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Introduction
The two barriers separating the central nervous system

(CNS) from the periphery are the blood-brain barrier (BBB),
located at the endothelial cells of the brain tissue capillaries,
and the blood-cerebrospinal fluid barrier (B-CSF-B), at the
choroids plexus and the circumventricular organs[1].  Formed
by complex tight junctions of the brain capillary endothelial
cells, the BBB segregates the circulating blood from inter-
stitial fluid in the brain[2].  The capillary endothelial cells
regulate the permeability property of the BBB.  However,
there are at least four kinds of cells that comprise the brain
microvasculature, and all contribute to the regulation of the
cerebral microvasculature and, indirectly, to the regulation
of BBB permeability.  The endothelial cell and the pericyte
share a common capillary basement membrane.  There is
approximately one pericyte for every two to four endothe-

lial cells[3].  Also, immunohistochemistry is a widely used
research technique in BBB research for the cellular localiza-
tion of proteins of interest in normal vessels and the docu-
mentation of altered expression following disease states, for
the identification of cultured cells and for the spatial local-
ization of novel gene products[4].

Although the BBB was thought to act as a static wall
protecting the brain, application of recent advanced meth-
odologies to study the BBB has led to the new concept that
the BBB acts as a dynamic regulatory interface.  Using pri-
mary cultured bovine brain capillary endothelial cells, Tsuji
et al[5,6] have found that P-glycoprotein (ABCB1) acts as an
efflux pump for the anti-cancer drugs, vincristine, at the BBB.
Schinkel et al[7–9] have developed the mdr 1a gene knockout
mouse and proved that P-glycoprotein (ie, mdr 1a gene
products) plays a key role in restricting the apparent cere-
bral distributed vinblastine (a substrate of P-glycoprotein)
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across the BBB.  However, several hydrophilic substrates
such as metabolites of cerebral neurotransmitters are present
in the brain, which reduce the cerebral concentration, and as
a result, could play an important role in CNS detoxification.

To be effective, CNS therapeutic agents must have the
ability to cross over the BBB whereas peripherally acting
drugs should hardly be able to pass the BBB.  The uptake of
a compound into the brain is a complex process.  The mod-
erately lipophilic drugs can pass the BBB by passive diffu-
sion and the hydrogen bonding properties of drugs signifi-
cantly influence their particular CNS uptake profiles.  Polar
molecules are generally poor CNS agents unless they un-
dergo active transport to pass the CNS.  Size, ionization
properties, and molecular flexibility are other factors ob-
served to influence transport of an organic compound across
the BBB[10–13].  Recently, there has been a surge in computa-
tional efforts to evaluate absorption, distribution, meta-
bolism, excretion, and toxicity (ADME/T) properties of drugs.
These new computational approaches remain to focus on
modeling structurally diverse data sets by dealing with the
properties of the solutes.  These properties are limited to
relative lipophilicity indices, solvation and hydrogen bond
parameters, topological indices, and limited three-dimen-
sional solute properties[14–19].  Iyer et al[20] have developed a
methodology called membrane-interaction (MI)-QSAR
analysis, where structure-based design methodology is com-
bined with classic intramolecular QSAR analysis to model
different compounds interacting with cellular membranes.
They have also built a predictive model of BBB penetration
of organic compounds by simulating the interaction of an
organic compound with the phospholipide-rich region of cel-
lular membranes.  As a result, they indicated that BBB pen-
etration of an organic compound depended upon PSA, ClogP,
and the conformational flexibility of the compounds as well
as the strength of their “binding” to the model biologic
membrane.  The BBB penetration process can be reliably
described for structurally diverse molecules whose interac-
tions with the phospholipide-rich regions of cellular mem-
branes are explicitly considered.  There are other important
applications of MI-QSAR analysis.  For example, it can be
used as a computational approach to estimate ADME prop-
erties such as the transport of organic solutes through bio-
logical membranes; and by this way, we can forecast intesti-
nal absorption[21] of drugs and construct MI-QSAR model
for skin irritation[22], and eye irritation[23].  However, as a
prediction measure, the MI-QSAR computational model is
itself somewhat inconvenient.  It is quite easily susceptible
to manipulation during the prediction process, and so mod-
els with more reliability can still have a reasonable-looking

MI-QSAR model.  Moreover, there are several non-MI-QSAR
computational models including other descriptors besides
PSA and ClogP reported to describe and predict BBB
penetration.  Lombardo and colleagues[17] reported about
computing BBB penetration of organic solutes via free en-
ergy calculations.  Keseru et al[24] clarified a high-through-
put prediction of BBB penetration of organic molecules us-
ing a thermodynamic approach.  Crivori et al[25] elucidated a
method  to predict BBB penetration from a three-dimensional
molecular structure.  Their research results showed that the
BBB penetration only relies on one or two descriptors, which
leads to the simplification of the prediction model of BBB.

In this article, we focus on constructing the predictive
models of BBB penetration of organic compounds on the
basis of QSAR analysis and MI-QSAR analysis.

Materials and methods

Building solute molecules  A training set of 37 organic
compounds[26,27] (Table 1) and a test set of 8 organic com-
pounds (Table 2) were selected.  These compounds had
ranges in molecular weights from 16.03 to 448.58, whose
concentrations in blood and brain (Cblood and Cbrain) were
measured in units of mmol/L, and there were variations in net
charge at pH 7.4[26].  The dependent variable used in this
theoretical model was the logarithm of the BBB partition
coefficient, log BB=log (Cbrain/Cblood)[27].  Experimental val-
ues of log BB published to date covered the range of about
-2.00 to +1.04.  Within this range, compounds with log BB>
0.30 cross the BBB readily while compounds with log BB<
-1.00 are poorly distributed to the brain[20,27].  All these com-
pounds were built on a PC computer using the Build module
of the commercial software packages Hyperchem 6[28].  First,
the geometry of these compounds were opitimized using the
Amber 94 force field in gas state.  Second, they were placed
in a periodic solvent box whose volume was X=16Å, Y=10
Å, Z=18Å, which included 96 water molecules.  Here, tem-
perature was 300 K and pressure was 101.325 kPa.  Then the
compounds in water were minimized by the above method.
Third, the compounds in water were simulated by the Monte
Carlo method and minimized by the above method.

Molecular modeling of a DMPC membrane mono-
layer complex with a layer of water (DMPC-water model)
A model of dimyristoylphosphatidylcholine (DMPC) mem-
brane monolayer was constructed using the software Mate-
rial Studio[29], and minimized for 200 steps with the smart
minimizer.  According to the work done by van der Ploeg
and Berendsen[30], the DMPC monolayer was composed of
25 DMPC molecules (5×5×1).
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Table 1.  The structure, molecular weight, formula, and log BB of 37 organic compounds in the training set[20].

ID                                  Structure                                               Mr                Formula             Log BB

1 156.21 C5H8N4S -0.04

2 379.46 C21H25N5O2 -2.00

3 448.58 C25H28N4O2S -1.30

4 413.54 C21H27N5O2S -1.06

5 230.1 C9H9C12N3 0.11

6 285.39 C17H23N3O 0.49

7 204.23 C9H12N6 -1.17

8 218.28 C10H10N4S -0.18

9 233.29 C10H11N5S -1.15

10 275.33 C12H13N5OS -1.57

(Continued)
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 ID                                     Structure                                  Mr                Formula             Log BB

11 290.41 C17H26N2O2 -0.46

12 352.48 C22H28N2O2 -0.24

13 249.35 C15H23NO2 -0.02

14 331.48 C18H25N3OS 0.44

15 381.54 C22H27N3OS 0.14

16 365.47 C22H27N3O2 0.22

17 150.22 C9H14N2 -0.06

18 161.21 C9H11N3 -1.40

19 260.38 C16H24N2O 0.25

2 0 277.41 C20H23N 0.85

(Continued)
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ID                               Structure                                                Mr            Formula                         Log BB

21 8.01 N2 0.03

22 78.11 C6H6 0.37

23 60.1 C3H8O -0.15

24 74.12 C4H10O -0.17

25 86.18 C6H14 0.97

26 86.18 C6H14 1.04

27 118.49 C2H2ClF3 0.08

28 133.41 C2H3Cl3 0.40

29 184.49 C3H2ClF5O 0.24

30 46.07 C2H6O -0.16

31 126.08 C4H5F3O 0.13

3 2 211.41 C3H3BrClF3 0.35

(Continued)
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Table 2.  The structure, molecular weight, formula, and log BB of 8 organic compounds in the test set[20].

ID                      Structure Mr                          Formula Log BB

T1 72.11 C4H8O -0.08

T2 86.18 C6H14 1.01

T3 100.20 C7H16 0.90

T4 74.12 C4H10O 0.00

T5 100.20 C7H16 0.81

T6 16.04 CH4 0.04

T7 72.15 C5H12 0.76

T8 58.08 C3H6O -0.15

ID                                   Structure                                                Mr             Formula             Log BB

33 84.16 C6H12 0.93

34 46.07 C2H6O -0.16

35 194.95 C3H3BrF4 0.27

36 92.14 C7H8 0.37

37 31.39 C2HCl3 0.34

Here, the unit cell parameters used for building the DMPC
monolayer were a=8Å, b=8Å, and γ=96.0º, which yield an
average surface area per phospholipid of 64Å2 that was simi-
lar to Stouch's research results[31].  Moreover, we added a
layer of water (40×40×10) including 529 water molecules to
the polar side of the DMPC monolayer.

Molecular dynamic simulation (MDS) of a solute-
membrane-water complex  In order to prevent unfavorable
van der Waals interactions between a solute molecule and
the membrane DMPC molecules, one of the “center” DMPC
molecules was removed from the DMPC-water model and
an organic compound (solute) was inserted in the space cre-
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ated by the missing DMPC molecule to form a solute-mem-
brane-water complex.  The solute was inserted at three dif-
ferent positions in the DMPC-water model and three corre-
sponding MDS models were generated for each compound.
MDS of the complex was performed for 1000 steps using
Material Studios[29] with a Compass force field.  Here, the
three-dimensional volume was restricted to a boundary of
X=40Å, Y=40Å, Z=91.76Å, and γ=96.0°.

Calculation of descriptors  Most of the intramolecular
solute descriptors were calculated by the commercial soft-
ware packages CS Chem3D Ultra7.0[32], which included
molecular mechanism (MM) parameters, quantum chemis-
try parameters, hydrophobic parameters (such as ClogP),
stereo parameters (such as Es and Balaban Index) and so on.
The MM parameters comprised bending energy, stretch-bend
energy, torsion energy, total energy, van der Waals energy
and others.  The quantum chemistry parameters consisted of
electronic energy, HOMO energy, LUMO energy, total
energy, and so on.  The data of molecular PSA (polar surface
area) came from Iyer and colleagues[20].

The intermolecular solute-membrane interaction descrip-
tors were extracted directly from the MDS trajectories in
which the solute-membrane-water complex had the lowest
energy geometry.  These descriptors were mainly energy
parameters.  The total energy of a system could be expressed
as follows[20]:

                   Etotal=Evalence+Ecrossterm+Enonbond

Here, the valence interactions include bond stretching
(bond), valence angle bending (angle), dihedral angle tor-
sion (torsion), and inversion, also called out-of-plane inter-
actions (oop) terms, which are part of nearly all forcefields
for covalent systems.  In addition, a Urey-Bradley term (UB)
may be used to account for interactions between atom pairs
involved in 1, 3 configurations (ie, atoms bound to a com-
mon atom).  Evalence=Ebond+Eangle+Etorsion+Eoop+Eup.  Modern
(second-generation) forcefields generally achieve higher
accuracy by including crossterms to account for such fac-
tors as bond or angle distortions caused by nearby atoms.
Crossterms can include the following terms: stretch-stretch,

stretch-bend-stretch, bend-bend, torsion-stretch, torsion-
bend-bend, bend-torsion-bend and stretch-torsion-stretch.
The interaction energy between non-bonded atoms is ac-
counted by van der Waals, electrostatic (Coulomb), and
hydrogen bond terms in some older forcefields.  Enon-bond=
Evan-der-Waals+ECoulomb+Ehydrogen-bond.  Restraints that can be
added to an energy expression include distance, angle,
torsion, and inversion restraints.  Restraints are useful if
you, for example, are interested in only part of a structure for
information on restraints and their implementation, use, and
also the documentation for the particular simulation engine.

Construction and testing of MI-QSAR models  MI-
QSAR models of some organic compounds through BBB
were constructed by partial sum of squares for regression
using software SPSS.  A training set of 37 structurally di-
verse compounds whose BBB partition coefficients had been
measured was used to construct MI-QSAR models.  MDSs
were used to determine the explicit interaction of each test
compound with the DMPC-water model.  An additional set
of intramolecular solute descriptors were computed and con-
sidered in the trial pool of descriptors for building MI-QSAR
models.  The QSAR models were optimized using multidi-
mensional linear regression fitting and stepwise method.  A
test set of 8 compounds was evaluated using the MI-QSAR
models as part of a validation process.

Results
Building solute molecules  A training set of 37 organic

compounds and a test set of 8 organic compounds were
built and minimized, dissolved in liquid, and optimized by
Monte Carlo method and MM.  Finally, the dominant con-
formations of these compounds were obtained (Figure 1).

MDS of a solute-membrane-water complex The result
revealed that the energy of a solute inserted at the middle
position of the DMPC-water model was lower than that of
the other two positions.  Figure 2 shows the dominant con-
formation of a solute-membrane-water complex in the MDS.

Construction and testing of MI-QSAR models MI-
QSAR analysis was used to develop predictive models of
some organic compounds through BBB and to simulate the
interaction of a solute with the phospholipide-rich regions
of cellular membranes surrounded by a layer of water.  Mo-
lecular descriptors of 37 compounds in the training set were
listed in Table 3.  Six MI-QSAR equations were constructed
based on Table 3 and were listed as follows:

log  BB=0.552-1.73×10-2 PSA
n=37  R=0.835 S=0.398                               (1)
log BB=0.229-1.70×10-2  PSA+0.131 Clog  P
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n=37  R=0.878 S=0.352                                    (2)
log BB=4.965×10-2-1.28×10-2  PSA+0.211 Clog P
-6.40×10-7 BIndx
n=37  R=0.924 S=0.285                                     (3)
log  BB=6.262×10-2-1.36×10-2  PSA+0.205 Clog  P
-7.11×10-7  BIndx -0.185Esb

n=37  R=0.938 S=0.264                               (4)

log  BB=6.580×10-2-1.21×10-2  PSA+0.206 Clog  P
-7.77×10-7  BIndx-0.197Esb+1.330×10-3∆Etotal

n=37  R=0.947 S=0.248                               (5)
log  BB=8.730×10-2-1.04×10-2  PSA+0.222 Clog  P
-9.60×10-7  BIndx-0.183Esb+1.364×10-3 ∆Etotal

-2.68×10-3∆Etorsion

n=37  R=0.955 S=0.232                               (6)
where PSA is the polar surface area, ClogP is the calculated
logP (the logarithm of the partition coefficient for octanol/
water), BIndx is the Balaban Index, namely connective index
of molecular average total distance (relative covalent radius),
and Esb is the stretch-bend energy of a molecule.  These
intramolecular solute descriptors came from CS calculation.
In addition, calculated from the MDS, intermolecular descrip-
tors ∆Etotal and ∆Etorsion are related to interactions between a
solute and the DMPC-water model.  They display the change
in the total potential energy and the dihedral torsion energy
of the solute-membrane-water complex comparing with that
of the DMPC-water model, respectively.  Here, n is the num-
ber of organic compounds, R is the correlation coefficient,
and S is the standard deviation.

With the increase of the variable from one to six, the
relativity of MI-QSAR equations was also improved, and
the predictive ability of the models was enhanced.  Figure 3
displaye a diagnostic plot of the MI-QSAR models.  Here,
equation 6 was the most significant, which means that the
capability of an organic compound through BBB depends
upon PSA, ClogP, BIndx, Esb, ∆Etotal, and ∆Etorsion.  Moreover,
the potential of an organic compound through BBB is di-
rectly proportional to ClogP and ∆Etotal, but inversely pro-
portional to PSA, BIndx, Esb, and ∆Etorsion.  The observed and
predicted log BB values of the training set are listed in Table

Figure 1 .  The dominant conformation of Number 1 compound
labeled by balls and cylinders in water. The box denotes the water
solvent box defined in Monte Carlo simulation.

Figure 2.  The dominant conformation of a solute-membrane-water com-
plex in the MDS. The DMPC molecules appear as black stick. The upper
molecules show water molecules. The center ball molecule expresses or-
ganic compound. The black box displays the border of volume.

Figure 3.  A diagnostic plot of the MI-QSAR models. R is the correlative
coefficient and s is the standard deviation of the best x-term model,
where x is plotted on the X-axis for the 37 compounds of the training
set.
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5 and plotted in Figure 4.  The predicted log BB value of
compound 18 in the training set was much higher than
observed, and this molecule has also been identified as an
outlier in other studies[20].  Protonation of the molecule could
account for its low log BB value.

A test set of 8 organic compounds was constructed as a
way to attempt to validate the MI-QSAR models given by
the six equations mentioned.  The compounds of the test set
were selected so as to span almost the entire range in BBB
penetration.  The observed and predicted log BB values for

this test set are given in Table 6 and plotted in Figure 5.  It
seems that the 5–6 terms MI-QSAR models could predict log
BB for other compounds in drug design.

Discussion

We have built up a theoretical model of BBB penetration
of organic compounds by simulating the interaction of an
organic compound with the phospholipid-rich regions of
cellular membranes.  The family of these MI-QSAR models

Table 3.   The values of molecular descriptors of 37 organic compounds in the training set.

ID PSA (Å2) ClogP BIndx (Å)
      Esb      Etotal     Etorsion    ∆Etotal   ∆Etorsion

(kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol)

1 78.90 1.20 12378.00 –1.3550 –298.30 –1713.11 42.46 11.30
2 94.00 1.98 1101758.00 –0.1560 –406.08 –1789.81 –65.32 –65.39
3 73.00 3.79 1738650.00 –1.4847 –256.30 –1703.14 84.46 21.27
4 87.00 1.63 1346396.00 –1.3911 –302.75 –1841.56 38.00 –117.15
5 39.00 1.02 41807.00 0.5813 –226.38 –1734.75 114.38 –10.33
6 26.80 3.23 305770.00 –0.0926 –228.29 –1679.46 112.47 44.96
7 88.80 1.01 58510.00 0.7104 –279.08 –1671.34 61.68 53.07
8 76.60 2.80 62216.00 –0.3833 –309.30 –1654.67 31.46 69.74
9 104.40 1.77 83798.00 –0.3560 –313.42 –1639.99 27.34 84.43
10 108.80 2.00 193593.00 –0.5217 –548.56 –1640.92 –207.80 83.49
11 47.90 2.51 352512.00 –0.0950 –312.12 –1656.75 28.64 67.67
12 45.20 4.27 779210.00 0.0048 –163.80 –1716.31 176.96 8.11
13 38.50 2.61 158640.00 –0.0949 –170.33 –1716.72 170.43 7.70
14 40.00 4.28 431722.00 –1.3051 –247.10 –1748.02 93.66 –23.61
15 39.20 5.88 766256.00 0.0991 –289.28 –1735.40 51.48 –10.98
16 54.90 5.14 766256.00 –0.1422 –181.06 –1743.61 159.70 –19.19
17 18.80 0.62 20863.00 0.1807 –331.70 –1695.70 9.05 28.72
18 46.70 0.27 20264.00 –1.3684 –209.47 –1644.68 131.29 79.74
19 44.10 2.80 190375.00 –2.9778 –311.92 –1713.89 28.84 10.52
20 5.40 4.85 210631.00 –0.0608 –235.72 –1704.34 105.03 20.08
21 0.00 –0.47 4.00 0.0000 –407.32 –1729.38 –66.56 –4.96
22 0.00 2.14 972.00 –0.0001 –239.88 –1675.18 100.88 49.23
23 23.40 0.07 213.00 0.0000 –160.13 –1672.39 180.63 52.03
24 22.60 0.69 712.00 0.0000 –319.07 –1742.70 21.69 –18.28
25 0.00 3.74 1899.00 0.0007 –282.37 –1751.62 58.39 –27.20
26 0.00 3.61 1661.00 0.0000 –285.71 –1731.95 55.05 –7.54
27 0.00 1.43 1661.00 –0.0001 –238.72 –1731.31 102.03 –6.89
28 0.00 2.48 633.00 0.0000 –291.56 –1725.74 49.20 –1.32
29 11.60 2.46 21380.00 –0.0001 –418.03 –1682.71 –77.27 41.70
30 24.40 –0.24 47.00 0.0000 –329.32 –1704.62 11.44 19.80
31 10.70 1.27 7864.00 –0.0000 –253.35 –1747.7 87.41 –23.29
32 0.00 2.37 7322.00 –0.0000 –268.83 –1714.25 71.93 10.17
33 0.00 3.31 931.00 0.0257 –353.84 –1739.77 –13.08 –15.35
34 24.40 –0.24 47.00 0.0000 –187.45 –1720.55 153.31 3.87
35 0.00 1.93 7322.00 –0.0000 –177.49 –1728.86 163.27 –4.45
36 0.00 2.64 2050.00 –0.0234 –220.39 –1681.15 120.36 43.26
37 0.00 2.63 712.00 –0.0000 –231.58 –1722.26 109.18 2.16
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Table 4.  The values of molecular descriptors of 8 organic compounds in the test set.

ID PSA (Å2) ClogP BIndx (Å)
      Esb      Etotal     Etorsion    ∆Etotal    ∆Etorsion

(kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol)

T1 22.70 0.32 712.00 0.0000 –274.72 –1713.74 66.04 10.68
T2 0.00 3.74 1838.00 0.0000 –225.63 –1716.62 115.13 7.79
T3 0.00 4.27 4150.00 0.0000 –331.38 –1700.64 9.38 23.78
T4 11.30 0.87 791.00 0.0000 –181.6 –1700.84 159.16 23.57
T5 0.00 4.40 4650.00 0.0000 –404.29 –1741.24 –63.53 –16.83
T6 0.00 1.10 0.00 0.0000 –282.94 –1746.19 57.82 –21.77
T7 0.00 3.34 791.00 0.0006 –271.93 –1681.94 68.84 42.47
T8 22.70 –0.21 213.00 0.0000 –364.89 –1695.36 –24.13 29.06

Table 5.  The experimental value of log BB and the predictive value of log BB of 37 organic compounds in the training set.

ID
 Experimental                                                                     Predictive value of log BB
value of log BB TERM1 TERM2 TERM3 TERM4 TERM5 TERM6

1 –0.04 –0.81 –0.95 –0.71 –0.52 –0.33 –0.20
2 –2.00 –1.07 –1.11 –1.44 –1.56 –1.57 –1.39
3 –1.30 –0.71 –0.51 –1.20 –1.11 –0.98 –1.17
4 –1.06 –0.95 –1.04 –1.58 –1.49 –1.37 –1.13
5 0.11 –0.12 –0.30 –0.26 –0.40 –0.19 –0.06
6 0.49 0.09 0.20 0.19 0.16 0.34 0.28
7 –1.17 –0.98 –1.15 –0.91 –1.11 –0.90 –0.86
8 –0.18 –0.77 –0.71 –0.38 –0.38 –0.22 –0.22
9 –1.15 –1.25 –1.31 –0.97 –0.99 –0.79 –0.81
10 –1.57 –1.33 –1.36 –1.05 –1.05 –1.16 –1.20
11 –0.46 –0.28 –0.26 –0.26 –0.31 –0.21 –0.32
12 –0.24 –0.23 0.02 –0.13 –0.23 0.03 0.04
13 –0.02 –0.11 –0.08 0.01 –0.02 0.26 0.34
14 0.44 –0.14 0.11 0.17 0.33 0.51 0.64
15 0.14 –0.13 0.33 0.30 0.17 0.26 0.33
16 0.22 –0.40 –0.03 –0.06 –0.15 0.10 0.22
17 –0.06 0.23 –0.01 –0.07 –0.11 –0.07 –0.09
18 –1.40 –0.26 –0.53 –0.50 –0.28 –0.02 –0.14
19 0.25 –0.21 –0.15 –0.05 0.45 0.59 0.62
20 0.85 0.46 0.77 0.87 0.85 0.99 1.01
21 0.03 0.55 0.17 –0.05 –0.03 –0.12 –0.10
22 0.37 0.55 0.51 0.50 0.50 0.64 0.57
23 –0.15 0.15 –0.16 –0.23 –0.24 0.04 –0.03
24 –0.17 0.16 –0.06 –0.09 –0.10 –0.04 0.08
25 0.97 0.55 0.72 0.84 0.83 0.91 1.07
26 1.04 0.55 0.70 0.81 0.80 0.88 0.98
27 0.08 0.55 0.42 0.35 0.35 0.49 0.56
28 0.40 0.55 0.55 0.57 0.57 0.64 0.71
29 0.24 0.35 0.35 0.41 0.39 0.31 0.27
30 –0.16 0.13 –0.22 –0.31 –0.32 –0.26 –0.26
31 0.13 0.37 0.21 0.18 0.17 0.31 0.43
32 0.35 0.55 0.54 0.55 0.54 0.64 0.68
33 0.93 0.55 0.66 0.75 0.74 0.73 0.84
34 –0.16 0.13 –0.22 –0.31 –0.32 –0.07 –0.02
35 0.27 0.55 0.48 0.45 0.45 0.68 0.74
36 0.37 0.55 0.57 0.61 0.61 0.77 0.72
37 0.34 0.55 0.57 0.60 0.60 0.75 0.81
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reveal that the capability of an organic compound through
BBB focus on six significant features, which are PSA, ClogP,
BIndx, Esb, ∆Etotal, and ∆Etorsion.  The descriptor PSA is found
as a dominant descriptor in these MI-QSAR models, which
is related to the aqueous solubility of the solute and can be
used as a direct lipophilicity descriptor[19].  When the value
of PSA lessens within the range from 0 to 108.80 Å2, the
value of log BB will increase.  This is consistent with the
experimental result that the higher polarity it possesses, the
more difficultly a molecule enters the hydrophobic environ-
ment of BBB[31].  Along with PSA, many descriptors can dis-
play various other kinds of the hydrophobic parameters of
compounds, such as ClogP.  In some cases it may be appro-
priate to display the parameter in the form of meshes, such
as PSA.  The higher the hydrophobic property, the greater
the value of ClogP is.  And the value of log BB of a molecule
increases with the increase of ClogP.  It means that the hy-
drophobic molecule can pass through BBB more easily than
the hydrophilic molecule does, which is supported by the
experimental results[33].  As stated, BIndx is the connective
index of molecular average total distance, which pertains to
the volume parameter.  Our research result reveals that with
the accretion of its bulk, a molecule becomes more and more
difficult to cross over BBB by diffusion.  The presence of the
descriptor Esb suggests that with the decrease of the stretch-
bend energy the value of log BB increases.

Interestingly, the other two descriptors,ΔEtotal, and
ΔEtorsion, reflect the interaction of the solute with the mem-
brane and the behavior of the entire membrane-solute
complex.  Here, the more the value ofΔEtotal changes, the
more the value of log BB increases.  This is because that
small molecule acrossing the BBB membrane leads to the
change in the structure of the complex, which therefore, re-
sults in a greater change of total potential energy, and the
accretion of the energy change is the most important cause

Figure 4.  Comparison of the experimental log BB values (–×–) with
the corresponding predicted log BB as predicted by the 5-term MI-
QSAR model (– □ –) and by the 6-term MI-QSAR model (– △ –) for
all the molecules of the training set.

Table 6.  The experimental value of log BB and the predictive value of log BB of 8 organic compounds in the test set.

ID
 Experimental                                                                           Predictive value of log BB
value of log BB TERM1 TERM2 TERM3 TERM4 TERM5 TERM6

T1 –0.08 0.16 –0.11 –0.17 –0.18 –0.06 –0.02
T2 1.01 0.55 0.72 0.84 0.83 0.99 1.05
T3 0.90 0.55 0.79 0.95 0.93 0.95 0.98
T4 0.00 0.36 0.15 0.09 0.09 0.32 0.32
T5 0.81 0.55 0.81 0.97 0.96 0.88 1.02
T6 0.04 0.55 0.37 0.28 0.29 0.37 0.47
T7 0.76 0.55 0.67 0.75 0.75 0.84 0.81
T8 –0.15 0.16 –0.18 –0.28 –0.29 –0.28 –0.31

Figure 5.  Comparison of the experimental log BB values (–×–) with
the corresponding predicted log BB as predicted by the 5-term MI-
QSAR model (– □ –) and by the 6-term MI-QSAR model (– △ –) for
all the molecules of the test set.
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for the increase of BBB penetration of small molecules.  In
contrast, the less the difference in the torsion energy is, the
larger the value of log BB is.  It displays that a small molecule
tightly combined with the membrane-water complex has a
higher value of log BB.  The relationship suggests that as
the solute becomes more flexible within the membrane-water
complex, its log BB value would increase, which is in agree-
ment with the research results by Iyer et al[20].

As an extra bonus of our work, we have developed an
extension of traditional computational approaches that com-
bines QSAR with solute-membrane-water complex.  There
is an obvious difference between our method and Iyer’s
method, which is the addition of a layer of water on the hy-
drophilic side of the DMPC membrane monolayer.  So it is
more analogous to the true BBB environment.  Our results
revealed that the distribution of organic molecules through
BBB was not only influenced by the properties of organic
solutes, but also related to the property of the solute-mem-
brane-water complex.  The former involves the polarity,
hydrophobicity, size, and conformational freedom degree of
organic molecules.  The latter deals with the strength of an
organic molecule to combine with the BBB membrane and
the structural changeability of a solute-membrane-water
complex.  Moreover, the capability of a small molecule across
BBB is mainly related to four physicochemical factors, which
are the relative polarity of a small molecule, the molecular
volume, the strength of a small molecule to combine with
DMPC-water model, and the changeability of the structure
of a solute-membrane-water complex.  The MI-QSAR model
shows that, relatively, less polar and more hydrophobic small
molecules, which tightly combine with the membrane-water
complex and are more flexible within the complex, can easily
pass through BBB and enter the brain to be effective.  In
drawing conclusions from our model, it seldom matters if
one or two parameters are slightly off (eg, BIndx), but it is
often critical if some parameters are actually in the wrong
value (eg, ClogP, PSA, or Esb): that will change which mol-
ecules are in a position to penetrate through BBB.

Incidentally, since the molecular structures in the train-
ing set are not very comparable, our MI-QSAR equations
possess universal significance.  Nevertheless, the precision
of the MI-QSAR equation is so low that there is still some
time before it can be applied.  If a series of organic com-
pounds with similar structures were chosen to construct a
training set, the precision of MI-QSAR simulation may be
largely increased, while the prediction of the analogues
through BBB will be greatly improved.

In conclusion, we have developed an extension of tradi-
tional computational approaches that combines QSAR with

solute-membrane-water complex to simulate the BBB
environment, which resembles Iyer’s method, but differs from
it by adding a layer of water on the hydrophilic side of the
DMPC membrane monolayer.  Our modified MI-QSAR method
is more approximate to the body condition than Iyer’s MI-
QSAR analysis and possesses higher ability to predict or-
ganic compounds across BBB.  Moreover, while still apply-
ing the structural information in a two-dimensional, “struc-
ture-function relationship” fashion, this method also takes
into account the powerful three-dimensional information dis-
played by membrane structures, and thus improves existing
MI-QSAR method.  The MI-QSAR models indicate that the
distribution of organic molecules through BBB was not only
influenced by organic solutes themselves, but also related
to the properties of the solute-membrane-water complex, that
is, interactions of the molecule with the phospholipid-rich
regions of cellular membranes.
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