Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Acta Pharmacologica Sinica
  • View all journals
  • Search
  • Log in
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. acta pharmacologica sinica
  3. original article
  4. article
Predictive model of blood-brain barrier penetration of organic compounds
Download PDF
Download PDF
  • Original Article
  • Published: 01 April 2005

Drug Design

Predictive model of blood-brain barrier penetration of organic compounds

  • Xiao-lei Ma1,
  • Cheng Chen1 &
  • Jie Yang1 

Acta Pharmacologica Sinica volume 26, pages 500–512 (2005)Cite this article

  • 3340 Accesses

  • 140 Citations

  • 6 Altmetric

  • Metrics details

Abstract

Aim:

To build up a theoretical model of organic compounds for the prediction of the activity of small molecules through the blood-brain barrier (BBB) in drug design.

Methods:

A training set of 37 structurally diverse compounds was used to construct quantitative structure-activity relationship (QSAR) models. Intermolecular and intramolecular solute descriptors were calculated using molecular mechanics, molecular dynamics simulations, quantum chemistry and so on. The QSAR models were optimized using multidimensional linear regression fitting and stepwise method. A test set of 8 compounds was evaluated using the models as part of a validation process.

Results:

Significant QSAR models (R=0.955, s=0.232) of the BBB penetration of organic compounds were constructed. BBB penetration was found to depend upon the polar surface area, the octanol/water partition coefficient, Balaban Index, the strength of a small molecule to combine with the membrane-water complex, and the changeability of the structure of a solute-membrane-water complex.

Conclusion:

The QSAR models indicate that the distribution of organic molecules through BBB is not only influenced by organic solutes themselves, but also relates to the properties of the solute-membrane-water complex, that is, interactions of the molecule with the phospholipid-rich regions of cellular membranes.

Similar content being viewed by others

Collision cross sections obtained with ion mobility mass spectrometry as new descriptor to predict blood-brain barrier permeation by drugs

Article Open access 16 December 2019

Armin Sebastian Guntner, Bernhard Thalhamer, … Wolfgang Buchberger

A curated diverse molecular database of blood-brain barrier permeability with chemical descriptors

Article Open access 29 October 2021

Fanwang Meng, Yang Xi, … Paul W. Ayers

An experimentally validated approach to calculate the blood-brain barrier permeability of small molecules

Article Open access 16 April 2019

Yukun Wang, Erin Gallagher, … Martin. B. Ulmschneider

Article PDF

References

  1. Bickel U, Yoshikawa T, Pardridge WM . Delivery of peptides and proteins through the blood–brain barrier. Adv Drug Deliv Rev 2001; 46: 247–79.

    Article  CAS  Google Scholar 

  2. Hosoyo K, Ohtsuki S, Terasaki T . Recent advances in the brain-to-blood efflux transport across the blood/brain barrier. Int J Pharm 2002; 248: 15–29.

    Article  Google Scholar 

  3. Pardridge WM . Molecular biology of the blood–brain barrier. Methods Mol Med 2003; 89: 385–99.

    CAS  PubMed  Google Scholar 

  4. Nag S . Immunohistochemical detection of endothelial proteins. Methods Mol Med 2003; 89: 489–502.

    CAS  PubMed  Google Scholar 

  5. Tsuji A, Tamai I . Carrier-mediated or specialized transport of drugs across the blood-brain barrier. Adv Drug Deliv Rev 1999; 36: 277–90.

    Article  CAS  Google Scholar 

  6. Tamai I, Tsuji A . Drug delivery through the blood-brain barrier. Adv Drug Deliv Rev 1996; 19: 401–2.

    Article  CAS  Google Scholar 

  7. Jette L, Murphy GF, Leclerc JM, Beliveau R . Interaction of drugs with P-glycoprotein in brain capillaries. Biochem Pharmacol 1995; 50: 1701–9.

    Article  CAS  Google Scholar 

  8. Chen W, Mehta SC, Lu DR . Selective boron drug delivery to brain tumors for boron neutron capture therapy. Adv Drug Deliv Rev 1997; 26: 231–47.

    Article  CAS  Google Scholar 

  9. Friden PM . Utilization of an endogenous cellular transport system for the delivery of therapeutics across the blood-brain barrier. J Control Release 1997; 46: 117–28.

    Article  CAS  Google Scholar 

  10. Begley DJ . The blood-brain barrier: Principles for targeting peptides and drugs to the central nervous system. J Pharm Pharmacol 1996; 48: 136–46.

    Article  CAS  Google Scholar 

  11. Anderson BD . Prodrugs for improved CNS delivery. Adv Drug Deliv Rev 1996; 19: 171–202.

    Article  CAS  Google Scholar 

  12. Pardridge WM . CNS drug design based on principles of blood-brain barrier transport. J Neurochem 1998; 70: 1781–92.

    Article  CAS  Google Scholar 

  13. Cornford EM, Hyman S . Blood-brain barrier permeability to small and large molecules. Adv Drug Deliv Rev 1999; 36: 145–63.

    Article  CAS  Google Scholar 

  14. Liu R, Sun H, So SS . Development of quantitative structure–property relationship models for early ADME evaluation in drug discovery. 2. Blood–brain barrier penetration. J Chem Int Comput Sci 2001; 41: 1623–32.

    Article  CAS  Google Scholar 

  15. Rogers D, Hopfinger AJ . Applications of genetic function approximation to quantitative structure-activity relationships and quantitative structure-property relationships. J Chem Int Comput Sci 1994; 34: 854–66.

    Article  CAS  Google Scholar 

  16. Abraham MH, Chadha HS, Mitchell RC . Hydrogen bonding factors that influence the distribution of solutes between blood and brain. J Pharm Sci 1994; 83: 1257–68.

    Article  CAS  Google Scholar 

  17. Lombardo F, Blake JF, Curatolo WJ . Computation of brain-blood partitioning of organic solutes via free energy calculations. J Med Chem 1996; 39: 4750–5.

    Article  CAS  Google Scholar 

  18. Luco JM . Prediction of brain–blood distribution of a large set of drugs from structurally derived descriptors using partial least squares (PLS) modeling. J Chem Int Comput Sci 1999; 39: 396–404.

    Article  CAS  Google Scholar 

  19. Clark DE . Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 2. Prediction of blood–brain barrier penetration. J Pharm Sci 1999; 88: 815–21.

    Article  CAS  Google Scholar 

  20. Iyer M, Mishra R, Han Y, Hopfinger AJ . Predicting blood-brain barrier partitioning of organic molecules using membrane-interaction QSAR analysis. Pharm Res 2002; 19: 1611–21.

    Article  CAS  Google Scholar 

  21. Kulkarni A, Han Y, Hopfinger AJ . Predicting Caco-2 cell permeation coefficients of organic molecules using membrane-interaction QSAR analysis. J Chem Int Comput Sci 2002; 42: 331–42.

    Article  CAS  Google Scholar 

  22. Kodithala K, Hopfinger AJ, Thompson ED, Robinson MK . Prediction of skin irritation from organic chemicals using membrane-interaction QSAR analysis. Toxicol Sci 2002; 66: 336–46.

    Article  CAS  Google Scholar 

  23. Kulkarni A, Hopfinger AJ, Osborne R, Bruner LH, Thompson ED . Prediction of eye irritation from organic chemicals using membrane-interaction QSAR analysis. Toxicol Sci 2001; 59: 335–45.

    Article  CAS  Google Scholar 

  24. Keseru GM, Molnar L . High-throughput prediction of blood-brain partitioning: A thermodynamic approach. J Chem Int Comput Sci 2001; 41: 120–8.

    Article  CAS  Google Scholar 

  25. Crivori P, Cruciani G, Carrupt PA, Testa B . Predicting blood-brain barrier permeation using three-dimensional molecular structure. J Med Chem 2000; 43: 2204–16.

    Article  CAS  Google Scholar 

  26. Abraham MH, Chadha HS, Mitchell RC . Hydrogen bonding. Part 36. Determination of blood-brain barrier distribution using octanol-water partition coefficients. Drug Des Discov 1995; 13: 123–31.

    CAS  PubMed  Google Scholar 

  27. Abraham MH, Takacs-Novak K, Mitchell RC . On the partition of ampholytes: Application to blood-brain distribution. J Pharm Sci 1997; 86: 310–5.

    Article  CAS  Google Scholar 

  28. Hyperchem Hyper Chem. Release 6.0 for MS Windows. Waterloo, Ontario, Hypercube Inc, 2001.

  29. Materials Studios. San Diego, USA, Accelrys Inc, 2001.

  30. van der Ploeg P, Berendsen HJC . Molecular dynamics simulation of a bilayer membrane. J Chem Phys 1982; 76: 3271–6.

    Article  CAS  Google Scholar 

  31. Stouch TR . Lipid membrane structure and dynamics studied by all atom molecular dynamics simulations of hydrated phosphatidylcholine vesicles. Mol Simulation 1993; 1: 335–62.

    Article  Google Scholar 

  32. Chemoffice 2002 CS Chem 3D Ultra 7.0. Cambridge, USA, Cambridge soft Inc, 2002.

  33. Kaliszan R, Markuszewski M . Brain–blood distribution described by a combination of partition coefficients and molecular mass. Int J Pharm 1996; 45: 9–16.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210093, China

    Xiao-lei Ma, Cheng Chen & Jie Yang

Authors
  1. Xiao-lei Ma
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Cheng Chen
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Jie Yang
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Jie Yang.

Additional information

Project supported by the National Natural Science Foundation of China (No 30171094, 30271497).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, Xl., Chen, C. & Yang, J. Predictive model of blood-brain barrier penetration of organic compounds. Acta Pharmacol Sin 26, 500–512 (2005). https://doi.org/10.1111/j.1745-7254.2005.00068.x

Download citation

  • Received: 11 October 2004

  • Accepted: 06 December 2004

  • Issue Date: 01 April 2005

  • DOI: https://doi.org/10.1111/j.1745-7254.2005.00068.x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • blood-brain barrier
  • quantitative structure-activity relationship
  • theoretical models

This article is cited by

  • Comprehensive chemical profiling of Bassia indica Wight. aerial parts extract using UPLC-ESI–MS/MS, and its antiparasitic activity in Trichinella spiralis infected mice: in silico supported in vivo study

    • Magdy M. D. Mohammed
    • Elham A. Heikal
    • Mosad A. Ghareeb

    BMC Complementary Medicine and Therapies (2023)

  • Lewis base-catalyzed synthesis of highly functionalized spirooxindole-pyranopyrazoles and their in vitro anticancer studies

    • Mohd Asif
    • Farrukh Aqil
    • Malik Nasibullah

    Medicinal Chemistry Research (2023)

  • Structure optimization of new tumor-selective Passerini α-acyloxy carboxamides as Caspase-3/7 activators

    • Mohammed Salah Ayoup
    • Yasmin Wahby
    • Mohamed Teleb

    Scientific Reports (2022)

  • Structure related α-glucosidase inhibitory activity and molecular docking analyses of phenolic compounds from Paeonia suffruticosa

    • Po-Chun Chen
    • Bongani Sicelo Dlamini
    • Chi-I Chang

    Medicinal Chemistry Research (2022)

  • Identification and evaluation of natural organosulfur compounds as potential dual inhibitors of α-amylase and α-glucosidase activity: an in-silico and in-vitro approach

    • Parvej Ahmad
    • Sahir Sultan Alvi
    • M. Salman Khan

    Medicinal Chemistry Research (2021)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • About the Editors
  • Editorial Board
  • About the Partner
  • Open Access Fees and Funding
  • Contact
  • For Advertisers
  • Subscribe
  • Announcements

Publish with us

  • For Authors & Referees
  • Language editing services
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Acta Pharmacologica Sinica (Acta Pharmacol Sin) ISSN 1745-7254 (online) ISSN 1671-4083 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • Protocol Exchange
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Italy
  • Nature Japan
  • Nature Korea
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2024 Springer Nature Limited