DW, et al. Gene therapy with human tissue kallikrein reduces hypertension and hy-perinsulinemia in fructose-induced hypertensive rats. Hypertension 2003; 42: 1026–33.

    CAS  Article  Google Scholar 

  16. 16

    Tay A, Ozcelikay AT, Altan VM . Effects of L-arginine on blood pressure and metabolic changes in fructose-hypertensive rats. Am J Hy-pertens 2002; 15 ( 1 Pt 1): 72–7.

    CAS  Article  Google Scholar 

  17. 17

    Miatello R, Vazquez M, Renna N, Cruzado M, Zumino AP, Risler N . Chronic administration of resveratrol prevents biochemical cardiovascular changes in fructose-fed rats. Am J Hypertens 2005; 18: 864–70.

    CAS  Article  Google Scholar 

  18. 18

    Barros CM, Lessa RQ, Grechi MP, Mouço TL, Souza MG, Wiern-sperger N, et al. Substitution of drinking water by fructose solution induces hyperinsulinemia and hyperglycemia in hamsters. Clinics 2007; 62: 327–34.

    Article  Google Scholar 

  19. 19

    Vaziri ND, Wang XQ, Ni ZN, Kivlighn S, Shahinfar S . Effects of aging and AT-1 receptor blockade on NO synthase expression and renal function in SHR. Biochim Biophys Acta 2002; 1592: 153–61.

    CAS  Article  Google Scholar 

  20. 20

    Ortlepp JR, Breuer J, Eitner F, Kluge K, Kluge R, Floege J, et al. Inhibition of the renin-angiotensin system ameliorates genetically determined hyperinsulinemia. Eur J Pharmacol 2002; 436: 145–50.

    CAS  Article  Google Scholar 

  21. 21

    Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) Method. Methods 2001; 25: 402–8.

    CAS  Article  Google Scholar 

  22. 22

    Brunner EJ, Hemingway H, Walker BR, Page M, Clarke P, Juneja M, et al. Adrenocortical, autonomic, and inflammatory causes of the metabolic syndrome: nested case-control study. Circulation 2002; 106: 2659–65.

    CAS  Article  Google Scholar 

  23. 23

    Xu ZG, Lanting L, Vaziri ND, Li Z, Sepassi L, Rodriguez-Iturbe B, et al. Upregulation of angiotensin II type 1 receptor, inflammatory mediators, and enzymes of arachidonate metabolism in obese Zucker rat kidney: reversal by angiotensin II type 1 receptor blockade. Circulation 2005; 111: 1962–9.

    CAS  Article  Google Scholar 

  24. 24

    Blankenberg S, Barbaux S, Tiret L . Adhesion molecules and atherosclerosis. Atherosclerosis 2003; 170: 191–203.

    CAS  Article  Google Scholar 

  25. 25

    Moreno PR, Falk E, Palacios IF, Newell JB, Fuster V, Fallon JT . Mac-rophage infiltration in acute coronary syndromes. Implications for plaque rupture. Circulation 1994; 90: 775–8.

    CAS  Article  Google Scholar 

  26. 26

    Iiyama K, Hajra L, Iiyama M, Li H, DiChiara M, Medoff BD, et al. Patterns of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 expression in rabbit and mouse atherosclerotic lesions and at sites predisposed to lesion formation. Circ Res 1999; 85: 199–207.

    CAS  Article  Google Scholar 

  27. 27

    Yoshii T, Iwai M, Li Z, Chen R, Ide A, Fukunaga S, et al. Regression of atherosclerosis by amlodipine via anti-inflammatory and anti-oxidative stress actions. Hypertens Res 2006; 29: 457–66.

    CAS  Article  Google Scholar 

  28. 28

    Kataoka C, Egashira K, Ishibashi M, Inoue S, Ni W, Hiasa K, et al. Novel anti-inflammatory actions of amlodipine in a rat model of arteriosclerosis induced by long-term inhibition of nitric oxide synthesis. Am J Physiol Heart Circ Physiol 2004; 286: H768–74.

    CAS  Article  Google Scholar 

  29. 29

    Yao R, Cheng X, Liao YH, Chen Y, Xie JJ, Yu X, et al. Molecular mechanisms of felodipine suppressing atherosclerosis in high-cholesterol-diet apolipoprotein E-knockout mice. J Cardiovasc Pharmacol 2008; 51: 188–95.

    CAS  Article  Google Scholar 

  30. 30

    Yagi S, Goto S, Yamamoto T, Kurihara S, Katayama S . Effect of cilnidipine on insulin sensitivity in patients with essential hypertension. Hypertens Res 2003; 26: 383–7.

    CAS  Article  Google Scholar 

  31. 31

    Ersoy C, Imamoðlu S, Budak F, Tuncel E, Ertürk E, Oral B . Effect of amlodipine on insulin resistance & tumor necrosis factor-alpha levels in hypertensive obese type 2 diabetic patients. Indian J Med Res 2004; 120: 481–8.

    CAS  PubMed  Google Scholar 

  32. 32

    Zhang WJ, Frei B . Alpha-lipoic acid inhibits TNF-alpha-induced NF-kappaB activation and adhesion molecule expression in human aortic endothelial cells. FASEB J 2001; 15: 2423–32.

    CAS  Article  Google Scholar 

  33. 33

    Collins T, Cybulsky MI . NF-kappaB: pivotal mediator or innocent bystander in atherogenesis? J Clin Invest 2001; 107: 255–64.

    CAS  Article  Google Scholar 

  34. 34

    Arkan MC, Hevener AL, Greten FR, Maeda S, Li ZW, Long JM, et al. IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med 2005; 11: 191–8.

    CAS  Article  Google Scholar 

  35. 35

    van den Berg R, Haenen GR, van den Berg H, Bast A . Transcription factor NF-kappaB as a potential biomarker for oxidative stress. Br J Nutr 2001; 86 ( Suppl 1): S121–7.

    CAS  Article  Google Scholar 

  36. 36

    Takagawa Y, Berger ME, Hori MT, Tuck ML, Golub MS . Long-term fructose feeding impairs vascular relaxation in rat mesenteric arteries. Am J Hypertens 2001; 14 ( 8 Pt 1): 811–7.

    CAS  Article  Google Scholar 

  37. 37

    International Diabetes Federation. The IDF consensus world-wide definition of the metabolic syndrome. Available from URL: http://www.idf.org/webdata/docs/IDF Metabolic syndrome definition.

  38. 38

    Mancia G, De Backer G, Dominiczak A, Cifkova R, Fagard R, Ger-mano G, et al. 2007 Guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens 2007; 25: 1105–87.

    CAS  Article  Google Scholar 

  39. 39

    Athyros VG, Kakafika Al, Karagiannis A, Mikhailidis DP . Do we need to consider inflammatory markers when we treat atherosclerotic disease? Atherosclerosis 2008 Mar 6. doi: 10.1016/j.atherosclersis.2008.02.026.

  40. 40

    D'Angelo G, Elmarakby AA, Pollock DM, Stepp DW . Fructose feeding increases insulin resistance but not blood pressure in Sprague-Dawley rats. Hypertension 2005; 46: 806–11.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wei Zhang.

Additional information

This study was supported by research funding by AstraZeneca Pharmaceutical Co Ltd China (QD02 to Dr Wei ZHANG) and by the National Natural Science Foundation of China (No 30670874 to Dr Wei ZHANG).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tan, Hw., Xing, Ss., Bi, Xp. et al. Felodipine attenuates vascular inflammation in a fructose-induced rat model of metabolic syndrome via the inhibition of NF-κB activation. Acta Pharmacol Sin 29, 1051–1059 (2008). https://doi.org/10.1111/j.1745-7254.2008.00843.x

Download citation

Keywords

  • calcium channel blocker
  • fructose-fed rat
  • metabolic syndrome
  • adhesion molecule

Further reading

Search

Quick links