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From blood to brain: amoeboid microglial cell, a nascent macrophage
and its functions in developing brain1
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Abstract
Amoeboid microglial cells (AMC) in the developing brain are active macrophages.
The macrophagic nature of these cells has been demonstrated by many methods,
such as the localization of various hydrolytic enzymes and the presence of comple-
ment type 3 surface receptors in them.  More importantly is the direct visualization
of these cells engaged in the phagocytosis of degenerating cells at the ultrastruc-
tural level.  Further evidence of them being active macrophages is the avid inter-
nalization of tracers administered by the intravenous or intraperitoneal routes in
developing rats. The potential involvement of AMC in immune functions is sup-
ported by the induced expression of major histocompatibility complex class I and
II antigens on them when challenged by lipopolysaccharide or interferon-γ.  Im-
munosuppressive drugs, such as glucocorticoids and immune function-enhanc-
ing drugs like melatonin, affect the expression of surface receptors and antigens
and the release of cytokines by AMC.  Recent studies in our laboratory have
shown the expression of insulin-like growth factors, endothelins, 2',3'-cyclic nucle-
otide 3'-phosphodiesterase, and N-methyl-D-asparate receptors.  This along with
the release of chemokines, such as stromal derived factor-1a and monocyte
chemoattractant protein-1, suggests multiple functional roles of AMC in early
brain development.
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Introduction
Amoeboid microglial cells (AMC), the nascent form of

ramified microglia that persist in the adult brain, are present
ubiquitously in the brain during fetal and early postnatal
development.  They are present transiently until 10–14 d of
age (Figure 1A) when all of them transform into the adult,
ramified microglial cells (Figure 1B).  There is recent evi-
dence that the ramification of AMC may be regulated by
cytoskeletal elements as transfection of the cells with a cy-
toskeleton-related gene, in particular, juxtanodin has resulted
in the branching of the cells assuming a ramified external
morphology (Figure 2).  AMC exist singly or in clusters in
the subventricular white matter.  Other areas in which AMC
are preponderant include the cavum septum pellucidum and
subependymal cysts closely associated with the third and
fourth ventricles and the cerebral aqueduct.  In the brain
tissue, the cells are widely distributed; some of them may be

spatially associated with neurons, blood vessels, or dis-
persed freely.  The close association of AMC to blood ves-
sels has been reported in many areas of the brain[1–3].

The origin and mode of the formation of AMC has been a
contentious issue for decades, and many theories had been
proposed since the first description of a cellular “third ele-
ment” other than neurons and neuroglia[4] and identification
of microglia by del Rio-Hortega[4,5].  Three hypotheses have
been put forward in relation to the origin of microglia: (i)
mesodermal[6,7]; (ii) neuroectodermal[8–10]; and (iii) mono-
cytic[11–13] .  Investigations carried out in our laboratory over
the past 3 decades tend to support the monocytic origin of
AMC, although the possibility that these cells may be de-
rived by direct invasion of fetal macrophages cannot be
excluded[14].  We have shown that circulating monocytes
invade the brain during embryonic and early postnatal life
and then transform into AMC; hence, they are monocyte-
derived brain macrophages like other tissue macrophages.
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Nature of AMC
AMC are multifunctional immune cells in the developing

central nervous system (CNS) that play an important role in

the defense of neural parenchyma.  Early studies have shown
AMC to be active macrophages in the developing brain[13,15],
removing cellular debris during normal development as well
as in pathological conditions.  Besides their scavenging
function, AMC may also exert a cytotoxic effect through the
secretion of toxic factors, such as nitric oxide[16].  Recent
studies in our laboratory have greatly amplified the func-
tional roles of these cells during development, in addition to
their primary role in phagocytosis.

AMC function as phagocytes  The phagocytic nature of
AMC has been shown by various methods and observations,
including the localization of hydrolytic enzymes, ultrastruc-
tural features shared by tissue macrophages, uptake of ex-
ogenous substances, and the activation of surface recep-
tors and antigens related to phagocytosis.

Hydrolytic enzymes  Our early cytochemical studies
have shown the presence of hydrolytic enzymes, including
acid phosphatase, aryl phosphatase, non-specific esterase
and 5'-nucleotidase in the lysosomes in AMC[12,17,18].  The
high contents of these hydrolytic enzymes in AMC sug-
gested that these cells were active macrophages.  This ob-
servation is supported by recent studies which have reported
the localization of hydrolytic enzymes, such as acid phos-
phatase in macrophages, in the pineal gland[19].  A study
investigating the ability of peritoneal, alveolar, and splenic
macrophages and Kupffer cells to kill pathogens[20] reported
that acid phosphatase activity was significantly increased
in macrophages which ingested the pathogens and killed
them.  In vitro studies have shown that AMC were phago-
cytic and possessed non-specific esterase activity[21].  With
time, these cells transform into ramified microglia-like cells
and lose their phagocytic property as well as non-specific
esterase content[21].

Ultrastructural observations  Ultrastructural studies
carried out in our laboratory in the normal postnatal brain
and in the brains of rats subjected to hypoxia or Escheria
coli(E coli) treatment have supported the phagocytic prop-
erty of AMC.  The macrophagic nature of AMC was evi-
denced by their engagement in the phagocytosis of degen-
erating axons and cells in the normal developing brain[22].
Under the electron microscope, some AMC in the corpus
callosum of postnatal rats were observed to extrude por-
tions of their cytoplasm which were phagocytosed by
neighbouring AMC[22].

In the fetal and postnatal rat brains, AMC were found to
phagocytose dead cells in the brain after transient maternal
hypoxia[23].  Neonatal rats exposed to hypoxia also showed
AMC in the corpus callosum engaged in the phagocytosis
of apoptotic cells[24] and degenerating axons[16].  Further evi-

Figure 2.  Ramification of AMC (arrows) can be induced by transfec-
tion with a cytoskeleton related gene-juxtanodin (orange).  Scale
bar=50 µm.

Figure 1.  (A) Lectin-labeled amoeboid microglial cells (arrows) in the
corpus callosum of a 5-d-old rat showing a round morphology with some
thick processes.  (B) Ramified lectin-labeled microglial cells (arrows) are
seen in the adult corpus callosum.  Scale bar=10 µm.
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dence of the phagocytic nature of AMC comes from their
involvement in the removal of E coli introduced directly into
the neonatal brain.  Many of the injected E. coli were se-
questered by AMC in less than 3 h[25].  It was concluded from
these observations that AMC form a protective barrier which
is deemed to be necessary in the early developmental period
when the blood-brain barrier (BBB) is deficient.

Tracer studies  It is well established that the BBB in the
developing brain is immature.  Administration of tracers, such
as rhodamine isothiocyanate and horseradish peroxidase
(HRP), intraperitoneally or intravenously, resulted in the label-
ing of AMC in the corpus callosum and other regions[26,27].
This suggested that substances in circulation leaked through
the immature BBB and were phagocytosed by AMC.  An-
other tracer, biotinylated dextran, when injected in various
areas of the brain far removed from the corpus callosum, also
resulted in the labeling of AMC[28].  It was concluded that
AMC become labeled by ingesting the tracer which diffused
slowly through the extracellular spaces from the injection
site.  Injection of HRP in the lumbosacral region of the spinal
cord also resulted in the labeling of AMC in the corpus cal-
losum[29].  The results suggested an ascending diffusion of
the injected HRP in the spinal cord via wide interstitial spaces
to reach the cerebrum where it was engulfed by the AMC.

ED1 antigens  Further support to the macrophagic na-
ture of AMC was lent by the expression of ED1 antigens on
these cells.  ED1 antigens are expressed by cells of mono-
cyte/macrophage lineage[30].  These antigens were expressed
by AMC in the fetal[31] and postnatal period[32], but not in
adult rats.

Complement type 3 receptors  Complement type 3 re-
ceptors (CR3) were detected on the cell membranes of AMC
by using the antibody OX-42.  It was proposed that these
receptors are related to the active role of AMC in endocyto-
sis[33].  This was supported by reports that CR3 receptors on
monocytes and their derivative macrophages mediate en-
docytosis[34–37].

Lectin histochemistry  Microglial cells engulfing py-
knotic and fragmented nuclei of cells undergoing programmed
cell death have also been visualized by use of lectin his-
tochemical staining in conjunction with cresyl violet coun-
terstaining[38].

Antigen presentation  Although the CNS, under normal
conditions, has been considered an immunologically privi-
leged site for a long time, our studies showed for the first
time that major histocompatibility class (MHC) I antigens
were expressed by AMC[39].  MHC antigens are surface mol-
ecules required for the participation of macrophages in the
activation of T lymphocytes by presenting certain antigens

to them.  MHC I antigens serve as restriction elements for
cytotoxic/suppressor lymphocytes[40,41].  The expression of
these antigens on AMC was related to their phagocytic ac-
tivity[39].  The presence of MHC I antigens on AMC also
suggests that these cells are ready to interact with infiltrat-
ing lymphocytes as the BBB is immature in the developing
brain and the danger of a potential immune threat in early
development may be present.

MHC II antigens, required for interaction with helper/
inducer T lymphocytes, on the other hand, are not expressed
by AMC under normal conditions.  The expression of MHC
II is induced under pathological and experimental conditions,
for example, these antigens are expressed when the cells are
challenged with lipopolysaccharide (LPS)[42] or with inter-
feron-γ (IFN-γ)[43].  MHC II expression on AMC was also
induced on the introduction of live E coli in their vicinity[25].
The expression of these antigens on AMC under pathologi-
cal conditions suggests that they have the capability of in-
teracting with helper/inducer cells to mount a potential im-
mune response.

Other protective functions  AMC in the developing brain
express transferrin receptors[32] which facilitate the acquisi-
tion of iron needed for various functions of cells.  As trans-
ferrin receptors are also important for the proliferation of
cells, they may be involved in the differentiation and matura-
tion of AMC.  Additionally, the presence of these receptors
on AMC may serve a protective function to sequester ex-
cess iron for storage in pathological conditions where there
is an excessive influx of iron into the brain.  In support of
this, the increased expression of transferrin receptors and
iron was reported[44] in AMC in newborn rats subjected to
hypoxia.  Hypoxia/reoxygenation is known to increase the
iron content of the brain in newborn animals[45].  Excess iron
not safely sequestered in storage is hazardous as it pro-
motes the formation of free radicals[46], resulting in oxidative
tissue damage.

AMC in the developing brain, especially in the white
matter tracts, are also thought to promote axonal growth[47].
Cultured microglial cells derived from neonatal rat brains and
transplanted into injured spinal cords enhanced the regen-
eration and elongation of spinal cord axons[48] indicating
their involvement in axonal growth.  In the developing white
matter, AMC have also been reported to function as guides
for developing axons, perhaps through the manufacture of
extracellular matrix molecules, such as thrombospondin[49,50].

Insulin-like growth factors  Insulin-like growth fac-
tor (IGF) I and II are known to regulate the development of
the nervous system[51].  IGF-I plays an important role in pro-
moting cell proliferation and differentiation[52] in the devel-
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oping brain.  The role of IGF II during postnatal develop-
ment of the brain is less clear.  Our recent study[53] has shown
the expression of IGF-I and IGF-II in AMC.  The expression
of IGF-I and IGF-II was markedly enhanced in the cells by
LPS, but was significantly suppressed with all-trans retinoic
acid (RA).  From these findings, it was suggested that IGF-I
expression in AMC may be linked to the state of cell activation.
IGF-I has been shown to enhance phagocytic activity of
neutrophils in vitro when they were challenged with E coli[54].
It was demonstrated by Inoue et al[55] that IGF-I increased
the killing capacity and phagocytosis of peritoneal macroph-
ages when they were activated by E coli.  IGF-I expression in
AMC may also have paracrine functions, such as the modu-
lation of the proliferation and development of the oligoden-
drocytes and myelination, as it has been considered as an
important factor for oligodendrocyte survival and myelina-
tion[56,57].  Although the exact function of IGF-II in the devel-
oping brain is not clear, its pattern of association with oligo-
dendrocytes and myelin suggests that it may also play a role
in myelination[58,59] or in the phagocytic activity of AMC.
IGF-I may also be related to the antigen-presenting function
of AMC as it is known to stimulate the proliferation of immu-
nocompetent cells and modulate the cellular immune func-
tions of neutrophils and macrophages[60].

Nitric oxide  Nitric oxide (NO) is synthesized from
L-arginine by the family of NO synthase (NOS) enzymes.
NOS from neurons and endothelial cells are constitutively
expressed enzymes, the activities of which are calcium de-
pend-ent.  Inducible NOS (iNOS), which is calcium-indepen-
dent and NO-generated from this isoform, is known to medi-
ate immune functions.  NO production in macrophages has
been described to have protective or destructive functions.
NO production by macrophages is stimulated by various
pathogens, such as bacteria, viruses, and parasites[61–63] and
has a role in their phagocytic activity[64].  The overproduc-
tion of NO however has toxic effects as it leads to the forma-
tion of toxic reactive nitrogen intermediates which can have
deleterious effects[65].

It has been reported that activated microglial cells in the
white matter may contribute to perinatal brain injury[66]

through the secretion or production of noxious substances.
NO production in the corpus callosum in response to hy-
poxia was found to increase in the neonatal brain along with
iNOS expression in AMC[16,67].  In vitro studies have shown
that NO produced by AMC is highly damaging to the oligo-
dendrocytes resulting in their lysis[68].  The induction of iNOS
in the activated microglia contributed to tissue injury
through NO overproduction in fetal brain injury caused by
umbilical cord occlusion[69].  The sustained production of

NO endows macrophages with cytotoxic activity against
viruses, bacteria, and fungi[70].  On the other hand, NO has
suppressive effects on lymphocyte proliferation and can
damage  normal host cells[70] which can be deleterious.

Glutamate receptors  The weak expression of NMDA
(N-methyl-D-asparate) receptor subtype 1 (NMDAR1) was
localized in AMC in the corpus callosum in the neonatal
brain.  This may facilitate the cells to be responsive to the
release of glutamate from the neighboring callosal axons
undergoing degeneration in the remodeling of the develop-
ing brain.  The expression of NMDAR1 on AMC was en-
hanced in response to hypoxia[16].  This may be linked to the
elevation of extracellular glutamate in the white matter in
hypoxia/ischemia, which has been described to be possibly
due to the release from damaged axons[71].  Excess glutamate
leads to toxicity and death of oligodendrocyte progenitors[72].
Immunostimulated microglia have been reported to enhance
the NMDA receptor-mediated excitotoxicity in part through
the expression of iNOS[73].  The expression of NMDA re-
ceptors on microglial cells has also been reported in
excitotoxic lesions in mice[74].  Although the expression of
NMDAR1 receptors on AMC has been reported to have det-
rimental effects in the developing brain, they may have a
protective role by sequestering excess glutamate released
by degenerating axons.

Inflammatory response  Microglial cells play an impor-
tant role in the development of an inflammatory response in
the developing brain[75].  They are thought to cause damage
to axons and the developing oligodendrocytes by releasing
inflammatory cytokines, such as interleukin (IL)-1β and
tumor necrosis factor (TNF)-α in many pathological condi-
tions, such as hypoxic–ischemic conditions, and have been
shown to express both p55TNFαR1 and p75TNFαR2 recep-
tors[76].  Aberrant TNF-α/p55TNFαR1 signaling in the CNS
can have a potentially major role in CNS pathologies in which
oligodendrocyte death and demyelination is a primary patho-
logical feature[77].  Besides their inflammatory actions,
cytokines IL-1β and TNF-α may also be involved in the tran-
scriptional activation of the iNOS gene[78,79].  Microglia in
the developing brain have also been shown to express the
chemokine receptor CCR5 until 2 weeks of age[80,81].  It was
proposed that CCR5 were involved in microglial recruitment
and activation during brain development and after neonatal
brain injury, such as hypoxic-ischemic injury.

Endothelins  Endothelins (ET), consisting of 3 subtypes,
ET-1, ET-2, and ET-3, are multifunctional peptides produced
by a wide variety of cells under normal and pathological
conditions.  Besides basal vasoconstriction, they are known
to exert mitogenic and anti-apoptotic actions[82,83], as well as
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act as growth-promoting factors involved in embryonic and
fetal development[84–86].  It has been reported that macroph-
ages and monocytes act as a source of ET-1 production dur-
ing infection and inflammation[87,88].

We have recently reported the expression of ET, espe-
cially ET-1 in AMC[89].  It was further demonstrated that the
expression decreased in response to hypoxia.  The stimula-
tion of AMC with LPS enhanced the expression of ET-1.  It
was suggested that the expression of ET-1 may have auto-
crine functions, such as synthesis and secretion of chemo-
kines, including stromal derived factor-1α (SDF-1α) and
monocyte chemoattractant protein-1 (MCP-1), or paracrine
actions on the developing glial cells, neurons, and blood
vessels bearing the ET receptors.

2',3'-cyclic nucleotide 3'-phosphodiesterase  The expres-
sion of the 2',3'-cyclic nucleotide 3'-phosphodiesterase
(CNPase), a myelin-associated enzyme commonly regarded
as a selective marker for immature oligodendrocytes, was
localized in AMC in the developing rat brain from prenatal
d 18 to postnatal d 10[90].  Although the function of CNPase
in AMC is not known, it may serve a cytoskeletal role to
change the shape of the cells for migration or for the trans-
portation of cytoplasmic materials.  It may also be involved
in the phagocytic function of AMC or in the secretion of
pro-inflammatory cytokines and growth factors by them.
CNPase may also be involved in transformation of the cells
from the early round and amoeboid shape to a ramified form
with growth.

Response to drugs

Glucocorticoids  Glucocorticoids, which are potent anti-
inflammatory and immunosuppressive drugs, have been re-
ported to suppress the number and the phagocytic activity
of macrophages[91].  The administration of glucorticoids, such
as cortisone or dexamethasone, in postnatal rats resulted in
a substantial reduction in the number of AMC in the corpus
callosum[11,92].  The decrease in the number of AMC was
attributed to the suppression of the number of circulating
monocytes, as glucocorticoids are known to reduce their
numbers[93].  Another effect of glucocorticoids on AMC was
their premature differentiation or maturation into ramified
microglia.  However, the phagocytic activity or proliferation
of AMC did not appear to be affected by glucocorticoid treat-
ment[92].  Dexamethasone also inhibited microglial activation
by downregulating the neurotoxic and pro-inflammatory
mediators such as NO, TNF-α, and IL-6[94–96].  Preliminary
results in our laboratory (unpublished data) demonstrated
that dexamethasone inhibited the migration of microglial

cells by suppressing the release of MCP-1, a chemokine which
regulates the migration of activated microglial cells to the
inflammatory sites in the CNS.  It has been further shown
that the downregulation of MCP-1 expression in activated
microglial cells by dexamethasone was mediated via the MKP-
1-dependent inhibition of the JNK and p38 mitogen-activated
protein kinase pathways.

Chloroquine  Chloroquine, an antimalarial drug with anti-
inflammatory properties, has proven to be a beneficial thera-
peutic agent in certain inflammatory disorders[97].  Chloro-
quine is known to exert its anti-inflammatory effect by
downregulating the synthesis of pro-inflammatory cytokines,
such as TNF-α and IL-1β[98].  It also reduces the expression
of MHC II on Kupffer cells[99].  Besides its anti-inflammatory
actions, chloroquine inhibits lysosomal degradation and pro-
duces lysosomal changes resembling that of lysosomal
storage disease in a variety of cells, including macroph-
ages[100,101].  Increased vacuolation and the accumulation of
lysosomes were observed in AMC in response to the intra-
peritoneal administration of chloroquine in 1-d-old rats.
This was attributed to the failure of digestion of internal-
ized substances.  The phagocytic activity and antigen-pre-
senting function of AMC, however, was enhanced in re-
sponse to chloroquine as evidenced by the upregulation of
CR3 receptors and MHC I antigens[102].

Colchicine  The number of AMC in the corpus callo-
sum of postnatal rats was reduced following colchicine treat-
ment[103].  It also brought about an early differentiation of
AMC into the ramified form.  Colchicine is a microtubule-
disrupting drug[104,105] and is known to induce apoptosis in
different cell types.  In vitro studies have shown that mac-
rophages assume irregular profiles following depolymer-
ization of microtubules by colchicine[106].  It has been hy-
pothesized that microtubules are important for the secre-
tion of lysosomal enzymes and the intracellular degrada-
tion of materials phagocytosed by macrophages[107].  It has
also been suggested that microtubules are necessary for
the fusion of lysosomes with endosomes which must pre-
cede intracellular digestion of phagocytosed materials[108],
whereas others have reported that intact microtubules are
not required for the lysosomal-endosomal fusion[109].  We
found that the mitotic activity of AMC was suppressed by
colchicine, but the phagocytic activity remained unaffected[103].

All-trans retinoic acid (RA)  Recently, we have shown
that the RA, a vitamin A metabolite, can suppress the LPS/
β-amyloid-induced activation of microglial cells in primary
culture by inhibiting the expression and production of
TNF-α and NO[110].  It has been further shown that RA en-
hances the mRNA expression of TGF-β1, which acts as an



1092

 Acta Pharmacologica Sinica ISSN 1671-4083Kaur C et al

immunosuppressor, and RA receptor (RAR) β1, and attenu-
ates NF-κB translocation from the cytoplasm to the nucleus
in activated microglial cells.  It has been suggested that the
inhibition of TNF-α and NO synthesis by RA in the acti-
vated microglia is mediated via the inhibition of NF-κB
translocation, which could be caused by the upregulation of
RAR and TGF-β1 gene expression.  RA has also been shown
to suppress the expression of IGF-I and IGF-II in activated
microglia, indicating that RA is effective in inhibiting the
action of a wide array of molecules specific for activated
microglia[41].  In view of these results, it was suggested that
RA could be considered a potential therapeutic agent that
may inhibit the inflammatory response of microglia in
neurodegenerative diseases.

Melatonin  Melatonin, a neurohormone synthesized by
the pineal gland, is known to have immunomodulatory ac-
tions[111,112].  In addition to its immunomodulatory actions,
melatonin has also been reported to be important for phago-
cytosis under physiological conditions[113].  AMC showed a
significant increase in cell numbers and upregulation of CR3,
MHC I and MHC II, and CD4 antigens in response to melato-
nin administration[114], indicating enhanced endocytic and
antigen-presenting capacity.  The expression of these re-
ceptors and antigens returned to control levels on cessation
of melatonin administration, suggesting that increased im-
mune potentiality of the microglial cells and its maintenance
requires the continuous action of the drug.

Toxic effects of AMC
It has been reported that microglial cells may be involved

in causing apoptosis[47] in the developing brain.  Although
there is no direct evidence for this observation, microglial
cells have been identified as the source of nerve growth
factor, a pro-apoptotic agent responsible for neuronal death
in the developing eye[115].

Conclusion
Early descriptions of the function of AMC focused on

their primary role, that is, phagocytosis in the developing
brain.  In light of recent voluminous findings based on the
expression of a plethora of molecules and growth factors in
these cells, multiple functional roles of these cells, such as
antigen presentation, vascular regulation, chemokine release,
modulation of proliferation, and the development of other
cells in the developing brain are proposed as summarized in
Figure 3.
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