Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Acta Pharmacologica Sinica
  • View all journals
  • Search
  • Log in
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. acta pharmacologica sinica
  3. review
  4. article
Beneficial effects of melatonin in experimental models of Alzheimer disease
Download PDF
Download PDF
  • Published: 01 February 2006

Beneficial effects of melatonin in experimental models of Alzheimer disease

  • Yong Cheng1,
  • Zheng Feng2,3,
  • Qing-zhu Zhang4 &
  • …
  • Jun-tian Zhang1 

Acta Pharmacologica Sinica volume 27, pages 129–139 (2006)Cite this article

  • 2208 Accesses

  • 52 Citations

  • 1 Altmetric

  • Metrics details

Abstract

Alzheimer's disease (AD), a progressive degenerative disorder, is characterized by the presence of amyloid deposits, neurofibrillary tangles and neuron loss. Emerging evidence indicates that antioxidants could be useful either for the prevention or treatment of AD. It has been shown that melatonin is a potent antioxidant and free radical scavenger. Additionally, melatonin stimulates several antioxidative enzymes and improves mitochondrial energy metabolism. These findings led us to study amyloid precursor protein transgenic mice, ovariectomized rats, and pheochromocytoma and astroglioma cell lines, to observe whether melatonin had any effect on Alzheimer's symptoms or pathological changes. We found that melatonin had many beneficial effects in experimental models of AD, including improvement of cognitive function, anti-oxidative injury, anti-apoptosis, inhibition of β-amyloid (Aβ) deposition and Aβ fiber formation. Several groups have shown that melatonin has an inhibitory effect on tau protein hyperphosphorylation. These actions may potentially slow down or stop the progression of dementia.

References

  1. Tan DX, Chen LD, Poeggeler B, Manchester LC, Reiter RJ . Melatonin: A potent endogenous hydroxyl radical scavenger. Endocrine J 1993; 1: 57–60.

    Google Scholar 

  2. Leon J, Acuna-Castroviejo D, Sainz RM, Mayo JC, Tan DX, Reiter RJ . Melatonin and mitochondrial function. Life Sci 2004; 75: 765–90.

    CAS  PubMed  Google Scholar 

  3. Tan DX, Manchester LC, Hardeland R, Lopez-Burillo S, Mayo JC, Sainz RM, et al. Melatonin: a hormone, a tissue factor, an autocoid, a paracoid, and an antioxidant vitamin. J Pineal Res 2003; 34: 75–8.

    CAS  PubMed  Google Scholar 

  4. Manchester LC, Tan DX, Reiter RJ, Park W, Monis K, Qi W . High levels of melatonin in the seeds of edible plants: possible function in germ tissue protection. Life Sci 2000; 67: 3023–9.

    CAS  PubMed  Google Scholar 

  5. Reiter RJ, Tan DX . Melatonin: an antioxidant in edible plants. Ann NY Acad Sci 2002; 957: 341–4.

    CAS  PubMed  Google Scholar 

  6. Tan DX, Reiter RJ, Manchester LC, Yan MT, El-Sawi M, Sainz RM, et al. Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger. Curr Top Med Chem 2002; 2: 181–97.

    CAS  PubMed  Google Scholar 

  7. Rodriguez C, Mayo JC, Sainz RM, Antolin I, Herrera F, Martin V, et al. Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res 2004; 36: 1–9.

    CAS  Google Scholar 

  8. Harrison T, Churcher I, Beher D . Gamma-secretase as a target for drug intervention in Alzheimer's disease. Curr Opin Drug Discov Devel 2004; 7: 709–19.

    CAS  PubMed  Google Scholar 

  9. Tariot PN, Federoff HJ . Current treatment for Alzheimer disease and future prospects. Alzheimer Dis Assoc Disord 2003; 17 Suppl 4: S105–13.

    CAS  PubMed  Google Scholar 

  10. Gilgun-Sherki Y, Melamed E, Offen D . Antioxidant treatment in Alzheimer's disease: current state. J Mol Neurosci 2003; 21: 1–11.

    CAS  Google Scholar 

  11. Butterfield DA, Castegna A, Lauderback CM, Drake J . Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer's disease brain contribute to neuronal death. Neurobiol Aging 2002; 23: 655–64.

    PubMed  Google Scholar 

  12. Eckert A, Keil U, Marques CA, Bonert A, Frey C, Schussel K, et al. Mitochondrial dysfunction, apoptotic cell death, and Alzheimer's disease. Biochem Pharmacol 2003; 66: 1627–34.

    CAS  Google Scholar 

  13. Zatta P, Tognon G, Carampin P . Melatonin prevents free radical formation due to the interaction between beta-amyloid peptides and metal ions [Al(III), Zn(II), Cu(II), Mn(II), Fe(II)]. J Pineal Res 2003; 35: 98–103.

    CAS  Google Scholar 

  14. Acuna-Castroviejo D, Martin M, Macias M, Escames G, Leon J, Khaldy H, et al. Melatonin, mitochondria, and cellular bioenergetics. J Pineal Res 2001; 30: 65–74.

    CAS  PubMed  Google Scholar 

  15. Liu RY, Zhou JN, Van Heerikhuize J, Hofman MA, Swaab DF . Decreased melatonin levels in postmortem cerebrospinal fluid in relation to aging, Alzheimer's disease, and apolipoprotein Eepsilon4/4 genotype. J Clin Endocrinol Metab 1999; 84: 323–7.

    CAS  Google Scholar 

  16. Zhou JN, Liu RY, Kamphorst W, Hofman MA, Swaab DF . Early neuropathological Alzheimer's changes in aged individuals are accompanied by decreased cerebrospinal fluid melatonin levels. J Pineal Res 2003; 35: 125–30.

    CAS  Google Scholar 

  17. Pappolla MA, Simovich MJ, Bryant-Thomas T, Chyan YJ, Poeggeler B, Dubocovich M, et al. The neuroprotective activities of melatonin against the Alzheimer beta-protein are not mediated by melatonin membrane receptors. J Pineal Res 2002; 32: 135–42.

    CAS  PubMed  Google Scholar 

  18. Zhang QZ, Zhang JT . Antagonistic effects of melatonin on glutamate release and neurotoxicity in cerebral cortex. Acta Pharmacol Sin 1999; 20: 829–34.

    CAS  Google Scholar 

  19. Zhang QZ, Zhang JT . Inhibitory effects of melatonin on free intracellular calcium in mouse brain cells. Acta Pharmacol Sin 1999; 20: 206–10.

    CAS  Google Scholar 

  20. Zhang QZ, Zhang JT . The advance on study of melatonin antioxidative effect. Chin Pharmacol Bull 1998; 14: 13–5.

    Google Scholar 

  21. Zhang QZ, Zhao MR, Zhang JT . Effects of melatonin on nitric oxide content and its neurotoxicity in cerebral cortex. Acta Pharm Sin 1999; 34: 272–6.

    CAS  Google Scholar 

  22. Zhang QZ, Zhang JT . Effects of melatonin on membrane fluidity and malondialdehyde content in mouse brain cells. Chin Pharmacol Toxicol 1999; 13: 249–52.

    Google Scholar 

  23. Zhang QZ, Zhang JT . Effects of melatonin on the spatial and temporal changes of [Ca2+]i in single living cells of cortical neurons by laser scanning confocal microscopy. Chin Med J 2000; 113: 558–62.

    CAS  PubMed  Google Scholar 

  24. Yao JC, Zhang QZ, Zhang SL . Effect of melatonin on cellular viability and injury induced by oxygen and glucose deprivation at different phases of co-cultured neuron and glia. Chin Pharmacol Bull 2003; 19: 555–8.

    CAS  Google Scholar 

  25. Feng Z, Chang Y, Cheng Y, Zhang BL, Qu ZW, Qin C, et al. Melatonin alleviates behavioral deficits associated with apoptosis and cholinergic system dysfunction in the APP 695 transgenic mouse model of Alzheimer's disease. J Pineal Res 2004; 37: 129–36.

    CAS  Google Scholar 

  26. Feng Z, Cheng Y, Zhang JT . Long-term effects of melatonin or 17 beta-estradiol on improving spatial memory performance in cognitively impaired, ovariectomized adult rats. J Pineal Res 2004; 37: 198–206.

    CAS  Google Scholar 

  27. Feng Z, Zhang JT . Long-term melatonin or 17beta-estradiol supplementation alleviates oxidative stress in ovariectomized adult rats. Free Radic Biol Med 2005; 39: 195–204.

    CAS  PubMed  Google Scholar 

  28. Feng Z, Zhang JT . Melatonin reduces amyloid beta-induced apoptosis in pheochromocytoma (PC12) cells. J Pineal Res 2004; 37: 257–66.

    CAS  PubMed  Google Scholar 

  29. Feng Z, Zhang JT . Protective effect of melatonin on beta-amyloid-induced apoptosis in rat astroglioma C6 cells and its mechanism. Free Radic Biol Med 2004; 37: 1790–801.

    CAS  Google Scholar 

  30. Tremml P, Lipp HP, Muller U, Wolfer DP . Enriched early experiences of mice underexpressing the β-amyloid precursor protein restore spatial learning capabilities but not normal openfield behavior of adult animals. Genes Brain Behav 2002; 1: 230–41.

    CAS  PubMed  Google Scholar 

  31. Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, et al. Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 1996; 274: 99–102.

    CAS  Google Scholar 

  32. Matsubara E, Bryant-Thomas T, Pacheco Quinto J, Henry TL, Poeggeler B, Herbert D, et al. Melatonin increases survival and inhibits oxidative and amyloid pathology in a transgenic model of Alzheimer's disease. J Neurochem 2003; 85: 1101–8.

    CAS  Google Scholar 

  33. Bronfman FC, Moechars D, Van Leuven F . Acetylcholinesterase positive fiber deafferentation and cell shrinkage in the septohippocampal pathway of aged amyloid precursor protein London mutant transgenic mice. Neurobiol Dis 2000; 7: 152–68.

    CAS  PubMed  Google Scholar 

  34. Vila M, Przedborski S . Targeting programmed cell death in neurodegenerative diseases. Nat Rev Neurosci 2003; 4: 365–75.

    CAS  PubMed  Google Scholar 

  35. Chan SL, Griffin WS, Mattson MP . Evidence for caspase-mediated cleavage of AMPA receptor subunits in neuronal apoptosis and Alzheimer's disease. J Neurosci Res 1999; 57: 315–23.

    CAS  PubMed  Google Scholar 

  36. Guo Q, Fu W, Xie J, Luo H, Sells SF, Geddes JW, et al. Par-4 is a mediator of neuronal degeneration associated with the pathogenesis of Alzheimer disease. Nat Med 1998; 4: 957–62.

    CAS  PubMed  Google Scholar 

  37. Su JH, Deng G, Cotman CW . Bax protein expression is increased in Alzheimer's brain: correlations with DNA damage, Bcl-2 expression, and brain pathology. J Neuropathol Exp Neurol 1997; 56: 86–93.

    CAS  PubMed  Google Scholar 

  38. Maeng O, Kim YC, Shin HS, Lee JO, Hur TL, Kang KI, et al. Aberrant expressions of pathogenic phenotype in Alzheimer's diseased transgenic mice carrying NSE-controlled APPsw. Exp Neurol 2004; 186: 20–32.

    Google Scholar 

  39. Beal MF . Mitochondria, free radicals, and neurodegeneration. Curr Opin Neurobiol 1996; 6: 661–6.

    CAS  PubMed  Google Scholar 

  40. Pratico D . Alzheimer's disease and oxygen radicals: new insights. Biochem Pharmacol 2002; 63: 563–7.

    CAS  PubMed  Google Scholar 

  41. Pappolla MA, Chyan YJ, Omar RA, Hsiao K, Perry G, Smith MA, et al. Evidence of oxidative stress and in vivo neurotoxicity of beta-amyloid in a transgenic mouse model of Alzheimer's disease: a chronic oxidative paradigm for testing antioxidant therapies in vivo. Am J Pathol 1998; 152: 871–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Floyd RA, Hensley K . Oxidative stress in brain aging Implications for therapeutics of neurodegenerative diseases. Neurobiol Aging 2002; 23: 795–807.

    CAS  PubMed  Google Scholar 

  43. Huang X, Moir RD, Tanzi RE, Bush AI, Rogers JT . Redox-active metals, oxidative stress, and Alzheimer's disease pathology. Ann NY Acad Sci 2004; 1012: 153–63.

    CAS  PubMed  Google Scholar 

  44. Polidori MC . Oxidative stress and risk factors for Alzheimer's disease: clues to prevention and therapy. J Alzheimers Dis 2004; 6: 185–91.

    CAS  PubMed  Google Scholar 

  45. Zhu X, Raina AK, Perry G, Smith MA . Alzheimer's disease: the two-hit hypothesis. Lancet Neurol 2004; 3: 219–26.

    CAS  PubMed  Google Scholar 

  46. Engelhart MJ, Geerlings MI, Ruitenberg A, van Swieten JC, Hofman A, Witteman JC, et al. Dietary intake of antioxidants and risk of Alzheimer disease. JAMA 2002; 287: 3223–9.

    CAS  PubMed  Google Scholar 

  47. Morris MC, Evans DA, Bienias JL, Tangney CC, Bennett DA, Aggarwal N, et al. Dietary intake of antioxidant nutrients and the risk of incident Alzheimer disease in a biracial community study. JAMA 2002; 287: 3230–7.

    CAS  PubMed  Google Scholar 

  48. Luchsinger JA, Tang MX, Shea S, Mayeux R . Antioxidant vitamin intake and risk of Alzheimer disease. Arch Neurol 2003; 60: 203–8.

    PubMed  Google Scholar 

  49. Pratico D, Uryu K, Sung S, Tang S, Trojanowski JQ, Lee VM . Aluminum modulates brain amyloidosis through oxidative stress in APP transgenic mice. FASEB J 2002; 16: 1138–40.

    CAS  PubMed  Google Scholar 

  50. Cholerton B, Gleason CE, Baker LD, Asthana S . Estrogen and Alzheimer's disease: the story so far. Drugs Aging 2002; 19: 405–27.

    CAS  PubMed  Google Scholar 

  51. Norbury R, Cutter WJ, Compton J, Robertson DM, Craig M, Whitehead M, et al. The neuroprotective effects of estrogen on the aging brain. Exp Gerontol 2003; 38: 109–17.

    CAS  PubMed  Google Scholar 

  52. Sato T, Teramoto T, Tanaka K, Ohnishi Y, Irifune M, Nishikawa T . Effects of ovariectomy and calcium deficiency on learning and memory of eight-arm radial maze in middle-aged female rats. Behav Brain Res 2003; 142: 207–16.

    CAS  PubMed  Google Scholar 

  53. Luine VN, Jacome LF, Maclusky NJ . Rapid enhancement of visual and place memory by estrogens in rats. Endocrinology 2003; 144: 2836–44.

    CAS  PubMed  Google Scholar 

  54. Wu X, Glinn MA, Ostrowski NL, Su Y, Ni B, Cole HW, et al. Raloxifene and estradiol benzoate both fully restore hippocampal choline acetyltransferase activity in ovariectomized rats. Brain Res 1999; 847: 98–104.

    CAS  PubMed  Google Scholar 

  55. D'Hooge R, De Deyn PP . Applications of the Morris water maze in the study of learning and memory. Brain Res Brain Res Rev 2001; 36: 60–90.

    CAS  PubMed  Google Scholar 

  56. Singh M, Meyer EM, Simpkins JW . The effect of ovariectomy and estradiol replacement on brain-derived neurotrophic factor messenger hippocampal brain expression in cortical and hippocampal brain regions of female Sprague-Dawley rats. Endocrinology 1996; 136: 2320–4.

    Google Scholar 

  57. Bhavnani BR . Estrogens and menopause: pharmacology of conjugated equine estrogens and their potential role in the prevention of neurodegenerative diseases such as Alzheimer's. J Steroid Biochem Mol Biol 2003; 85: 473–82.

    CAS  PubMed  Google Scholar 

  58. Cholerton B, Gleason CE, Baker LD, Asthana S . Estrogen and Alzheimer's disease: the story so far. Drugs Aging 2002; 19: 405–27.

    CAS  PubMed  Google Scholar 

  59. Garcia-Segura LM, Azcoitia I, DonCarlos LL . Neuroprotection by estradiol. Prog Neurobiol 2001; 63: 29–60.

    CAS  Google Scholar 

  60. Telci A, Cakatay U, Akhan SE, Bilgin ME, Turfanda A, Sivas A . Postmenopausal hormone replacement therapy use decreases oxidative protein damage. Gynecol Obstet Invest 2002; 54: 88–93.

    CAS  PubMed  Google Scholar 

  61. Ozgonul M, Oge A, Sezer ED, Bayraktar F, Sozmen EY . The effects of estrogen and raloxifene treatment on antioxidant enzymes in brain and liver of ovariectomized female rats. Endocr Res 2003; 29: 183–9.

    PubMed  Google Scholar 

  62. Cagnacci A, Arangino S, Angiolucci M, Melis GB, Tarquini R, Renzi A, et al. Different circulatory response to melatonin in postmenopausal women without and with hormone replacement therapy. J Pineal Res 2000; 29: 152–8.

    CAS  PubMed  Google Scholar 

  63. Sastre J, Pallardo FV, Vina J . The role of mitochondrial oxidative stress in aging. Free Radic Biol Med 2003; 35: 1–8.

    CAS  PubMed  Google Scholar 

  64. Martin M, Macias M, Escames G, Reiter RJ, Agapito MT, Ortiz GG, et al. Melatonin-induced increased activity of the respiratory chain complexes I and IV can prevent mitochondrial damage induced by ruthenium red in vivo. J Pineal Res 2000; 28: 242–8.

    CAS  PubMed  Google Scholar 

  65. Pajovic SB, Saicic ZS, Spasic MB, Petrovic VM, Martinovic JV . Effects of progesterone and estradiol benzoate on glutathione dependent antioxidant enzyme activities in the brain of female rats. Gen Physiol Biophys 1999; 18: 35–44.

    CAS  PubMed  Google Scholar 

  66. Waldmeier PC . Prospects for antiapoptotic drug therapy of neurodegenerative diseases. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27: 303–21.

    CAS  PubMed  Google Scholar 

  67. Sawada H, Ibi M, Kihara T, Urushitani M, Honda K, Nakanishi M, et al. Mechanisms of antiapoptotic effects of estrogens in nigral dopaminergic neurons. FASEB J 2000; 14: 1202–14.

    CAS  PubMed  Google Scholar 

  68. White RM, Kennaway DJ, Seamark RF . Estrogenic effects on urinary 6-sulphatoxymelatonin excretion in the female rat. J Pineal Res 1997; 22: 124–9.

    CAS  PubMed  Google Scholar 

  69. Ostrowska Z, Kos-Kudla B, Swietochowska E, Marek B, Kajdaniuk D, Gorski J . Assessment of the relationship between dynamic pattern of nighttime levels of melatonin and chosen biochemical markers of bone metabolism in a rat model of postmenopausal osteoporosis. Neuro Endocrinol Lett 2001; 22: 129–36.

    CAS  PubMed  Google Scholar 

  70. Wirths O, Multhaup G, Bayer TA . A modified beta-amyloid hypothesis: intraneuronal accumulation of the beta-amyloid peptide: the first step of a fatal cascade. J Neurochem 2004; 91: 513–20.

    CAS  PubMed  Google Scholar 

  71. LeVine H 3rd . The amyloid hypothesis and the clearance and degradation of Alzheimer's beta-peptide. J Alzheimers Dis 2004; 6: 303–14.

    CAS  PubMed  Google Scholar 

  72. Dickson DW . Apoptotic mechanisms in Alzheimer neurofibrillary degeneration: cause or effect? J Clin Invest 2004; 114: 23–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Rego AC, Oliveira CR . Mitochondrial dysfunction and reactive oxygen species in excitotoxicity and apoptosis: implications for the pathogenesis of neurodegenerative diseases. Neurochem Res 2003; 28: 1563–74.

    CAS  PubMed  Google Scholar 

  74. Paradisi S, Sacchetti B, Balduzzi M, Gaudi S, Malchiodi-Albedi F . Astrocyte modulation of in vitro beta-amyloid neurotoxicity. Glia 2004; 46: 252–60.

    PubMed  Google Scholar 

  75. Takuma K, Baba A, Matsuda T . Astrocyte apoptosis: implications for neuroprotection. Prog Neurobiol 2004; 72: 111–27.

    CAS  PubMed  Google Scholar 

  76. Wyss-Coray T, Loike JD, Brionne TC, Lu E, Anankov R, Yan F, et al. Adult mouse astrocytes degrade amyloid-beta in vitro and in vitro. Nat Med 2003; 9: 453–7.

    CAS  PubMed  Google Scholar 

  77. Guenette SY . Astrocytes: a cellular player in Abeta clearance and degradation. Trends Mol Med 2003; 9: 279–80.

    CAS  PubMed  Google Scholar 

  78. Aisen PS . The potential of anti-inflammatory drugs for the treatment of Alzheimer's disease. Lancet Neurol 2002; 1: 279–84.

    CAS  PubMed  Google Scholar 

  79. Suh YH, Checler F . Amyloid precursor protein, presenilins, and alpha-synuclein: molecular pathogenesis and pharmacological applications in Alzheimer's disease. Pharmacol Rev 2002; 54: 469–525.

    CAS  PubMed  Google Scholar 

  80. Kostrzewa RM, Segura-Aguilar J . Novel mechanisms and approaches in the study of neurodegeneration and neuroprotection A review. Neurotox Res 2003; 5: 375–83.

    PubMed  Google Scholar 

  81. Juknat AA, Mendez Mdel V, Quaglino A, Fameli CI, Mena M, Kotler ML . Melatonin prevents hydrogen peroxide-induced Bax expression in cultured rat astrocytes. J Pineal Res 2005; 38: 84–92.

    CAS  PubMed  Google Scholar 

  82. Pei Z, Cheung RT . Melatonin protects SHSY5Y neuronal cells but not cultured astrocytes from ischemia due to oxygen and glucose deprivation. J Pineal Res 2003; 34: 194–201.

    CAS  PubMed  Google Scholar 

  83. Kitazawa M, Yamasaki TR, Laferla FM . Microglia as a potential bridge between the amyloid (beta)-peptide and tau. Ann NY Acad Sci 2004; 1035: 85–103.

    CAS  PubMed  Google Scholar 

  84. Summers WK . Alzheimer's disease, oxidative injury, and cytokines. J Alzheimers Dis 2004; 6: 651–7.

    CAS  PubMed  Google Scholar 

  85. Ramirez G, Toro R, Dobeli H, von Bernhardi R . Protection of rat primary hippocampal cultures from A beta cytotoxicity by pro-inflammatory molecules is mediated by astrocytes. Neurobiol Dis 2005; 19: 243–54.

    CAS  PubMed  Google Scholar 

  86. Blennow K, Cowburn RF . The neurochemistry of Alzheimer's disease. Acta Neurol Scand 1996; 168 Suppl: 77–86.

    CAS  Google Scholar 

  87. Pei JJ, Braak E, Braak H, Geundke-Iqbal I, Iqbal K, Winblad B, et al. Distribution of active glycogen synthase kinase 3β (GSK-3β) in brains staged for Alzheimer disease neurofibrillary changes. J Neuropathol Exp Neurol 1999; 58: 1010–9.

    CAS  PubMed  Google Scholar 

  88. Bennecib M, Gong CX, Grundke-Iqbal I, Iqbal K . Role of protein phosphatase-2A and −1 in the regulation of GSK-3, cdk5 and cdc 2 and the phosphorylation of tau in rat forebrain. FEBS Lett 2000; 485: 87–93.

    CAS  PubMed  Google Scholar 

  89. Liu SJ, Zhang AH, Li HL, Wang Q, Deng HM, Netzer WJ, et al. Overactivation of glycogen synthase kinase-3 by inhibition of phosphoinositol-3 kinase and protein kinase C leads to hyperphosphorylation of tau and impairment of spatial memory. J Neurochem 2003; 87: 1333–44.

    CAS  Google Scholar 

  90. Liu SJ, Wang JZ . Alzheimer-like tau phosphorylation induced by wortmannin in vivo and its attenuation by melatonin. Acta Pharmacol Sin 2002; 23: 183–7.

    CAS  Google Scholar 

  91. Wang DL, Ling ZQ, Cao FY, Zhu LQ, Wang JZ . Melatonin attenuates isoproterenol-induced protein kinase A overactivation and tau hyperphosphorylation in rat brain. J Pineal Res 2004; 37: 11–6.

    CAS  Google Scholar 

  92. Li SP, Deng YQ, Wang XC, Wang YP, Wang JZ . Melatonin protects SH-SY5Y neuroblastoma cells from calyculin A-induced neurofilament impairment and neurotoxicity. J Pineal Res 2004; 36: 186–91.

    CAS  Google Scholar 

  93. Wang YP, Li XT, Liu SJ, Zhou XW, Wang XC, Wang JZ . Melatonin ameliorated okadaic-acid induced Alzheimer-like lesions. Acta Pharmacol Sin 2004; 25: 276–80.

    Google Scholar 

  94. Zhu LQ, Wang SH, Ling ZQ, Wang DL, Wang JZ . Effect of inhibiting melatonin biosynthesis on spatial memory retention and tau phosphorylation in rat. J Pineal Res 2004; 37: 71–7.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China

    Yong Cheng & Jun-tian Zhang

  2. Department of Anesthesiology, University of California, San Diego

    Zheng Feng

  3. Veterans Affairs Medical Center, 3350 La Jolla Village Drive, San Diego, CA 92161, USA

    Zheng Feng

  4. Department of Pharmacology, College of Pharmacy, Shandong University, Jinan, 250012, China

    Qing-zhu Zhang

Authors
  1. Yong Cheng
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Zheng Feng
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Qing-zhu Zhang
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Jun-tian Zhang
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Jun-tian Zhang.

Additional information

Project supported by a grant from the National Basic Research Program of the Ministry of Science and Technology, China (No G199805119).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cheng, Y., Feng, Z., Zhang, Qz. et al. Beneficial effects of melatonin in experimental models of Alzheimer disease. Acta Pharmacol Sin 27, 129–139 (2006). https://doi.org/10.1111/j.1745-7254.2006.00267.x

Download citation

  • Received: 14 July 2005

  • Accepted: 31 October 2005

  • Issue Date: 01 February 2006

  • DOI: https://doi.org/10.1111/j.1745-7254.2006.00267.x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • melatonin
  • Alzheimer disease
  • beta-amyloid protein
  • calcium overload
  • APP transgenic mice
  • ovariectomized rats
  • tau protein hyperphosphorylation

This article is cited by

  • On the central role of mitochondria dysfunction and oxidative stress in Alzheimer’s disease

    • Tobore Onojighofia Tobore

    Neurological Sciences (2019)

  • Modeling mitochondrial dysfunctions in the brain: from mice to men

    • Megan E. Breuer
    • Peter H. G. M. Willems
    • Jan A. M. Smeitink

    Journal of Inherited Metabolic Disease (2012)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open access publishing
  • About the Editors
  • Editorial Board
  • About the Partner
  • Contact
  • For Advertisers
  • Subscribe
  • Announcements

Publish with us

  • For Authors & Referees
  • Language editing services
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Acta Pharmacologica Sinica (Acta Pharmacol Sin) ISSN 1745-7254 (online) ISSN 1671-4083 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • Nano
  • Protocol Exchange
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Live Expert Trainer-led workshops
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Career development

  • Nature Careers
  • Nature Conferences
  • Nature events

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Italy
  • Nature Japan
  • Nature Korea
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2023 Springer Nature Limited