Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Acta Pharmacologica Sinica
  • View all journals
  • Search
  • Log in
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. acta pharmacologica sinica
  3. review
  4. article
Role of melatonin in Alzheimer-like neurodegeneration
Download PDF
Download PDF
  • Published: 01 January 2006

Role of melatonin in Alzheimer-like neurodegeneration

  • Jian-zhi Wang1 &
  • Ze-fen Wang1,2 

Acta Pharmacologica Sinica volume 27, pages 41–49 (2006)Cite this article

  • 4236 Accesses

  • 109 Citations

  • Metrics details

Abstract

Alzheimer disease (AD), an age-related neurodegenerative disorder with progressive loss of memory and deterioration of comprehensive cognition, is characterized by extracellular senile plaques of aggregated β-amyloid (Aβ), and intracellular neurofibrillary tangles that contain hyperphosphorylated tau protein. Recent studies showed that melatonin, an indoleamine secreted by the pineal gland, may play an important role in aging and AD as an antioxidant and neuroprotector. Melatonin decreases during aging and patients with AD have a more profound reduction in this hormone. Data from clinical trials indicate that melatonin supplementation improves sleep, ameliorates sundowning, and slows down the progression of cognitive impairment in Alzheimer's patients. Melatonin efficiently protects neuronal cells from Aβ-mediated toxicity via antioxidant and anti-amyloid properties: it not only inhibits Aβ generation, but also arrests the formation of amyloid fibrils by a structure-dependent interaction with Aβ. Our recent studies have demonstrated that melatonin efficiently attenuates Alzheimer-like tau hyperphosphorylation. Although the exact mechanism is still not fully understood, a direct regulatory influence of melatonin on the activities of protein kinases and protein phosphatases is proposed. Additionally, melatonin also plays a role in protecting cholinergic neurons and in anti-inflammation. Here, the neuroprotective effects of melatonin and the underlying mechanisms by which it exerts its effects are reviewed. The capacity of melatonin to prevent or ameliorate tau and Aβ pathology further enhances its potential in the prevention or treatment of AD.

References

  1. Wu YH, Swaab DF . The human pineal gland and melatonin in aging and Alzheimer's disease. J Pineal Res 2005; 38: 145–52.

    CAS  PubMed  Google Scholar 

  2. Wu YH, Feenstra MG, Zhou JN, Liu RY, Torano JS, van Kan HJ, et al. Molecular changes underlying reduced pineal melatonin levels in Alzheimer disease: alterations in preclinical and clinical stages. J Clin Endocrinol Metab 2003; 88: 5898–906.

    CAS  PubMed  Google Scholar 

  3. Ferrari E, Arcaini A, Gornati R, Pelanconi L, Cravello L, Fioravanti M, et al. Pineal and pituitary-adrenocortical function in physiological aging and in senile dementia. Exp Gerontol 2000; 35: 1239–50.

    CAS  PubMed  Google Scholar 

  4. Ohashi Y, Okamoto N, Uchida K, Iyo M, Mori N, Morita Y . Daily rhythm of serum melatonin levels and effect of light exposure in patients with dementia of the Alzheimer's type. Biol Psychiatry 1999; 45: 1646–52.

    CAS  PubMed  Google Scholar 

  5. Liu RY, Zhou JN, van Heerikhuize J, Hofman MA, Swaab DF . Decreased melatonin levels in postmortem cerebrospinal fluid in relation to aging, Alzheimer's disease, and apolipoprotein E-epsilon4/4 genotype. J Clin Endocrinol Metab 1999; 84: 323–7.

    CAS  PubMed  Google Scholar 

  6. Zhou JN, Liu RY, Kamphorst W, Hofman MA, Swaab DF . Early neuropathological Alzheimer's changes in aged individuals are accompanied by decreased cerebrospinal fluid melatonin levels. J Pineal Res 2003; 35: 125–30.

    CAS  PubMed  Google Scholar 

  7. Rousseau A, Petren S, Plannthin J, Eklundh T, Nordin C . Serum and cerebrospinal fluid concentrations of melatonin: a pilot study in healthy male volunteers. J Neural Transm 1999; 106: 883–8.

    CAS  PubMed  Google Scholar 

  8. Friedland RP, Luxenberg JS, Koss E . A quantitative study of intracranial calcification in dementia of the Alzheimer type. Int Psychogeriatr 1990; 2: 36–43.

    CAS  PubMed  Google Scholar 

  9. Cohen-Mansfield J, Garfinkel D, Lipson S . Melatonin for treatment of sundowning in elderly persons with dementia: a preliminary study. Arch Gerontol Geriatr 2000; 31: 65–76.

    CAS  PubMed  Google Scholar 

  10. Brusco LI, Marquez M, Cardinali DP . Melatonin treatment stabilizes chronobiologic and cognitive symptoms in Alzheimer's disease. Neuro Endocrinol Lett 2000; 21: 39–42.

    PubMed  Google Scholar 

  11. Brusco LI, Marquez M, Cardinali DP . Monozygotic twins with Alzheimer's disease treated with melatonin: case report. J Pineal Res 1998; 25: 260–63.

    CAS  PubMed  Google Scholar 

  12. Cardinali DP, Brusco LI, Lloret SP, Furio AM . Melatonin in sleep disorders and jet-lag. Neuro Endocrinol Lett 2002; 23 Suppl 1: 9–13.

    CAS  PubMed  Google Scholar 

  13. Cardinali DP, Brusco LI, Liberczuk C, Furio AM . The use of melatonin in Alzheimer's disease. Neuro Endocrinol Lett 2002; 23 Suppl 1: 20–2.

    CAS  PubMed  Google Scholar 

  14. Karasek M, Reiter RJ, Cardinali DP, Pawlikowski M . Future of melatonin as a therapeutic agent. Neuroendocrinol Lett 2002; 23 Suppl 1: 118–21.

    CAS  PubMed  Google Scholar 

  15. Singer C, Tractenberg RE, Kaye J, Schafer K, Gamst A, Grundman M, et al. Alzheimer's disease cooperative study. A multicenter, placebo-controlled trial of melatonin for sleep disturbance in Alzheimer's disease. Sleep 2003; 26: 893–90.

    PubMed  Google Scholar 

  16. Nagtegaal J, Kerkhof GA, Smits MG, van der Meer YG, Fischer-Steenvoorden MGJ . Melatonin: a survey of suspected adverse drug reactions. In: Beersma DGM, Coenen AML editors Sleep-wake research in the Netherlands, vol 7; 1996; p 115–8.

    Google Scholar 

  17. Avery D, Lenz M, Landis C . Guidelines for prescribing melatonin. Ann Med 1998; 30: 122–30.

    CAS  PubMed  Google Scholar 

  18. Pacchierottio C, Iapichino S, Bossini L, Pieraccini F, Castrogiovanni P . Melatonin in psychiatric disorders: a review on the melatonin involvement in psychiatry. Front Neuroendocrinol 2001; 22: 18–32.

    Google Scholar 

  19. Selkoe DJ . Alzheimer's disease is a synaptic failure. Science 2002; 298: 789–91.

    CAS  PubMed  Google Scholar 

  20. Eckert A, Keil U, Marques CA, Bonert A, Frey C, Schussel K, et al. Mitochondrial dysfunction, apoptotic cell death, and Alzheimer's disease. Biochem Pharmacol 2003; 66: 1627–34.

    CAS  PubMed  Google Scholar 

  21. Selkoe DJ . Cell biology of protein misfolding: the examples of Alzheimer's and Parkinson's diseases. Nat Cell Biol 2004; 6: 1054–61.

    CAS  PubMed  Google Scholar 

  22. Saragoni L, Hernandez P, Maccioni RB . Differential association of tau with subsets of microtubules containing posttranslationally-modified tubulin variants in neuroblastoma cells. Neurochem Res 2000; 25: 59–70.

    CAS  PubMed  Google Scholar 

  23. Brion JP, Anderton BH, Authelet M, Dayanandan R, Leroy K, Lovestone S, et al. Neurofibrillary tangles and tau phosphorylation. Biochem Soc Symp 2001; 67: 81–8.

    CAS  Google Scholar 

  24. Billingsley ML, Kincaid RL . Regulated phosphorylation and de-phosphorylation of tau protein: effects on microtubule interaction, intracellular trafficking and neurodegeneration. Biochem J 1997; 323: 577–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Braak E, Braak H, Mandelkow EM . A sequence of cytoskeleton changes related to the formation of neurofibrillary tangles and neuropil threads. Acta Neuropathol (Berl) 1994; 87: 554–67.

    CAS  Google Scholar 

  26. Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS, Wisniewski HM . Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem 1986; 261: 6084–9.

    CAS  PubMed  Google Scholar 

  27. Lee VM, Balin BJ, Otvos L Jr, Trojanowski JQ . A68: a major subunit of paired helical filaments and derivatized forms of normal Tau. Science 1991; 251: 675–8.

    CAS  PubMed  Google Scholar 

  28. Bordt SL, McKeon RM, Li PK, Witt-Enderby PA, Melan MA . N1E-115 mouse neuroblastoma cells express MT1 melatonin receptors and produce neurites in response to melatonin. Biochim Biophys Acta 2001; 1499: 257–64.

    CAS  PubMed  Google Scholar 

  29. Witt-Enderby PA, MacKenzie RS, McKeon RM, Carroll EA, Bordt SL, Melan MA . Melatonin induction of filamentous structures in non-neuronal cells that is dependent on expression of the human mt1 melatonin receptor. Cell Motil Cytoskeleton 2000; 46: 28–42.

    CAS  PubMed  Google Scholar 

  30. Benitez-King G, Tunez I, Bellon A, Ortiz GG, Anton-Tay F . Melatonin prevents cytoskeletal alterations and oxidative stress induced by okadaic acid in N1E-115 cells. Exp Neurol 2003; 182: 151–9.

    CAS  PubMed  Google Scholar 

  31. Benitez-King G . PKC activation by melatonin modulates vimentin intermediate filament organization in N1E-115 cells. J Pineal Res 2000; 29: 8–14.

    CAS  PubMed  Google Scholar 

  32. Benitez-King G, Hernandez ME, Tovar R, Ramirez G . Melatonin activates PKC-alpha but not PKC-epsilon in N1E-115 cells. Neurochem Int 2001; 39: 95–102.

    CAS  PubMed  Google Scholar 

  33. Eidenmuller J, Fath T, Hellwig A, Reed J, Sontag E, Brandt R . Structural and functional implications of tau hyperphosphorylation: information from phosphorylation-mimicking mutated tau proteins. Biochemistry 2000; 39: 13166–75.

    CAS  PubMed  Google Scholar 

  34. Avila J . Tau aggregation into fibrillar polymers: taupathies. FEBS Lett 2000; 476: 82–92.

    Google Scholar 

  35. Gong CX, Liu F, Grundke-Iqbal I, Iqbal K . Post-translational modifications of tau protein in Alzheimer's disease. J Neural Transm 2005; 112: 813–38.

    CAS  PubMed  Google Scholar 

  36. Deng YQ, Xu GG, Duan P, Zhang Q, Wang JZ . Effects of melatonin on wortmannin-induced tau hyperphosphorylation. Acta Pharmacol Sin 2005; 26: 519–26.

    CAS  PubMed  Google Scholar 

  37. Li XC, Wang ZF, Zhang JX, Wang Q, Wang JZ . Effect of melatonin on calyculin A-induced tau hyperphosphorylation. Eur J Pharmacol 2005; 510: 25–30.

    CAS  PubMed  Google Scholar 

  38. Li SP, Deng YQ, Wang XC, Wang YP, Wang JZ . Melatonin protects SH-SY5Y neuroblastoma cells from calyculin A-induced neurofilament impairment and neurotoxicity. J Pineal Res 2004; 36: 186–191.

    CAS  PubMed  Google Scholar 

  39. Wang YP, Li XT, Liu SJ, Zhou XW, Wang XC, Wang JZ . Melatonin ameliorated okadaic-acid induced Alzheimer-like lesions. Acta Pharmacol Sin 2004; 25: 276–80.

    PubMed  Google Scholar 

  40. Liu SJ, Wang JZ . Alzheimer-like tau phosphorylation induced by wortmannin in vivo and its attenuation by melatonin. Acta Pharmacol Sin 2002; 23: 183–7.

    CAS  PubMed  Google Scholar 

  41. Wang DL, Ling ZQ, Cao FY, Zhu LQ, Wang JZ . Melatonin attenuates isoproterenol-induced protein kinase A overactivation and tau hyperphosphorylation in rat brain. J Pineal Res 2004; 37: 11–16.

    CAS  PubMed  Google Scholar 

  42. Wang XC, Zhang J, Yu X, Han L, Zhou ZT, Zhang Y, et al. Prevention of isoproterenol-induced tau hyperphosphorylation by melatonin in the rat. Acta Physiol Sin 2005; 57: 7–12.

    CAS  Google Scholar 

  43. Zhu LQ, Wang SH, Ling ZQ, Wang DL, Wang JZ . Effect of inhibiting melatonin biosynthesis on spatial memory retention and tau phosphorylation in rat. J Pineal Res 2004; 37: 71–7.

    CAS  PubMed  Google Scholar 

  44. Gong CX, Shaikh S, Wang JZ, Zaidi T, Grundke-Iqbal I, Iqbal K . Phosphatase activity toward abnormally phosphorylated tau: decrease in Alzheimer disease brain. J Neurochem 1995; 65: 732–8.

    CAS  PubMed  Google Scholar 

  45. Reiter RJ, Acuna-Castroviejo D, Tan DX, Burkhardt S . Free radical-mediated molecular damage: mechanisms for the protective actions of melatonin in the central nervous system. Ann NY Acad Sci 2001; 939: 200–15.

    CAS  PubMed  Google Scholar 

  46. Zhu X, Rottkamp CA, Boux H, Takeda A, Perry G, Smith MA . Activation of p38 kinase links tau phosphorylation, oxidative stress, and cell cycle-related events in Alzheimer disease. J Neuropathol Exp Neurol 2000; 59: 880–8.

    CAS  PubMed  Google Scholar 

  47. Gomez-Ramos A, Diaz-Nido J, Smith MA, Perry G, Avila J . Effect of the lipid peroxidation product acrolein on tau phosphorylation in neural cells. J Neurosci Res 2003; 71: 863–70.

    CAS  PubMed  Google Scholar 

  48. Lovell MA, Xiong S, Xie C, Davies P, Markesbery WR . Induction of hyperphosphorylated tau in primary rat cortical neuron cultures mediated by oxidative stress and glycogen synthase ki-nase-3. J Alzheimers Dis 2004; 6: 659–71.

    CAS  PubMed  Google Scholar 

  49. Schuster C, Williams LM, Morris A, Morgan PJ, Barrett P . The human MT1 melatonin receptor stimulates cAMP production in the human neuroblastoma cell line SH-SY5Y cells via a calcium-calmodulin signal transduction pathway. J Neuroendocrinol 2005; 17: 170–8.

    CAS  PubMed  Google Scholar 

  50. Peschke E, Muhlbauer E, Musshoff U, Csernus VJ, Chankiewitz E, Peschke D . Receptor (MT(1)) mediated influence of melatonin on cAMP concentration and insulin secretion of rat insulinoma cells INS-1. J Pineal Res 2002; 33: 63–71.

    CAS  PubMed  Google Scholar 

  51. Rivera-Bermudez MA, Gerdin MJ, Earnest DJ, Dubocovich ML . Regulation of basal rhythmicity in protein kinase C activity by melatonin in immortalized rat suprachiasmatic nucleus cells. Neurosci Lett 2003; 346: 37–40.

    CAS  PubMed  Google Scholar 

  52. Benitez-King G, Rios A, Martinez A, Anton-Tay F . In vitro inhibition of Ca2+/calmodulin-dependent kinase II activity by melatonin. Biochim Biophys Acta 1996; 1290: 191–6.

    PubMed  Google Scholar 

  53. Chan AS, Lai FP, Lo RK, Voyno-Yasenetskaya TA, Stanbridge EJ, Wong YH . Melatonin mt1 and MT2 receptors stimulate c-Jun N-terminal kinase via pertussis toxin-sensitive and -insensitive G proteins. Cell Signal 2002; 14: 249–57.

    CAS  PubMed  Google Scholar 

  54. Kilic U, Kilic E, Reiter RJ, Bassetti CL, Hermann DM . Signal transduction pathways involved in melatonin-induced neuroprotection after focal cerebral ischemia in mice. J Pineal Res 2005; 38: 67–71.

    CAS  PubMed  Google Scholar 

  55. Selkoe DJ . The cell biology of beta-amyloid precursor protein and presenilin in Alzheimer's disease. Trends Cell Biol 1998; 8: 447–53.

    CAS  PubMed  Google Scholar 

  56. Lahiri DK . Melatonin affects the metabolism of the beta-amyloid precursor protein in different cell types. J Pineal Res 1999; 26: 137–46.

    CAS  PubMed  Google Scholar 

  57. Song W, Lahiri DK . Melatonin alters the metabolism of the beta-amyloid precursor protein in the neuroendocrine cell line PC12. J Mol Neurosci 1997; 9: 75–92.

    CAS  PubMed  Google Scholar 

  58. Zhang YC, Wang ZF, Wang Q, Wang YP, Wang JZ . Melatonin attenuates overproduction of β-amyloid-induced inhibition in expression of neurofilament protein. Acta Pharmacol Sin 2004; 25: 447–51.

    CAS  PubMed  Google Scholar 

  59. Matsubara E, Bryant-Thomas T, Pacheco Quinto J, Henry TL, Poeggeler B, Herbert D, et al. Melatonin increases survival and inhibits oxidative and amyloid pathology in a transgenic model of Alzheimer's disease. J Neurochem 2003; 85: 1101–8.

    CAS  PubMed  Google Scholar 

  60. Lahiri DK, Chen D, Ge YW, Bondy SC, Sharman EH . Dietary supplementation with melatonin reduces levels of amyloid beta-peptides in the murine cerebral cortex. J Pineal Res 2004; 36: 224–31.

    CAS  PubMed  Google Scholar 

  61. Olivieri G, Hess C, Savaskan E, Ly C, Meier F, Baysang G, et al. Melatonin protects SHSY5Y neuroblastoma cells from cobalt-induced oxidative stress, neurotoxicity and increased beta-amyloid secretion. J Pineal Res 2001; 31: 320–5.

    CAS  PubMed  Google Scholar 

  62. Quinn J, Kulhanek D, Nowlin J, Jones R, Pratico D, Rokach J, et al. Chronic melatonin therapy fails to alter amyloid burden or oxidative damage in old Tg2576 mice: implications for clinical trials. Brain Res 2005; 1037: 209–13.

    CAS  PubMed  Google Scholar 

  63. Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, et al. Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 1996; 274: 99–102.

    CAS  PubMed  Google Scholar 

  64. Fisher A, Pittel Z, Haring R, Bar-Ner N, Kliger-Spatz M, Natan N, et al. M1 muscarinic agonists can modulate some of the hallmarks in Alzheimer's disease: implications in future therapy. J Mol Neurosci 2003: 20; 349–56.

    CAS  PubMed  Google Scholar 

  65. Su Y, Ryder J, Li B, Wu X, Fox N, Solenberg P, et al. Lithium, a common drug for bipolar disorder treatment, regulates amyloid-beta precursor protein processing. Biochemistry 2004; 43: 6899–908.

    CAS  PubMed  Google Scholar 

  66. Ryder J, Su Y, Liu F, Li B, Zhou Y, Ni B . Divergent roles of GSK3 and CDK5 in APP processing. Biochem Biophys Res Commun 2003; 312: 922–9.

    CAS  PubMed  Google Scholar 

  67. Phiel CJ, Wilson CA, Lee VM, Klein PS . GSK-3alpha regulates production of Alzheimer's disease amyloid-beta peptides. Nature 2003; 423: 435–9.

    CAS  PubMed  Google Scholar 

  68. Tesco G, Tanzi RE . GSsK3 beta forms a tetrameric complex with endogenous PS1–CTF/NTF and beta-catenin. Effects of the D257/D385A and FAD-linked mutations. Ann NY Acad Sci 2000; 920: 227–32.

    CAS  PubMed  Google Scholar 

  69. Takashima A, Murayama M, Murayama O, Kohno T, Honda T, Yasutake K, et al. Presenilin 1 associates with glycogen synthase kinase-3beta and its substrate tau. Proc Natl Acad Sci USA 1998; 95: 9637–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Simmons LK, May PC, Tomaselli KJ, Rydel RE, Fuson KS, Brigham EF, et al. Secondary structure of amyloid beta peptide correlates with neurotoxic activity in vivo. Mol Pharmacol 1994; 45: 373–9.

    CAS  PubMed  Google Scholar 

  71. Soto C, Castano EM . The conformation of Alzheimer's beta peptide determines the rate of amyloid formation and its resistance to proteolysis. Biochem J 1996; 314: 701–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Poeggeler B, Miravalle L, Zagorski MG, Wisniewski T, Chyan YJ, Zhang Y, et al. Melatonin reverses the profibrillogenic activity of apolipoprotein E4 on the Alzheimer amyloid Abeta peptide. Biochemistry 2001; 40: 14995–5001.

    CAS  PubMed  Google Scholar 

  73. Skribanek Z, Balaspiri L, Mak M . Interaction between synthetic amyloid-peptide (1–40) and its aggregation inhibitors studied by electrospray ionization mass spectrometry. J Mass Spectrom 2001; 36: 1226–9.

    CAS  PubMed  Google Scholar 

  74. Pappolla M, Bozner P, Soto C, Shao H, Robakisi NK, Zagorski M, et al. Inhibition of Alzheimer β-fibrillogenesis by melatonin. J Biol Chem 1998; 273: 7185–8.

    CAS  PubMed  Google Scholar 

  75. Huang TH, Fraser PE, Chakrabartty A . Fibrillogenesis of Alzheimer Abeta peptides studied by fluorescence energy transfer. J Mol Biol 1997; 269: 214–24.

    CAS  PubMed  Google Scholar 

  76. Fraser PE, Nguyen JT, Surewicz WK, Kirschner DA . pH-dependent structural transitions of Alzheimer amyloid peptides. Biophys J 1991; 60: 1190–201.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Bieschke J, Zhang Q, Powers ET, Lerner RA, Kelly JW . Oxidative metabolites accelerate Alzheimer's amyloidogenesis by a two-step mechanism, eliminating the requirement for nucleation. Biochemistry 2005; 44: 4977–83.

    CAS  PubMed  Google Scholar 

  78. Feng Z, Zhang JT . Protective effect of melatonin on beta-amyloid-induced apoptosis in rat astroglioma C6 cells and its mechanism. Free Radic Biol Med 2004; 37: 1790–801.

    CAS  PubMed  Google Scholar 

  79. Zatta P, Tognon G, Carampin P . Melatonin prevents free radical formation due to the interaction between beta-amyloid peptides and metal ions [Al(III), Zn(II), Cu(II), Mn(II), Fe(II)]. J Pineal Res 2003; 35: 98–103.

    CAS  PubMed  Google Scholar 

  80. Feng Z, Chang Y, Cheng Y, Zhang BL, Qu ZW, Qin C, et al. Melatonin alleviates behavioral deficits associated with apoptosis and cholinergic system dysfunction in the APP 695 transgenic mouse model of Alzheimer's disease. J Pineal Res 2004; 37: 129–36.

    CAS  PubMed  Google Scholar 

  81. Shen YX, Xu SY, Wei W, Sun XX, Liu LH, Yang J, et al. The protective effects of melatonin from oxidative damage induced by amyloid beta-peptide 25–35 in middle-aged rats. J Pineal Res 2002; 32: 85–9.

    CAS  PubMed  Google Scholar 

  82. Rosales-Corral S, Tan DX, Reiter RJ, Valdivia-Velazquez M, Martinez-Barboza G, Acosta-Martinez JP, et al. Orally administered melatonin reduces oxidative stress and proinflamma-tory cytokines induced by amyloid-beta peptide in rat brain: a comparative, in vivo study versus vitamin C and E. J Pineal Res 2003; 35: 80–4.

    CAS  PubMed  Google Scholar 

  83. Kar S, Slowikowski SP, Westaway D, Mount HT . Interaction between β-amyloid and central cholinergic neurons: implications for Alzheimer's disease. J Psychiatry Neurosci 2004; 29: 427–41.

    PubMed  PubMed Central  Google Scholar 

  84. Guermonprez L, Ducrocq C, Gaudry-Talarmain YM . Inhibition of acetylcholine synthesis and tyrosine nitration induced by peroxynitrite are differentially prevented by antioxidants. Mol Pharmacol 2001; 60: 838–46.

    CAS  PubMed  Google Scholar 

  85. Feng Z, Cheng Y, Zhang JT . Long-term effects of melatonin or 17 beta-estradiol on improving spatial memory performance in cognitively impaired, ovariectomized adult rats. J Pineal Res 2004; 37: 198–206.

    CAS  PubMed  Google Scholar 

  86. Mitchell CK, Redburn DA . Melatonin inhibits ACh release from rabbit retina. Vis Neurosci 1991; 7: 479–86.

    CAS  PubMed  Google Scholar 

  87. Stuchbury G, Munch G . Alzheimer's associated inflammation, potential drug targets and future therapies. J Neural Transm 2005; 112: 429–53.

    CAS  PubMed  Google Scholar 

  88. Tuppo EE, Arias HR . The role of inflammation in Alzheimer's disease. Int J Biochem Cell Biol 2005; 37: 289–305.

    CAS  PubMed  Google Scholar 

  89. Ho GJ, Drego R, Hakimian E, Masliah E . Mechanisms of cell signaling and inflammation in Alzheimer's disease. Curr Drug Targets Inflamm Allergy 2005; 4: 247–56.

    CAS  PubMed  Google Scholar 

  90. Chung SY, Han SH . Melatonin attenuates kainic acid-induced hippocampal neurodegeneration and oxidative stress through microglial inhibition. J Pineal Res 2003; 34: 95–102.

    CAS  PubMed  Google Scholar 

  91. Pei Z, Cheung RT . Pretreatment with melatonin exerts anti-inflammatory effects against ischemia/reperfusion injury in a rat middle cerebral artery occlusion stroke model. J Pineal Res 2004; 37: 85–91.

    PubMed  Google Scholar 

  92. Beni SM, Kohen R, Reiter RJ, Tan DX, Shohami E . Melatonin-induced neuroprotection after closed head injury is associated with increased brain antioxidants and attenuated late-phase activation of NF-kappaB and AP-1. FASEB J 2004; 18: 149–151.

    CAS  PubMed  Google Scholar 

  93. Sasaki M, Jordan P, Joh T, Itoh M, Jenkins M, Pavlick K, et al. Melatonin reduces TNF-α induced expression of MAdCAM-1 via inhibition of NF-kappaB. BMC Gastroenterol 2002; 2: 9.

    PubMed  PubMed Central  Google Scholar 

  94. Noble W, Planel E, Zehr C, Olm V, Meyerson J, Suleman F, et al. Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. Proc Natl Acad Sci USA 2005; 102: 6990–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Savaskan E, Olivieri G, Meier F, Brydon L, Jockers R, Ravid R, et al. Increased melatonin 1α-receptor immunoreactivity in the hippocampus of Alzheimer's disease patients. J Pineal Res 2002; 32: 59–62.

    PubMed  Google Scholar 

  96. Savaskan E, Ayoub MA, Ravid R, Angeloni D, Fraschini F, Meier F, et al. Reduced hippocampal MT2 melatonin receptor expression in Alzheimer's disease. J Pineal Res 2005; 38: 10–6.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Pathophysiology Department, Key Laboratory of Neurological Diseases of Hubei Province, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, 430030, China

    Jian-zhi Wang & Ze-fen Wang

  2. Department of Physiology, Medical College, Wuhan University, Wuhan, 430071, China

    Ze-fen Wang

Authors
  1. Jian-zhi Wang
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Ze-fen Wang
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Jian-zhi Wang.

Additional information

Project partially supported by grants from the National Natural Science Foundation of China (No 30430270, 30400068, 30472030, and 30328007) and from National Major Grants for Basic Research (No G1999054007 and 2006CB500703).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, Jz., Wang, Zf. Role of melatonin in Alzheimer-like neurodegeneration. Acta Pharmacol Sin 27, 41–49 (2006). https://doi.org/10.1111/j.1745-7254.2006.00260.x

Download citation

  • Received: 02 October 2005

  • Accepted: 24 October 2005

  • Issue Date: 01 January 2006

  • DOI: https://doi.org/10.1111/j.1745-7254.2006.00260.x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Alzheimer disease
  • melatonin
  • tau, beta amyloid

This article is cited by

  • Therapeutic potential of melatonin and its derivatives in aging and neurodegenerative diseases

    • Avnish Kumar Verma
    • Sandeep Singh
    • Syed Ibrahim Rizvi

    Biogerontology (2023)

  • Circadian rhythms in neurodegenerative disorders

    • Malik Nassan
    • Aleksandar Videnovic

    Nature Reviews Neurology (2022)

  • Design, fabrication, and testing of low-group-velocity S-band traveling-wave accelerating structure

    • Xian-Cai Lin
    • Hao Zha
    • Chuan-Xiang Tang

    Nuclear Science and Techniques (2022)

  • The potential neuroprotective effect of allicin and melatonin in acrylamide-induced brain damage in rats

    • Hanan A. Edres
    • Nabil M. Taha
    • Mohamed S. Elfeky

    Environmental Science and Pollution Research (2021)

  • Melatonin alleviates intervertebral disc degeneration by disrupting the IL-1β/NF-κB-NLRP3 inflammasome positive feedback loop

    • Fan Chen
    • Guowei Jiang
    • Zhaomin Zheng

    Bone Research (2020)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open access publishing
  • About the Editors
  • Editorial Board
  • About the Partner
  • Contact
  • For Advertisers
  • Subscribe
  • Announcements

Publish with us

  • For Authors & Referees
  • Language editing services
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Acta Pharmacologica Sinica (Acta Pharmacol Sin) ISSN 1745-7254 (online) ISSN 1671-4083 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • Nano
  • Protocol Exchange
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Live Expert Trainer-led workshops
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Career development

  • Nature Careers
  • Nature Conferences
  • Nature events

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Italy
  • Nature Japan
  • Nature Korea
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2023 Springer Nature Limited