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Organic nonvolatile memory transistors with self-doped
polymer energy well structures

Sungho Nam1, Yong-Gi Ko2, Suk Gyu Hahm2, Soohyeong Park1, Jooyeok Seo1, Hyena Lee1, Hwajeong Kim1,
Moonhor Ree2 and Youngkyoo Kim1

Developing organic nonvolatile memory devices with a writing/reading/erasing logic function in actual array structures is

extremely important for realizing low-cost lightweight/flexible plastic electronic systems. Here, we demonstrate that organic

field-effect transistors (OFETs) with a polymer energy well structure (PEW-OFET) exhibit excellent nonvolatile memory

performances. The PEW structure is created by sandwiching a self-doped poly(o-anthranilic acid) (SD-PARA) nanolayer (high

dielectric constant, k¼14) between two low-dielectric polymer layers (k¼2–4). The primary idea behind this concept is the

rapid storage and retrieval of charge carriers in the PEW layer during operation due to the high k feature of the SD-PARA

nanolayer, which aids the rapid transport of charge carriers inside, whereas the stored charges are safely trapped due to the two

low k layers. The results indicate that the PEW-OFET memory devices exhibit outstanding retention characteristics upon

continuous reading up to 2000 s after writing, whereas their excellent writing/reading/erasing/reading cyclability is demonstrated

in a test with 43000 cycles. Therefore, the present simple yet cost-effective PEW-OFET concept is expected to significantly

contribute to the development of low-cost plastic memory array devices because all processes can be inexpensively performed

at low temperatures and additional logic transistors are unnecessary.
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INTRODUCTION

Recently, organic memory devices have been extensively studied
because of their potential in the low-temperature (low-cost) fabrica-
tion of flexible and lightweight plastic memory modules compared
with conventional inorganic memory devices that intrinsically lack
flexibility and should be processed at higher temperatures.1–4 Among
the various types of organic memory devices, a considerable number
of studies have been devoted to nonvolatile memory systems that
include organic-resistive-switching diode memory and organic field-
effect transistor (OFET) memory.5–17 The organic-resistive-switching
diode memory devices consist of organic-resistive layers between two
electrodes, which typically act as either electrically insulating
components or electrically conducting components under
appropriate voltage conditions.5–10 However, the organic-resistive-
switching diode memory devices require transistors for addressing
signals in two-dimensional memory arrays because they do not
possess third electrodes for signal addressing. In contrast, OFET
memory devices can essentially perform the signal addressing

function alone because there are three electrodes in the unit
transistors.11–17

The OFET memory devices can be classified into two types based
on the memory effects. The first type is a ferroelectric OFETmemory
device and the second is a charge-storage OFETmemory device. The
functionality of the ferroelectric OFET memory devices arises from
the ferroelectric gate insulating layers that are polarized under
appropriate electric fields (gate voltages); therefore, the research
objective is to maintain the polarized state under continuous
(repetitive) reading operations.11–13 In the case of charge-storage
OFET memory devices, the gate insulating layers with polar groups
have a charging role for controlling the gate voltage.14–17 To improve
the switching performance, further insulating layers have been
inserted between the gate insulating layer and the channel layer
(organic semiconductors).18 However, this double insulating layer
approach has a disadvantage in that the difference in the dielectric
constants between the two layers is realistically limited due to the lack
of highly polar (high-k) polymer materials.
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Therefore, we designed new charge-storage OFET memory devices
with a partially charged polymer interlayer (with permanent charges)
between the gate insulating layer and the channel layer, which has
considerably higher polarizability (than typical polar polymers with-
out ionic charges) such that it can store more charge carriers
generated by the field-effect phenomena. In addition, these new
OFETmemory devices have a ‘polymer energy well (PEW)’ structure
that is formed by the partially charged interlayer in which the energy
band levels (lowest unoccupied molecular orbital (LUMO) and
highest occupied molecular orbital (HOMO)) are significantly
different from those of the adjacent polymer layers (the gate
insulating layer and the channel layer). Therefore, in principle, the
charge carriers, which are generated during field-effect operation in
the present OFET with a PEW structure (PEW-OFET), are expected
to be safely stored in the PEW because the large energy walls (high
energy barriers) around the energy well can prevent the charges from
escaping.
In this study, we used a self-doped polyaniline derivative (self-

doped poly(o-anthranilic acid; SD-PARA))19,20 as a partially charged
interlayer because the SD polymer is resistant to any possible
deterioration of the device performances by the migration of guest
dopant molecules that are doped into polymers when external guest
dopants are used (note that polar dopant molecules can be mobile
under high electric fields for writing operation). For fabricating the
PEW-OFET devices, we specifically attempted to use relatively cheap
silver (Ag) source and drain electrodes rather than the expensive gold
electrodes that have typically been used in previous reports18 because
the use of gold electrodes is one of the primary hurdles for the
commercialization of organic memory devices.

MATERIALS AND METHODS

Materials
The SD-PARA polymer was synthesized as reported in our previous study.19,20

The intrinsic viscosity (Z) of the SD-PARA polymer product was determined

to be 0.11 dl g�1 in N-methyl-2-pyrrolidinone at 25.0 1C using an Ubbelohde

capillary viscometer (Fungilab, Sant Felin de Vogregat, Barcelona, Spain).

Poly(3-hexylthiophene; P3HT; Mw(weight-average molecular weight)¼ 6.0�
104; polydispersity index¼ 2.0; regioregularity¼ 95%) was supplied from

Lumtec (Science-Based Industrial Park, Hsin-Chu, Taiwan), whereas

poly(vinyl phenol; PVP, Mw ¼ 2.5� 104) and methylated poly(melamine-co-

formaldehyde; MMF, Mw ¼ 432) were purchased from the Sigma-Aldrich Co.

(St Louis, MO, USA). The PVP and MMF materials were used without further

purification.

Methods
The indium tin oxide (ITO)-glass substrates were patterned to have a

1� 12mm stripe for a gate electrode using photolithography techniques,

which was followed by wet (acetone and isopropyl alcohol) and dry (ultraviolet

ozone) cleaning processes. The PVP-MMF (PVPþMMF) precursor films were

spin coated on top of the cleaned ITO-glass substrates and subjected to a

thermal curing process at 250 1C for 60min to create the corresponding

insoluble PVP-MMF films (thickness (t)¼ 600 nm) for a gate insulating layer.

Then, the SD-PARA layer (t¼ 100 nm) was spin coated onto the PVP-MMF

layer. After soft baking the samples coated with the SD-PARA layer at 50 1C,

the P3HT channel layer (t¼ 50nm) was spin coated followed by soft baking at

50 1C. Finally, Ag source and drain electrodes were deposited through a

shadow mask, which defines the channel length of 70mm and the channel

width of 3mm in the PEW-OFET devices (see Figure 1a). All of the devices

were stored in a nitrogen-filled glove box before the measurements. For the

conductivity measurement of the SD-PARA film in the out-of-plane direction

(normal to the film plane), the SD-PARA film was spin coated onto ITO-glass

substrates. Then, metal (aluminum (Al)) electrodes were deposited on top of

the SD-PARA layer under vacuum followed by soft baking at 50 1C, which led

to the diode-type configuration devices (ITO/SD-PARA/Al). All the film

samples for the measurement of dielectric constants were spin coated on ITO-

glass substrates. The P3HT and SD-PARA films were soft baked at 50 1C after

spin-coating, whereas the PVP-MMF film was thermally cured at 250 1C for

60min. The film samples were then transferred to a nitrogen-filled glove box

and metal (Al) electrodes were deposited under vacuum. One set of diode

devices (ITO/P3HT/Al and ITO/SD-PARA/Al) was thermally annealed at

120 1C for 30min before the dielectric constant (impedance) measurement.

Characterization
The optical absorption spectra of the SD-PARA film, the P3HT film and the

P3HT-coated SD-PARA film were measured using a ultraviolet–visible

absorption spectrophotometer (Optizen 2120UV, Mecasys, Daejeon, Republic

of Korea). The ionization potential of the SD-PARA film coated on the ITO-

glass substrate was measured using a photoelectron yield spectrometer (AC-2,

Riken-Keiki, Tokyo, Japan; see the Supplementary information S1). The J–V

curves of the diode device (ITO/SD-PARA/Al) were measured using an

electrometer (Keythley 2400, Keithley Instruments Inc., Cleveland, OH,

USA), while an impedance analyzer (VERSA STAT 4, Ametek, Berwyn, PA,

USA) was used to measure the dielectric constants of the film samples (the

frequency sweep was performed from 10Hz to 1MHz). The transistor and

memory characteristics of the OFET devices were measured using a semi-

conductor parameter analyzer (SCS-4200, Keithley). All of the device

measurements were performed in a nitrogen atmosphere because a nitrogen-

filled sample holder was used.

RESULTS AND DISCUSSION

As shown in Figure 1a, the SD-PARA interlayer (thickness¼ 100 nm)
was coated on top of the gate insulating layer (PVP-MMF), and then
the channel layer P3HT was coated before the deposition of the Ag
source and drain electrodes through a shadow mask. The SD-PARA
film presented its major absorption edge at B670 nm in the presence
of weak absorption at the near-infrared regions (900–1000nm), which
may correspond to the self-doped regions in the SD-PARA chains
(Figure 1b). This weak absorption in the near-infrared region was also
observed after coating the P3HT layer. The ionization potential (or
HOMO energy) of the SD-PARA film was measured using photo-
electron yield spectroscopy. The measured onset value was B5.4 eV,
which corresponds to B5.7 eV after calibration.21–23 To measure the
conductivity of the SD-PARA film in the out-of-plane direction, we
fabricated a diode device in which the SD-PARA film was sandwiched
between the bottom and top electrodes (see details in the
experimental section). The current density–voltage (J–V) curves
revealed that the SD-PARA film is not a perfect conductor but a
semiconductor because of its diode-like shape and the asymmetric
current density trend between the forward and reverse biases (see the
inset in Figure 1c).
Based on the optical and electrical measurements of the SD-PARA

film, we confirmed that the SD-PARA film is a semiconductor film in
which the HOMO and LUMO energy levels are 5.7 and 3.9 eV,
respectively (we note that a weak inter-band energy level (B4.4 eV)
exists due to the doped regions (900–1000nm) in the SD-PARA film).
Using this information, we can construct the energy band diagram of
the present devices in consideration of the applied electric field
between the source and gate electrodes. The OFET without the SD-
PARA layer has only one interface between the PVP-MMF layer and
the P3HT layer (see the energy band diagram in Supplementary
Figure S1). Therefore, no sufficient charge storage is expected for
this device structure because the dielectric constant difference
between these two layers (k¼ 2.0 for P3HT versus k¼ 4.1 for PVP-
MMF) is unable to store sufficient charges for memory operation.
In contrast, as shown in Figure 2, the OFET with the SD-PARA layer
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(PEW-OFET) has two distinctive hetero-interfaces between the P3HT
layer and the SD-PARA layer (k¼ 2.0 for P3HT versus k¼ 14 for SD-
PARA) and between the SD-PARA layer and the PVP-MMF layer
(k¼ 14 for SD-PARA versus k¼ 4.1 for PVP-MMF; see the details of
dielectric constant measurements in the experimental section and the

impedance–frequency plot of the SD-PARA layer in Supplementary
Figure S2). Considering the large LUMO band energy offset (0.9 eV)
between the P3HT layer and the SD-PARA layer, as well as the large
band gap of the PVP-MMF layer (see the energy band diagram
in Figure 2, top), the PEW-OFET has a charge (electrons and
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Figure 1 (a) Schematic illustration of the OFET with the SD-PARA layer (PEW-OFET; left), the cross-sectional FESEM image (middle) and the chemical

structures of P3HT and SD-PARA (right). (b) Optical absorption spectra of the SD-PARA film, the P3HT film and the P3HT-coated SD-PARA film (inset

shows the enlarged spectrum of the SD-PARA film for better visualization of the partially doped state). (c) Photoelectron yield spectrometer spectrum of the

SD-PARA film coated on the ITO-glass substrate (inset shows the J�V curve of the SD-PARA layer in a diode configuration (ITO/SD-PARA/Al)).
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holes)-trapping energy well structure such that the trapped charges
(electrons/holes generated by the field-effect modulation, see
Figure 2) in the SD-PARA layer can be effectively confined in the
SD-PARA layer. In other words, the large energy barrier for charges
(0.9 eV for electrons and 0.8 eV for holes) blocks the charge transfer
from the LUMO (HOMO for holes) level of the SD-PARA layer to the
LUMO (HOMO for holes) level of the P3HT layer in the presence of
slight charge loss by Coulombic recombination between electrons and
holes in the SD-PARA layer. In addition to the charge-trapping energy
well mechanism, however, we note that the space charge polarization
effect might contribute to the charging phenomenon because the SD-
PARA layer has a high k value due to the partially self-doped sites.
Note that the two low k layers (P3HT and PVP-MMF) have an
important role in safely maintaining the trapped charges in the energy
well without significant diffusion loss through a possible leakage path
in consideration of the low/high/low-dielectric structure.
The detailed operation mechanism for the present PEW-OFET is

depicted using the cross-sectional device structures (see Figure 2
(bottom)). Upon writing at the gate voltage (VG) of þ 80V, a strong
polarization occurs leading to the generation of holes and electrons in
the SD-PARA layer and electrons in the P3HT layer. After removing
the gate voltage, the electrons in the P3HT layer disappear through
rapid electron transfer toward the metal (Ag) electrodes (see also
Supplementary Figure S1). However, the charges in the SD-PARA

layer are confined due to the large energy barrier, as explained above,
from the charge-trapping PEW structure. Turning on the gate voltage
(VG¼ �20V) to read the drain current (R1) induces a weak
polarization effect that is the reverse of the writing operation, which
results in the loss of some trapped (confined) charges in the SD-PARA
layer through charge recombination. Applying VG¼ �80V for
erasing operation, a strong polarization removes the remainder of
the trapped charges in the SD-PARA layer. Then, the charges are
trapped again in the SD-PARA layer, but the arrangement (direction)
of charges is reversed from the writing case. At this stage, upon
applying the gate voltage (VG¼ �20V) for the reading operation
(R2), the holes are rarely generated in the P3HT layer because the
trapped holes (that is, an empty state of electrons) cannot allow
sufficient polarization in the SD-PARA layer. Therefore, the R2
current is significantly less than the R1 current, which creates a
memory window.
As expected from the conceptual mechanism (Figure 2), the OFET

without the SD-PARA layer exhibited almost no noticeable hysteresis
between the forward (gate voltage (VG): from þ 50 to �80V; drain
voltage (VD): from 0 to �80V) and backward (VG: from �80 to
þ 50V; VD: from �80 to 0V) direction sweeps in the output and
transfer curves (Figures 3a and b). The very small hysteresis in the
output curves in Figure 3a can be attributed to the influence of polar
groups (�OH) that remained without reacting during the course of
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the thermal curing process (see Supplementary Figure S3). However, a
relatively pronounced hysteresis was observed for the PEW-OFET
(Figures 3c and d). This hysteresis phenomenon was observed in all
the output and transfer curves without respect to the voltages in the
presence of the varied hysteresis gap differences depending on the
voltages, which implies that the present charge-trapping PEW
structure works in a wide range of voltages. Here, we note that the
difference in the degree of hysteresis between the output curves
(Figure 3c) and transfer curves (Figure 3d) can be attributed to the
charging characteristics of the present devices, which are primarily
dependent on the gate voltage (between the gate and source
electrodes) action across the SD-PARA layer (the SD-PARA layer
does rarely affect the output curves because the current flow is
primarily through the P3HT layer upon applying the drain voltages).
The hole mobility of the devices in the forward and backward
directions was calculated from the relationship (I0.5BVG; see
Supplementary Figure. S4).22,24,25 The hole mobility of the OFET
without the SD-PARA layer was almost similar for both the forward
and backward direction sweeps, whereas the PEW-OFET exhibited an
almost one order of magnitude lower hole mobility for the backward
direction sweep than for the forward direction sweep (see

Supplementary Figure S5). This large change in the hole mobility
for the PEW-OFET reflects the different charged states in the SD-
PARA layer upon sweeping the gate voltages in the forward and
backward directions. Here, we note that the slightly high operation
voltage can be easily reduced by using a sophisticated lithography
technique that can deliver narrow channel lengths; as we know very
well, for example, the operation voltage can decrease to o3V if the
channel length approaches 2mm. Further reduction of the operating
voltage can also be possible by optimizing the OFET layers using a
better gate insulating layer, as shown in Supplementary Figure S6, and
higher regioregularity P3HT, as reported in our previous work.26 The
characteristics of the devices are summarized in Supplementary Table
S1. The memory window of the PEW-OFET was 30–33V, which is
noticeably greater than the 1–2V for the OFETwithout the SD-PARA
layer.
To examine the memory characteristics of the present PEW-OFET,

we applied the following gate voltage program: writing (VG¼ þ 80V),
reading (VG¼ �20V) and erasing (VG¼ �80V; see details in
the caption of Figure 4a). As shown in Figure 4a, the drain current
(ID) was regularly read five times at VG¼ �20V (see ‘R’ part) after
writing (see ‘W’ part), though the reading action was performed every
10 s (holding at VG¼ 0V). This result indicates that the present device
did indeed function as a basic nonvolatile memory device. After
erasing at VG¼ �80V, the baseline of the drain current was clearly
reduced close to almost ‘zero’ at VG¼ 0V. In particular, the drain
current during the reading operation at VG¼ �20V after erasing was
certainly lower than the baseline (ID¼ ca. �5 nA) of the drain
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current before erasing, which supports clear writing–reading–erasing
loop functions of the present device. Next, we attempted to investigate
the stability (retention) characteristics of the present device by
programming the reading gap to be 60 s after writing. As shown in
Figure 4b, the drain current was almost regularly read for a 30-time
repetition, although the drain voltage was set to be two times greater
(VD¼ �20V) than the drain voltage in Figure 4a to make the reading
condition harsher. The enlarged regions for the sixth to eighth reading
operations are presented in Figure 4c, which represents extremely
high data (retention) stability characteristics. To test the long-term
retention characteristics, we attempted to perform 43000 cycles with
the writing–reading–erasing–reading program. As shown in Figure 5a,
the drain current was encouragingly well-maintained with a standard
deviation of 6% (R1 after writing) and 3.8% (R2 after erasing). In
particular, the shape of the drain current action spectra (ID versus
cycle number) was excellently maintained when we investigated the
spectra for each cycle, although the drain current intensity was
marginally changed under the given standard deviation when
compared between the first and last 10 cycles (see Figure 5b). Finally,
to obtain insight on the charge-trapping PEW effect in the present
memory device structure even though the basic requirement for
energy well construction is acceptable from the energy level difference
(see Figure 2), we briefly examined the energy well effect by varying
the thickness of the SD-PARA layer (see Supplementary Figures S7–9
and Supplementary Table S2). The result indicated that a particular
charge confinement effect was indeed present for all the examined
SD-PARA thicknesses and that the lowest threshold voltage was
measured at 50nm among three different thicknesses.

CONCLUSIONS

In summary, we have fabricated PEW-OFET devices with a SD-PARA
semiconducting nanolayer, P3HT channel layer and PVP-MMF gate
insulating layer. This arrangement of polymeric layers created a
charge-trapping PEW structure that can efficiently store charges
(electrons/holes) generated by the field-effect action. The PEW-OFET
did indeed exhibit a pronounced hysteresis behavior, although almost
no hysteresis was measured for the OFETwithout the SD-PARA layer.
In addition, the hole mobility of the PEW-OFET device was
noticeably (B10-fold) changed according to the charging–
discharging operation (forward–backward sweep of gate voltages).
The PEW-OFET device exhibited clear writing–reading–erasing
functions and outstanding stability (data retention) upon long-term
operations up to ca. 2000 s, which was supported by the writing–
reading–erasing–reading test with43000 cycles. Therefore, we believe
that the present PEW-OFET memory is a simple yet powerful
approach for realizing organic memory devices in the near future.
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