Cardiovascular Pharmacology

Reversal of isoproterenol-induced downregulation of phospholamban and FKBP12.6 by CPU0213-mediated antagonism of endothelin receptors

Abstract

Aim:

The downregulation of phospholamban (PLB) and FKBP12.6 as a result of β-receptor activation is involved in the pathway(s) of congestive heart failure. We hypothesized that the endothelin (ET)-1 system may link to downregulated PLB and FKBP12.6.

Methods:

Rats were subjected to ischemia/reperfusion (I/R) to cause heart failure (HF). 1 mg/kg isoproterenol (ISO) was injected subcutaneously (sc) for 10 d to worsen HF. 30 mg/kg CPU0213 (sc), a dual ET receptor (ETAR/ETBR) antagonist was given from d 6 to d 10. On d 11, cardiac function was assessed together with the determination of mRNA levels of ryanodine receptor 2, calstabin-2 (FKBP12.6), PLB, and sarcoplasmic reticulum Ca2+-ATPase. Isolated adult rat ventricular myocytes were incubated with ISO at 1×10−6 mol/L to set up an in vitro model of HF. Propranolol (PRO), CPU0213, and darusentan (DAR, an ETAR antagonist) were incubated with cardiomyocytes at 1×10−5 mol/L or 1×10−6 mol/L in the presence of ISO (1×10−6 mol/L). Immunocytochemistry and Western blotting were applied for measuring the protein levels of PLB and FKBP12.6.

Results:

The worsened hemodynamics produced by I/R were exacerbated by ISO pretreatment. The significant downregulation of the gene expression of PLB and FKBP12.6 and worsened cardiac function by ISO were reversed by CPU0213. In vitro ISO 1×10−6 mol/L produced a sharp decline of PLB and FKBP12.6 proteins relative to the control. The downregulation of the protein expression was significantly reversed by the ET receptor antagonist CPU0213 or DAR, comparable to that achieved by PRO.

Conclusion:

This study demonstrates a role of ET in mediating the downregulation of the cardiac Ca2+-handling protein by ISO.

References

  1. 1

    Feldman DS, Carnes CA, Abraham WT, Bristow MR . Mechanisms of disease: beta-adrenergic receptors — alterations in signal transduction and pharmacogenomics in heart failure. Nat Clin Pract Cardiovasc Med 2005; 2: 475–83.

    CAS  Article  Google Scholar 

  2. 2

    Schwinger RH . Treatment of heart failure with beta-receptor-blockers. Dtsch Med Wochenschr 2002; 127: 682–8.

    CAS  Article  Google Scholar 

  3. 3

    Olson EN . A decade of discoveries in cardiac biology. Nat Med 2004; 10: 467–74.

    CAS  Article  Google Scholar 

  4. 4

    Reiken S, Gaburjakova M, Guatimosim S, Gomez AM, D'Armiento J, Burkhoff D, et al. Protein kinase A phosphorylation of the cardiac calcium release channel (ryanodine receptor) in normal and failing hearts. Role of phosphatases and response to isoproterenol. J Biol Chem 2003; 278: 444–53.

    CAS  Article  Google Scholar 

  5. 5

    Gupta RC, Mishra S, Rastogi S, Sharov VG, Sabbah HN . Improvement of cardiac sarcoplasmic reticulum calcium cycling in dogs with heart failure following long-term therapy with the Acorn Cardiac Support Device. Heart Fail Rev 2005; 10: 149–55.

    CAS  Article  Google Scholar 

  6. 6

    Yano M, Ikeda Y, Matsuzaki M . Altered intracellular Ca2+ handling in heart failure. J Clin Invest 2005; 115: 556–64.

    CAS  Article  Google Scholar 

  7. 7

    Schmitt JP, Kamisago M, Asahi M, Li GH, Ahmad F, Mende U, et al. Dilated cardiomyopathy and heart failure caused by a mutation in phospholamban. Science 2003; 299: 1410–3.

    CAS  Article  Google Scholar 

  8. 8

    Temsah RM, Dyck C, Netticadan T, Chapman D, Elimban V, Dhalla NS . Effect of beta-adrenoceptor blockers on sarcoplasmic reticular function and gene expression in the ischemic-reperfused heart. J Pharmacol Exp Ther 2000; 293: 15–23.

    CAS  PubMed  Google Scholar 

  9. 9

    Wehrens XH, Marks AR . Novel therapeutic approaches for heart failure by normalizing calcium cycling. Nat Rev Drug Disc 2004; 3: 565–73.

    CAS  Article  Google Scholar 

  10. 10

    Ertl G, Bauersachs J . Endothelin receptor antagonists in heart failure: current status and future directions. Drugs 2004; 64: 1029–40.

    CAS  Article  Google Scholar 

  11. 11

    Teerlink JR, McMurray JJ, Bourge RC, Cleland JG, Cotter G, Jondeau G, et al. Tezosentan in patients with acute heart failure: design of the Value of Endothelin Receptor Inhibition with Tezosentan in Acute heart failure Study (VERITAS). Am Heart J 2005; 150: 46–53.

    CAS  Article  Google Scholar 

  12. 12

    Anand I, McMurray J, Cohn JN, Konstam MA, Notter T, Quitzau K, et al. Long-term effects of darusentan on left-ventricular remodelling and clinical outcomes in the Endothelin A Receptor Antagonist Trial in Heart Failure (EARTH): randomised, double-blind, placebo-controlled trial. Lancet 2004; 364: 347–54.

    CAS  Article  Google Scholar 

  13. 13

    Kelland NF, Webb DJ . Clinical trials of endothelin antagonists in heart failure: a question of dose? Exp Biol Med (Maywood) 2006; 231: 696–9.

    CAS  Google Scholar 

  14. 14

    Qi MY, Xia HJ, Dai DZ, Dai Y . A novel endothelin receptor antagonist CPU0213 improves diabetic cardiac insufficiency attributed to up-regulation of the expression of FKBP12.6, SERCA2a, and PLB in rats. J Cardiovasc Pharmacol 2006; 47: 729–35.

    CAS  Article  Google Scholar 

  15. 15

    Dai DZ, Ji M, Huang M, Liu LG . Endothelin receptor antagonist activity and selective blocking the ETA and ETB of Compound 0213. J China Pharm Univ 2004; 35: 552–7.

    CAS  Google Scholar 

  16. 16

    Li L, Chu Y, Fink GD, Engelhardt JF, Heistad DD, Chen AF . Endothelin-1 stimulates arterial VCAM-1 expression via NADPH oxidase-derived superoxide in mineralocorticoid hypertension. Hypertension 2003; 42: 997–1003.

    CAS  Article  Google Scholar 

  17. 17

    Xu FP, Chen MS, Wang YZ, Yi Q, Lin SB, Chen AF, et al. Leptin induces hypertrophy via endothelin-1-reactive oxygen species pathway in cultured neonatal rat cardiomyocytes. Circulation 2004; 110: 1269–75.

    CAS  Article  Google Scholar 

  18. 18

    Zhang TT, Cui B, Dai DZ . Downregulation of Kv4.2 and Kv4.3 channel gene expression in right ventricular hypertrophy induced by monocrotaline in rat. Acta Pharmacol Sin 2004; 25: 226–30.

    CAS  PubMed  Google Scholar 

  19. 19

    Ma YP, Hu HJ, Hao XM, Zhou PA, Wu CH, Dai DZ . Reduced sodium currents in isolated mammalian myocytes treated with chronic L-thyroxine. Drug Dev Res 2003; 58: 111–5.

    CAS  Article  Google Scholar 

  20. 20

    Weil J, Schunkert H . Pathophysiology of chronic heart failure. Clin Res Cardiol 2006; 95 ( Suppl 4): 1–17.

    CAS  Article  Google Scholar 

  21. 21

    Armoundas AA, Rose J, Aggarwal R, Stuyvers BD, O'rourke B, Kass DA, et al. Cellular and molecular determinants of altered Ca2+ handling in the failing rabbit heart: primary defects in SR Ca2+ uptake and release mechanisms. Am J Physiol Heart Circ Physiol 2007; 292: H1607–18.

    CAS  Article  Google Scholar 

  22. 22

    Sucharov CC . Beta-adrenergic pathways in human heart failure. Expert Rev Cardiovasc Ther 2007; 5: 119–24.

    CAS  Article  Google Scholar 

  23. 23

    Armoundas AA, Rose J, Aggarwal R, Stuyvers B, O'Rourke B, Kass DA, et al. Cellular and molecular determinants of altered Ca2+ handling in the failing rabbit heart: Primary defects in SR Ca2+ uptake and release mechanisms. Am J Physiol Heart Circ Physiol 2007; 292: H1607–18.

    CAS  Article  Google Scholar 

  24. 24

    Saliaris AP, Amado LC, Minhas KM, Schuleri KH, Lehrke S, StJohn, M, et al. Chronic allopurinol administration ameliorates maladaptive alterations in Ca2+ cycling proteins and beta-adrenergic hyporesponsiveness in heart failure. Am J Physiol Heart Circ Physiol 2007; 292: H1328–35.

    CAS  Article  Google Scholar 

  25. 25

    Huang F, Shan J, Reiken S, Wehrens XH, Marks AR . Analysis of calstabin2 (FKBP12.6)-ryanodine receptor interactions: rescue of heart failure by calstabin2 in mice. Proc Natl Acad Sci USA 2006; 103: 3456–61.

    CAS  Article  Google Scholar 

  26. 26

    Phrommintikul A, Chattipakorn N . Roles of cardiac ryanodine receptor in heart failure and sudden cardiac death. Int J Cardiol 2006; 112: 142–52.

    Article  Google Scholar 

  27. 27

    Marin-Garcia J, Goldenthal MJ, Moe GW . Selective endothelin receptor blockade reverses mitochondrial dysfunction in canine heart failure. J Card Fail 2002; 8: 326–32.

    CAS  Article  Google Scholar 

  28. 28

    Xia HJ, Dai DZ, Dai Y . Up-regulated inflammatory factors endothelin, NFκB, TNF-α and iNOS involved in exaggerated cardiac arrhythmias in L-thyroxine-induced cardiomyopathy are suppressed by darusentan in rats. Life Sci 2006; 79: 1812–9.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to De-zai Dai.

Additional information

Project supported by the National Natural Science Foundation of China (No 30670760).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Feng, Y., Tang, X., Dai, D. et al. Reversal of isoproterenol-induced downregulation of phospholamban and FKBP12.6 by CPU0213-mediated antagonism of endothelin receptors. Acta Pharmacol Sin 28, 1746–1754 (2007). https://doi.org/10.1111/j.1745-7254.2007.00650.x

Download citation

Keywords

  • heart failure
  • endothelin receptor antagonists
  • phospholamban
  • FKBP12.6
  • propranolol
  • CPU0213

Further reading

Search