Endocrine Pharmacology

Astragalus polysaccharide reduces hepatic endoplasmic reticulum stress and restores glucose homeostasis in a diabetic KKAy mouse model



To examine the potential effects of Astragalus polysaccharide (APS) on hepatic endoplasmic reticulum (ER) stress in vivo and in vitro and its link with hypoglycemia activity, thus establishing the mechanism underlying the hypoglycemic action of APS.


The obese and type 2 diabetic KKAy mouse model, which is the yellow offspring of the KK mice expressed Ay gene (700 mg.kg−1 .d−1, 8 weeks) and a high glucose-induced HepG2 cell model (200 μg/mL, 24 h) were treated with APS. The oral glucose tolerance test was measured to reflex insulin sensitivity with the calculated homeostasis model assessment (HOMAIR) index. XBP1 (XhoI site-binding protein 1) transcription and splicing, an indicator of ER stress, was analyzed by RT-PCR and real-time PCR. The expression and activation of glycogen synthase kinase 3 beta (GSK3β), an insulin signaling protein, was measured by Western blotting.


APS can alleviate ER stress in cultured cells in vivo. The hyperglycemia status, systemic insulin sensitivity, fatty liver disease, and insulin action in the liver of diabetic mice were partly normalized or improved in response to APS administration.


Our results indicate that APS enables insulin-sensitizing and hypoglycemic activity at least in part by enhancing the adaptive capacity of the ER, which can further promote insulin signal transduction. Thus, APS has promising application in the treatment of type 2 diabetes.


  1. 1

    Kiberstis PA . A surfeit of suspects (special section–Type 2 diabetes. Science 2005; 307: 3692.

    Article  Google Scholar 

  2. 2

    Grover JK, Yadav S, Vats V . Medicinal plants of India with anti-diabetic potential. J Ethnopharmacol 2002; 81: 81–100.

    CAS  Article  Google Scholar 

  3. 3

    Mao CP, Xie ML, Gu ZL . Effects of konjac extract on insulin sensitivity in high fat diet rats. Acta Pharmacol Sin 2002; 23: 855–9.

    CAS  PubMed  Google Scholar 

  4. 4

    Wu F, Chen X . A review of pharmacological study on Astragalus membranaceus (Fisch) Bge. Zhong Yao Cai 2004; 27: 232–4.

    PubMed  Google Scholar 

  5. 5

    Wu Y, Ou-Yang J P, Wu K, Wang Y, Zhou YF, Wen CY . Hypoglycemic effect of Astragalus polysaccharide and its effect on PTP1B. Acta Pharmacol Sin 2005; 26: 345–52.

    CAS  Article  Google Scholar 

  6. 6

    Michael MD, Kulkarni RN, Postic C, Previs SF, Shulman GI, Magnuson MA, et al. Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol Cell 2000; 6: 87–97.

    CAS  Article  Google Scholar 

  7. 7

    Klover PJ, Mooney RA . Hepatocytes: critical for glucose homeostasis. Int J Biochem Cell Biol 2004; 36: 753–8.

    CAS  Article  Google Scholar 

  8. 8

    Ozcan U, Cao Q, Yilmaz E, Lee AH, Iwakoshi NN, Ozdelen E, et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 2004; 306: 457–61.

    Article  Google Scholar 

  9. 9

    Ji C, Kaplowitz N . ER stress: can the liver cope?. J Hepatol 2006; 45: 321–33.

    CAS  Article  Google Scholar 

  10. 10

    Ni Y, Su Q, Liu X, Li XR . Experimental study of optimized techniques of water decoction extraction of Astragalus polysaccharide. Zhongguo Zhong Yao Za Zhi 1998; 23: 284–6.

    CAS  Google Scholar 

  11. 11

    Suto J, Matsuura S, Imamura K, Yamanaka H, Sekikawa K . Genetic analysis of non-insulin-dependent diabetes mellitus in KK and KK-Ay mice. Eur J Endcrinol 1998; 139: 654–61.

    CAS  Article  Google Scholar 

  12. 12

    Iwatsuka H, Shino A, Suzuoki Z . General survey of diabetic features of yellow KK mice. Endocrinol Jpn 1970; 17: 23–35.

    CAS  Article  Google Scholar 

  13. 13

    Butler L . The inheritance of glucosuria in the KK and AY mouse. Can J Genet Cytol 1972; 14: 265–9.

    CAS  Article  Google Scholar 

  14. 14

    JAX mice data sheet: strain details of C57BL/6J.Available from URL: http://jaxmice.jax.org/strain/000664.html.

  15. 15

    Yang R, Cao L, Gasa R, Brady MJ, Sherry AD, Newgard CB . Glycogen-targeting subunits and glucokinase differentially affect pathways of glycogen metabolism and their regulation in hepatocytes. J Biol Chem 2002; 277: 1514–23.

    CAS  Article  Google Scholar 

  16. 16

    Folch J, Lees M, Sloane Stanley GH . A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 1957; 226: 497–509.

    CAS  PubMed  Google Scholar 

  17. 17

    Bonora E, Targher G, Alberiche M, Bonadonna RC, Saggiani F, Zenere MB, et al. Homeostasis model assessment closely mirrors the glucose clamp technique in the assessment of insulin sensitivity studies in subjects with various degrees of glucose tolerance and insulin sensitivity. Diabetes Care 2000; 23: 57–63.

    CAS  Article  Google Scholar 

  18. 18

    Shiuchi T, Cui TX, Wu L, Nakagami H, Takeda-Matsubara Y, Iwai M, et al. ACE inhibitor improves insulin resistance in diabetic mouse via bradykinin and NO. Hypertension 2002; 40: 329–34.

    CAS  Article  Google Scholar 

  19. 19

    Gu F, Nguyen DT, Stuible M, Dube N, Tremblay ML, Chevet E . Protein-tyrosine phosphatase 1B potentiates IRE1 signaling during endoplasmic reticulum stress. J Biol Chem 2004; 279: 49 689–93.

    Google Scholar 

  20. 20

    Berge RK, Tronstad KJ, Berge K, Rost TH, Wergedahl H, Gudbrandsen OA, et al. The metabolic syndrome and the hepatic fatty acid drainage hypothesis. Biochimie 2005; 87: 15–20.

    CAS  Article  Google Scholar 

  21. 21

    Eriksson S, Eriksson KF, Bondesson L . Nonalcoholic steatohepa-titis in obesity: a reversible condition. Acta Med Scand 1986; 220: 83–8.

    CAS  Article  Google Scholar 

  22. 22

    Roach PJ . Glycogen and its metabolism. Curr Mol Med 2002; 2: 101–20.

    CAS  Article  Google Scholar 

  23. 23

    Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 2002; 415: 92–6.

    CAS  Article  Google Scholar 

  24. 24

    Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K . XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 2001; 107: 881–91.

    CAS  Article  Google Scholar 

  25. 25

    Lee AH, Iwakoshi NN, Glimcher LH . XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol 2003; 23: 7448–59.

    CAS  Article  Google Scholar 

  26. 26

    Shen X, Ellis RE, Lee K, Liu CY, Yang K, Solomon A, et al. Complementary signaling pathways regulate the unfolded protein response and are required for C elegans development. Cell 2001; 107: 893–903.

    CAS  Article  Google Scholar 

  27. 27

    Ji C, Kaplowitz N . ER stress: can the liver cope?. J Hepatol 2006; 45: 321–33.

    CAS  Article  Google Scholar 

  28. 28

    Bavenholm PN, Pigon J, Ostenson CG, Efendic S . Insulin sensitivity of suppression of endogenous glucose production is the single most important determinant of glucose tolerance. Diabetes 2001; 50: 1449–54.

    CAS  Article  Google Scholar 

  29. 29

    Marchesini G, Brizi M, Bianchi G, Tomassetti S, Bugianesi E, Lenzi M, et al. Nonalcoholic fatty liver disease: a feature of the metabolic syndrome. Diabetes 2001; 50: 1844–50.

    CAS  Article  Google Scholar 

  30. 30

    DeFronzo RA . Pathogenesis of type 2 diabetes: metabolic and molecular implications for identifying diabetes genes. Diabetes Rev 1997; 5: 177–269.

    Google Scholar 

  31. 31

    Jope RS, Johnson GV . The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci 2004; 29: 95–102.

    CAS  Article  Google Scholar 

  32. 32

    Boucher MJ, Selander L, Carlsson L, Edlund H . Phosphorylation marks IPF1/PDX1 protein for degradation by glycogen synthase kinase 3-dependent mechanisms. J Biol Chem 2006; 281: 6395–403.

    CAS  Article  Google Scholar 

  33. 33

    Song L, De Sarno P, Jope RS . Central role of glycogen synthase kinase-3 beta in endoplasmic reticulum stress-induced caspase-3 activation. J Biol Chem 2002; 277: 44 701–8.

    Google Scholar 

  34. 34

    Kim AJ, Shi Y, Austin RC, Werstuck GH . Valproate protects cells from ER stress-induced lipid accumulation and apoptosis by inhibiting glycogen synthase kinase-3. J Cell Sci 2005; 118: 89–99.

    CAS  Article  Google Scholar 

  35. 35

    Werstuck GH, Lentz SR, Dayal S, Hossain GS, Sood SK, Shi YY, et al. Homocysteine-induced endoplasmic reticulum stress causes dysregulation of the cholesterol and triglyceride biosynthetic pathways. J Clin Invest 2001; 107: 1263–73.

    CAS  Article  Google Scholar 

  36. 36

    Yoshida H, Nadanaka S, Sato R, Mori K . XBP1 is critical to protect cells from endoplasmic reticulum stress: evidence from Site-2 protease-deficient Chinese hamster ovary cells. Cell Struct Funct 2006; 31: 117–25.

    CAS  Article  Google Scholar 

  37. 37

    Hirota M, Kitagaki M, Itagaki H, Aiba S . Quantitative measurement of spliced XBP1 mRNA as an indicator of endoplasmic reticulum stress. J Toxicol Sci 2006; 31: 149–56.

    CAS  Article  Google Scholar 

  38. 38

    Iwawaki T, Akai R . Analysis of the XBP1 splicing mechanism using endoplasmic reticulum stress-indicators. Biochem Biophys Res Commun 2006; 350: 709–15.

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Jing-ping Ou-yang.

Additional information

Project supported by grants from the National Natural Science Foundation of China (No 30370673).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mao, Xq., Wu, Y., Wu, K. et al. Astragalus polysaccharide reduces hepatic endoplasmic reticulum stress and restores glucose homeostasis in a diabetic KKAy mouse model. Acta Pharmacol Sin 28, 1947–1956 (2007). https://doi.org/10.1111/j.1745-7254.2007.00674.x

Download citation


  • Astragalus membranaceus
  • polysaccharide
  • type 2 diabetes mellitus
  • insulin resistance
  • endoplasmic reticulum
  • stress

Further reading