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Introduction
It is increasingly clear that all biological processes, in

principal, rely on chemical processes that are governed by
the structure of the participating molecules and their interac-
tions and, thus, the biological processes can be treated as
chemical processes and studied in molecular detail.  The
Human Genome Program was a landmark event for life sci-
ence and has uncovered a large number of novel genes and
provided an unprecedented prospectus for target identifica-
tion and the development of drugs.  However, the function
of these genes cannot be predicted merely from their
structure, thereby demonstrating the need for the system-
atic collection of biological information in addition to the
gene sequence to fully exploit the genomic data.  As a result,
the accumulation of genome sequence data has not resulted

in the anticipated acceleration of novel therapeutic develop-
ments.  We are now facing the exciting but daunting task of
identifying and assigning functions and therapeutic poten-
tials to all 30 000 human genes[1].  To address the latter issue,
a myriad of strategies have emerged to facilitate genomics-
driven target identification and validation.  The “functional
genomics” technologies, such as genetic-based knock-out
and knock-in, RNAi and ectopic expression of targeted genes,
high-throughput cellular profiling of gene and protein
expression, systematic analyses of protein complexes and
bioinformatics, have played active roles in the past few years.
Many of these techniques are used in limited classes of gene
products, but none of the techniques has proven to be the
generally useful strategy that was anticipated[1,2].

Small molecules participate directly in many biological
processes and function in diverse roles, including chemical
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triggers, inhibitors, stimulators and switches.  In contrast,
compared with genetic approaches, the effect of small mol-
ecules is generally fast and reversible because of the me-
tabolism and excretion of the molecules, which enables tran-
sient study of the proteins.  In addition, the effect of small
molecules is tunable because a varying concentration can
result in different degrees of phenotype expression[3].
Therefore, small active molecules, providing a common link
between the fields of chemistry and biology, have long had
an important role in deciphering answers to fundamental bio-
logical questions, especially in the exploration of signaling
networks for cellular activities.  In the past decade, chemical
biology, aimed at studying signaling networks for basic cel-
lular activities using specific, active small molecules as
probes, has developed rapidly.  This rise in chemical biology
greatly accelerates research on molecular mechanisms and
target therapy of diseases, especially in malignant tumors.
Complementary to genetics and genomics, chemical biology
has become an effective tool to study the functions of pro-
teins/genes and important cellular activities[1,4,5].  The recent
explosion of interest in chemical biology combined with
genetic manipulation reflects a fascination with research at
the interface of chemistry and biology, where chemical in-
sights are brought to bear on exciting biological and bio-
medical problems[6].

Leukemia, a heterogeneous group of hematopoietic ma-
lignancies that occurs worldwide, includes acute/chronic and
myeloid/lymphocytic leukemias.  Despite many important
advances in understanding the biological, molecular and
cytogenetic aspects of leukemia, as well as in the diagnosis
and therapy of leukemia, the most people will die of their
diseases[7,8].  Obviously, it is imperative to understand the
pathophysiological mechanisms of leukemia and to explore
new therapeutic strategies.  It has been widely understood
that various kinds of leukemias present specific cytogenetic
alterations, especially chromosome translocations, that gen-
erate abnormal oncogenic fusion proteins[9].  These alter-
ations disrupt the normal signaling and cause uncontrolled
proliferation, blocked differentiation and/or damaged
apoptosis.  Because of these genetic and cellular features,
and because of the ease of capture of leukemia samples and
the relatively convenient evaluation of therapeutic effects,
small molecule-based chemical biology has been widely used
with leukemia and important progress has been achieved
over the past two decades.  Based on several examples, mainly
from our own work, this review will outline the advances of
chemical biology in understanding molecular mechanisms
of cell differentiation and apoptosis induction and target
therapy of leukemia.

All-trans retinoic acid-based chemical biology
of leukemia

An important feature of acute myeloid leukemia (AML),
which accounts for 75% of all acute leukemias, is the block-
age of the differentiation of myeloid cells at different stages.
Over the past 20 years, many studies have explored the dif-
ferentiation-inducing agents for leukemic cells.  A typical
and successful example is the discovery of all-trans retinoic
acid (ATRA) as a differentiation-inducing drug for acute
promyelocytic leukemia (APL)[10], a unique subtype of AML
that is defined by blockage at the promyelocytic stage of
myeloid cell maturation.  Using cytogenetic analysis, it has
been shown that over 95% of patients with APL carry spe-
cific chromosome translocation t(15,17), which leads to the
fusion of the promyelocytic leukemia (PML) gene on chro-
mosome 15 and the retinoic acid receptor-alpha (RARα) gene
on chromosome 17, and the generation of PML-RARα
fusion protein[11].  A series of in vitro and in vivo works,
including those from transgenic mice[12], have shown that
this fusion protein plays a critical role in the pathogenesis of
APL via interfering functions of wild-type PML, RARα and
its heterodimeric partner retinoid X receptor (RXR), as well
as obtaining its new functions, as widely reviewed[13–15].  As
widely confirmed, ATRA can induce complete clinical
remission, although retinoid resistance and relapse frequently
occur[16].  Because ATRA can cleave the PML-RARα fusion
protein and, more importantly, it can potently drive AML
cells to undergo differentiation, ATRA as a probe has greatly
promoted our understanding of signaling pathways of leu-
kemogenesis and leukemic cell differentiation.  Using chemi-
cal and biological studies based on ATRA and other differ-
entiation-inducing agents, such as phorbol 12-myristate 13-
acetate (PMA) and vitamin D3, many differentiation and leu-
kemogenesis-related molecules, such as CCAAT/enhancer
binding protein (C/EBP), nuclear corepressors (N-CoR), Sin3A
and histone deacetylase (HDAC), have been examined[17,18].
Vice versa, knowledge of these differentiation-related mol-
ecules has also led to the development of new differentia-
tion agents, such as HDAC inhibitor valproic acid[19].

As an example, phospholipid scramblase 1 (PLSCR1) is a
multiply palmitoylated protein that is localized in either the
cell membrane or nucleus depending on its palmitoylated
state.  Increasing evidence has demonstrated the biological
role of PLSCR1 in cell signaling, maturation and apopto-
sis[20].  ATRA can elevate PLSCR1 expression in ATRA-sen-
sitive APL cells NB4 and HL60, but not in maturation-
resistant NB4-LR1 cells.  Furthermore, PMA, but not dim-
ethyl sulfoxide (DMSO), sodium butyrate or vitamin-D3-
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induced leukemic cell differentiation, is also accompanied
by increased PLSCR1 protein[20] .  Based on the fact that
ATRA and PMA can activate protein kinase Cdelta (PKCδ)
by phosphoryla-tion, PKCδ-specific inhibitor rottlerin is
shown to nearly eliminate ATRA-induced and PMA-induced
PLSCR1 expression, whereas ectopic expression of a consti-
tutively active form of PKCδ directly increases PLSCR1
expression[21].  Thus, PKCδ is proposed to exert a critical role
in ATRA-induced or PMA-induced PLSCR1 expression.
Furthermore, interferon upregulates PLSCR1 by sequential
activation of PKCδ, JNK and STAT1[22].  In contrast, decreas-
ing PLSCR1 expression with small interfering RNA (siRNA)
inhibits ATRA/PMA-induced differentiation[21], whereas in-
ducible PLSCR1 expression induces growth arrest at the G1

phase and granulocyte-like differentiation together with in-
creased sensitivity to apoptosis induction[23].  All these data
support the anti-leukemia role of PLSCR1, although its exact
molecular mechanisms need to be further investigated.  In
agreement with this notion, M2, M5a, and M5b type AML
cells present lower levels of PLSCR1 than normal bone mar-
row cells, and the PLSCR1 mRNA level is associated with
significantly longer overall survival[24].

Arsenic trioxide-based chemical biology of
leukemia

Following the successful practice of ATRA, several
research groups in China, including ours, reported impres-
sive clinical response rates in patients with APL who had
received arsenic trioxide (As2O3), a common naturally occur-
ring substance.  Subsequently, clinical studies conducted in
other nations confirmed earlier reports and As2O3, commer-
cial name Trisenox (Cell Therapeutics, Seattle, WA, USA),
was approved by the Food and Drug Administration for the
treatment of relapsed/refractory APL[25–32].  Later, single-
agent As2O3-induced durable remission with minimal toxic-
ity in the newly diagnosed APL was also reported[33–35].  Fol-
lowing these successful experiences, the mechanisms of
As2O3 action on APL cells and other cancer cells have been
attracting wide interest and great progress has been
made[36–38].  In brief, As2O3 can rapidly modulate the subcel-
lular localization of PML and PML-RARα proteins and
degrade PML-RARα protein[39–41].  In a cytological direction,
As2O3 induces apoptosis in an impressive array of cancer
cells in addition to APL[42], in which various kinds of mecha-
nisms have been documented[43,44].  However, the clinical
effectiveness of As2O3 appears to be restricted to APL,
although clinical studies have shown that As2O3-based regi-
mens are clinically active in patients with relapsed/refrac-

tory multiple myeloma (MM)[45].  In contrast, in vivo obser-
vations in APL patients and animal models show that As2O3

can induce partial differentiation of APL cells[27,41,46].  Hence,
the in vitro differentiation-inducing effect of As2O3 was
investigated in APL cells.  Indeed, a relatively longer treat-
ment of low-dose As2O3 (0.1–0.5 µmol/L) induces APL cells
to undergo partial differentiation[41,47].  However, it appears
that it is not more significant than its in vivo activity.  Thus,
we speculated that some factors in the bone marrow (BM)
microenvironment could modulate the in vivo activity of
As2O3.  Towards this end, we considered that oxygen con-
centration may be one such factor that impinges on the in
vivo action of As2O3 based on the following facts: leukemic
cells are cultured in vitro at ambient oxygen, whereas in vivo
cells are physiologically exposed to much lower oxygen lev-
els ranging from 16% in pulmonary alveoli to less than 6% in
most peripheral organs of the body.  Oxygen levels of BM in
AML patients may be decreased as a result of the fast growth
of leukemic cells, and are possibly further aggravated by the
anemia that often accompanies newly diagnosed AML
patients, although leukemic cells do not form a well-circum-
scribed “mass” in BM like they do in solid tumors.  More
importantly, angiogenesis, which increases blood supply and
oxygen tension, is also vital in the pathogenesis of different
hematologic malignancies and provides an independent pre-
dictor of outcome in adults with AML, while the anti-angio-
genic effects of chemotherapeutic and other novel drugs for
the treatment of leukemia, such as ATRA and As2O3, might
contribute to their therapeutic potentials.  We investigated
whether low oxygen tension impacts on the action of As2O3

on APL cells.  Unexpectedly, cobalt chloride (CoCl2)/desfer-
rioxamine (DFO)-mimicked hypoxia or moderate hypoxia (2%
and 3% O2) can directly trigger AML cells to undergo differ-
entiation both in vitro and in vivo[48–50].  The differentiation-
inducing effect of As2O3 on APL cells is also enhanced by
hypoxia mimetic agents[51].  Using chemical interference,
inducible expression and siRNA technology, it is confirmed
that hypoxia-inducible factor (HIF)1α exerts a critical role in
this event, possibly in a transcription activity independent
manner[49,52].  Furthermore, HIF-1α interacts with and
increases the transcription activities of two known hemato-
poiesis transcription factors, AML1 and CCAAT/enhancer
binding factor-alpha (C/EBPα)[49,53-55].  A low concentration
of Tiron, a non-toxic chelator used to alleviate acute metal
overload, has recently been shown to be a potent inducer of
cell differentiation in human promyelotic HL-60 leukemia cells
via increased HIF-1α and C/EBPα[56].  Intriguingly, HIF-1α is
dysregulated in a murine APL model[57].  Nguyen-Khac also
recently reported that hypoxia accelerates the differentia-
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tion of normal CD34+ cells, whereas TEL-ARNT fusion
protein, which results from t(1;12)(q21;p13), inhibits hypoxia-
induced normal progenitor cell differentiation through the
interaction of TEL-ARNT with HIF-1α [58,59].

Apoptosis induction-based chemical biology of
leukemia

As an intrinsic cell death program, apoptosis plays a criti-
cal role in the tissue homeostasis of multicellular organisms,
especially in organs, such as the hematopoietic system, where
high rates of daily cell production are offset by rapid cell
turnover.  Indeed, the hematopoietic system provides numer-
ous examples to show the importance of apoptotic cell death
for achieving the control of homeostasis.  Correspond-ingly,
disorder of the apoptosis machinery would cause various
diseases.  For example, damaged apoptosis exerts an impor-
tant role in the pathogenesis and resistance to chemothera-
peutic drugs of cancers including leukemia[60].  Therefore, to
understand the core molecular mechanisms of the apoptosis
machinery has become an important and interesting research
direction.

Over the past years, much progress has been achieved
in understanding the molecular mechanisms of initiation and
regulation of apoptosis.  In brief, apoptosis is mainly caused
by the activation of intracellular aspartate-specific proteases,
known as caspases, with over 10 members (eg, caspase-8, 9
and 3).  The mechanisms of caspase activation by apoptosis
inducers have been the center of much attention in recent
years.  To date, two pathways of caspase activation and,
thus, apoptosis have been elucidated in great detail, that is,
the mitochondria-centered intrinsic and death receptor-me-
diated extrinsic pathways.  As for the former, multiple sig-
nals cause dysfunction of mitochondria, especially disrupted
mitochondrial transmembrane potentials, which leads to the
release of apoptogenic proteins, such as cytochrome c, sec-
ond mitochondrial activator of caspase (Smac) and apoptosis-
inducing factor (AIF), into the cytosol.  Cytochrome c binds
the apoptotic protease-activating factor 1 (Apaf1) and forms
the apoptosome together with procaspase-9.  In this
multiprotein structure, caspase-9 is activated and then acti-
vated caspase-9 activates downstream effector caspases,
mainly procaspase-3.  In the extrinsic apoptotic pathway,
death receptors such as Fas, containing a cytosolic death
domain (DD), cluster in membranes when they bind to their
ligands, which recruits caspase-binding adaptor proteins,
such as the Fas-associating protein with death domain
(FADD) that contains both a death domain (DD) and a death
effector domain (DED).  The DED of FADD binds DED-con-

taining procaspases (eg caspase-8 and caspase-10), forming
a death-inducing signaling complex (DISC) and resulting in
downstream effector caspase-3.  The activated caspase-3
cleaves numerous cellular target proteins, which in aggre-
gate produce an apoptosis-characteristic morphology and
biochemical alterations.  In contrast, apoptosis machinery is
also regulated by many proteins, including bcl-2 family
members, inhibitors of caspases, oncoproteins and tumor-
suppressing protein, and other signaling molecules.  Thus, a
delicate balance between pro-apoptotic and anti-apoptotic
regulators of apoptosis pathways is essential to ensure the
survival of long-lived cells and the proper turnover of short-
lived cells in a variety of tissues.

During these great advances on apoptosis, chemical
approaches with small-molecule apoptosis inducers and in-
hibitors as probes provided a huge help.  In fact, a lot of
information on cell apoptotic processes was contributed by
chemical biological investigations[61].  For example, wild p53
was found to actively mediate the apoptosis of the hemato-
poietic cells by depriving the cells of specific growth factors,
such as IL-3, and p53 might be involved in the response of
myeloid precursors to environmental cytokines for the main-
tenance of hematopoietic homeostasis[62].  Recently, we
reported that nanomolar concentrations of NSC606985, a
rarely studied camptothecin analog, induces apoptosis in
AML cells through the rapid proteolytic activation of PKCδ,
followed by the loss of mitochondrial transmembrane poten-
tial and caspase-3 activation[63].  Furthermore, the potential
therapeutic effect of this agent on AML mice generated by
syngenic grafts of leukemic blasts from transgenic mice with
PML-RARα was also shown[64].  Moreover, inducible
expression of AML1-ETO, a fusion gene of the AML1 gene
on chromosome 21 with the ETO (eight-twenty-one) gene
on chromosome 8, endows leukemic cells with susceptibility
to NSC606985 and other insult-induced apoptosis[65].  Using
subcellular and quantitative proteomic analyses, moreover,
we found a set of unique deregulated proteins in NSC606985-
induced apoptotic AML cell line NB4 cells, including 16 com-
partment-compartment translocated ones.  These proteins
contributed to multiple functional activities, such as DNA
damage repair, chromosome assembly, mRNA processing,
biosynthesis, modification and degradation of proteins
(Figure 1)[66].  These discoveries shed new insights for sys-
tematically understanding the mechanisms of camptothecin-
induced apoptosis.

In contrast, the application of chemical biology in under-
standing the core components of the apoptosis machinery
at the molecular and structural levels aids the discovery of
many new potential therapies for leukemia, as reviewed by
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Reed and Pellecchia[67].  For instance, Bcl-2 family was
recently raised up as the drug target for leukemia.  The com-
mon aberrant expression of Bcl-2 in chronic lymphocytic leu-
kemia (CLL) was proposed to confer CLL B-cell the unusual
feature of resistance to undergoing apoptosis and dying
properly, which is associated with leukemogenesis, poor re-
sponse to chemotherapy and decreased overall survival of
CLL.  Consequently, selective apoptosis induction of malig-
nant cells by interfering Bcl-2 is growing as a potential basic
therapeutic strategy.  In the past years, various apoptosis
inducing and regulating drugs or lead compounds, includ-
ing anti-apoptotic Bcl-2 or Bcl-XL expression regulating drugs
(such as synthetic retinoic acid and inhibitor of histone

deacetylase) and drugs directly binding to Bcl-2 or other
anti-apoptosis proteins (such as Gossypol isolated from
cottonseed, HA14-1, BH3I-1, and BH3I-2, GX15-070) have
been discovered.

AML cells are also characterized by constitutive and
abnormal activation of the nuclear factor-kappaB (NF-κB)
transcription factor.  In addition, NF-κB also plays a crucial
role in the pathogenesis, survival and resistance to apoptosis
of HTLV-I-infected leukemic cells[68], B-cell chronic lympho-
cytic leukemia (B-CLL)[69], which is also supported by the
fact that the PML can enhance the sensitivity of TNF-α in-
duced apoptosis through the repression of the NF-κB sur-
vival pathway[70], while transfection of a dominant-negative

Figure 1.  Ideogram illustration of the proteins involved in NSC606985-induced NB4 cell apoptosis.  With NSC606985, a camptothecin
analog, as an apoptosis-inducing probe, we analyzed protein expression profiles of fractionated nuclei, mitochondria, raw endoplasmic reticula
and cytosols of NSC606985-induced apoptotic AML cell line NB4 cells using two-dimensional electrophoresis combined with MALDI-TOF/
TOF tandem mass spectrometry.  A total of 90 unique deregulated proteins, including 16 compartment–compartment translocated proteins,
were identified.  These proteins contributed to multiple functional activities, such as DNA damage repair, chromosome assembly, mRNA
processing, biosynthesis, modification and degradation of proteins.  With their functional analyses, the possible roles of these deregulated
proteins in NSC606985-induced apoptosis were demonstrated using an ideogram illustration.  Upregulated proteins are marked in red and the
downregulated proteins are marked in green.  Modified proteins are marked with blue.  All abbreviations are derived from the Swiss-Prot
database.



Http://www.chinaphar.com Chen GQ et al

1321

mutant NF-κB inhibitor represses p53-dependent apoptosis
in acute lymphoblastic leukemia cells (ATL)[71].  Taken
together, NF-κB is a suitable target for the prevention and
treatment of ATL[68].  Interestingly, a specific pharmacologi-
cal inhibitor of AS602868 could block NF-κB activation and
lead to apoptosis of human primary AML cells.  Moreover,
AS602868 potentiated the apoptotic response induced by
the current chemotherapeutic drugs doxorubicin, cytarabine
and etoposide (VP16).  In addition, NF-κB inhibition did not
affect normal CD34+ hematopoietic precursors, suggesting
that it could represent a new adjuvant strategy for AML
treatment[72].  At the same time, indole-3-carbinol, found in
brassica species vegetables (such as cabbage, cauliflower
and brussels spouts), can inhibit NF-κB and NF-κB-regu-
lated gene expression and this mechanism may provide the
molecular basis for its ability to suppress tumorigenesis and
clinical application[73].

Leukemogenic fusion proteins-based chemi-
cal biology

Different types of leukemia usually have specific chro-
mosome translocations that cause the activation of onco-
genes and, in particular, the formation of abnormal fusion
genes, such as AML1-ETO[74–76], a fusion protein generated
by t(8,21) translocation that occurs in approximately 12% of
all AML and 40% of M2-type AML.  These fusion proteins
play a pivotal role in leukemogenesis.  Thus, using some
small molecules to destroy them or to inhibit their activities
may become an effective method to treat the corresponding
type of leukemia, while these active small molecules would
be more useful for understanding leukemogenic mechanisms
of these fusion proteins.  The destruction of PML-RARα by
ATRA and As2O3 is a good model.  Another typical example
is the discovery of Bcr-Abl kinase inhibitor imatinib mesylate
(also called Gleevec, STI571)[77].  Bcr-Abl is a constitutively
active, cytoplasmic tyrosine kinase that is produced by t(9;
22) translocation in more than 95% of chronic myelogenous
leukemia (CML) and about half of patients with adult-onset
acute lymphoblastic leukemia (ALL).  The central role of Bcr-
Abl kinase in leukemogenesis promoted it as an ideal target
for drug screen to treat CML.  Hence, imatinib was discov-
ered as a tyrosine kinase inhibitor and was introduced into
the armamentarium of drugs for the treatment of CML and
has since revolutionized its management[77].  Imatinib has a
high affinity for the ATP-binding site of Abl, and clinical
trials have validated the promise of this molecular targeted
therapy.  In the more advanced phases of CML, imatinib was
able to induce a major (complete or partial) cytogenetic
response in 16%–60% of CML patients.  In a phase III trial

comparing imatinib with interferon-α plus cytosine arabino-
side in newly diagnosed chronic phase CML, 85% of
patients treated with imatinib attained a major cytogenetic
response after a median follow-up of 19 months, compared
to 22% in patients treated with the latter combination.  A
recent update has shown a further increase in major cytoge-
netic response of up to 92% of patients in the imatinib arm
after a median follow-up of 54 months.  In view of its high
efficacy and low toxicity, imatinib has now replaced inter-
feron-α as the frontline treatment for CML patients who are
not eligible for allogeneic stem cell transplantation.
Meanwhile, the application of imatinib as a probe greatly
improved our understanding of Bcr-Abl-targeted signaling
pathways, and has revealed a complex web of signals that
promote cell division and survival[78].

Imatinib is now frontline therapy for CML, but resistance
is increasingly encountered, which has dampened the initial
enthusiasm for this much heralded “magic bullet”.  It has
been shown that resistance to imatinib in CML occurs
through the selection of tumor cells harboring Bcr-Abl
kinase domain point mutations that interfere with drug
binding.  To date, at least 73 different point mutations lead-
ing to the substitution of 50 amino acid residues in the Abl
kinase domain have been isolated from CML patients resis-
tant to imatinib.  Crystallographic studies revealed that
imatinib binds to the ATP-binding site of Abl only when the
activation loop of the kinase is closed and stabilizes the
protein in this inactive conformation.  Thus, most imatinib-
resistant mutants should remain sensitive to inhibitors that
bind Abl with less stringent conformational requirements.
Based on this notion, an orally bioavailable Abl kinase
inhibitor called Dasatinib (BMS-354825) has been examin-
ed[79], which presents a two-log increased potency relative
to imatinib that retains activity against 14 of 15 imatinib-
resistant Bcr-Abl mutants.  Clinical trials of Dasatinib in
imatinib-resistant and imatinib-intolerant CML and Ph chro-
mosome-positive ALL are currently in progress[80–82].

Conclusion
The rapid rise of chemical approaches, that is, studying

signaling networks using basic cell activities with specific,
active small molecules as probes, greatly accelerates research
on the molecular mechanisms of disease and target therapy,
especially in malignant tumors such as leukemia.  With the
application of chemical approaches combined with genetic
manipulation, significant progress on the basic knowledge,
diagnosis and therapy of leukemia has been achieved over
the past few decades.  In particular, discoveries of the clini-
cal effectiveness of ATRA and As2O3 in the treatment of APL
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and of Bcr-Abl kinase inhibitor Imatinib and Dasatinib in the
treatment of CML not only make target therapy of leukemia a
reality, but also push mechanisms of leukemogenesis and
leukemic cell activities forward.  These successful practices
are attracting wide interest on the application of a chemical
approach in leukemia and other cancers.
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