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T he best known carbon crystal is diamond, whose hardness and 
high dispersion of light make it useful for industrial applications 
and jewelry. Under ambient pressures and at room temperature, 

however, the most stable form of carbon is graphite, which is used 
as an industrial lubricant and as the ‘lead’ in pencils. Graphite is a 
layered material in which each layer consists of a sheet of carbon atoms 
forming hexagonal structures similar to benzene rings. A monolayer 
of graphite is called graphene, and a carbon nanotube is a cylinder 
made of graphene. 

Carbon nanotubes were discovered by Sumio Iijima during the 
synthesis of fullerene C60 in 1991. A nanotube exhibits extraordinary 
mechanical properties that make it ideal for reinforced composites: it 
has a huge Young modulus, is as stiff as diamond and the estimated 
tensile strength is more than ten times that of steel wire with the same 
weight. It has even been suggested that nanotubes could be used to build 
a ‘space elevator’, an earth-to-space cable. Nanotubes can be metallic 
or semiconducting, and offer many possibilities for creating future 
nanoelectronics devices, circuits and computers. 

There have been various efforts world over to prepare thin layers 
of graphite, and quite recently the group of Andre Geim and Kostia 
Novoselov of Manchester University succeeded in fabricating a fi eld-eff ect 
transistor (FET) made of graphene on an Si/SiO2 substrate [1,2]. Th ey 
simply stuck a fl ake of graphite debris onto plastic adhesive tape, folded 
the sticky side of the tape over the fl ake, and then pulled the tape apart, 
cleaving the fl ake into two. After repetition of the process, the resulting 
fragments grew thinner and some of them turned out to be monolayer 
graphene. Th e concentrations of electrons (ns > 0) and holes (ns < 0) can 
be controlled by the gate voltage between the graphene layer and the 
heavily doped silicon, through insulating SiO2, over a wide range of 
–5×1013 < ns < 5×1013 cm–2. 

It is quite amazing that carriers in a thin atomic layer can be 
controlled almost freely by a gate and that the maximum carrier 
concentration is comparable to that in silicon-based metal-oxide 

semiconductor FETs (MOSFETs). Graphene can also be synthesized 
epitaxially on silicon carbide, by which the silicon leaves the surface and 
the remaining carbon reconstructs into graphene layers when heated 
[3,4]. Such epitaxial graphene is much more suitable for actual device 
applications. Monolayer graphene has been formed on metal surfaces 
such as nickel, and its phonon properties have been measured [5]. 

Two reports were published in Nature by groups from Manchester 
University and Columbia University in October 2005 on the observation 
of the integer quantum Hall eff ect [6,7]. Th is eff ect is sometimes called 
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Figure 1. The honeycomb lattice of graphene. The hexagonal unit cell contains 

two carbon atoms (A and B). The chiral vector determining the structure of a carbon 

nanotube is given by L, and its length gives the circumference. The chiral angle 

is denoted by η, with η = 0 corresponding to zigzag nanotubes and η = π/6 to 

armchair nanotubes.



 T. Ando

18 Vol. 1  October 2009 | NPG ASIA MATERIALS | www.natureasia.com/asia-materials

the half-integer quantum Hall effect because the Hall conductivity is 
quantized into (4e2/h)(j + 1/2), where e is electron charge, h is the Planck 
constant and j is an integer [8]. Since those reports, graphene has become 
the subject of extensive and very competitive theoretical and experimental 
study. Some examples include reports on interband magneto-optical 
absorption [9], cyclotron resonance absorption [10,11], observation of 
the local density of states using a scanning single-electron transistor [12],  
measurement of weak-fi eld magnetoresistance [13–16],  observation of 
optical phonons by Raman experiments [17,18],  observation of spin 
transport [19,20], angle-resolved photoemission spectroscopy [21,22] 
and observation of the lattice by scanning tunneling microscopy [23]. 

There have been a tremendous number of theoretical works on 
graphene, including a proposal for an ‘electron lens’ by attaching an extra 
top gate to realize negative refractive index at the p–n junction [24]. 

Extensive literature on graphene research has been covered in recently 
published reviews [25–27]. Graphene was the subject of theoretical study 
prior to experimental realizations because the peculiar electronic structure 
is also responsible for the intriguing properties of carbon nanotubes [28].

The two-dimensional neutrino 

Graphene has a honeycomb lattice structure and a unit cell that contains 
two carbon atoms (Figure 1). An electron in a solid sometimes behaves as 
a particle quite diff erent from that in a vacuum because of the presence 
of a periodic atomic potential. Graphene is an extremely interesting 
example of such a case, where the electron motion becomes equivalent to 
that of a massless neutrino.

Figure 2 shows the band structure of graphene near the Fermi level. 
In the hexagonal first Brillouin zone (the primitive unit cell in wave-
vector space), the Fermi level lies at the crossing point between the cone-
like dispersions (Figures 2(a) and (b)). Given the wave vector k measured 
from one of these points (K in the figure), the energy is determined 
by ε(k) = ±ħv|k| = ±v|p| for small k = |k|, where ħ is the reduced Planck 
constant, p = ħk is momentum and v is the velocity of the order c/300 
with c being the light velocity. According to the special theory of 
relativity, the energy of a relativistic particle is given by 

  (1)

where m is rest mass. When we set m = 0, this gives dispersion ε = c|p| 
equivalent to that of light. Th is particle is a massless neutrino and the 
negative energy corresponds to an antineutrino. The dispersion of an 
electron in graphene is obtained by replacing c with v in this equation.

The corresponding Schrödinger equation is given by a set of first-
order diff erential equations [28], as follows.

  (2)

Here, ̂k = –i(∂/∂x,∂/∂y), and FA(r) and FB(r) represent the wave amplitude 
at the A and B sublattice points (as shown in Figure 1). A similar 
discussion holds for the adjacent K' point. Thus, the two-dimensional 
electron system in graphene makes it possible to study the properties of 
highly relativistic particles.

One intriguing feature of the neutrino wave function is the 
appearance of a Berry’s phase. When the direction of particle motion 
is rotated by 2π, the phase of the wave function changes by ±π, 
changing its sign. Th is leads to the absence of backscattering when a 
particle is scattered by impurities, because backscattering corresponds 
to rotation of the direction by ±π and the amplitudes for ±π rotations 
cancel each other due to the sign difference [29,30]. In carbon 
nanotubes, the electron motion along the circumference is quantized 
and the electron motion effectively becomes one-dimensional, with 
the resistance determined solely by backscattering. Therefore, the 
absence of backscattering means that metallic carbon nanotubes 
are ideal conductors with perfect conduction even in the presence 
of scatterers. 

Carbon nanotubes as either a metal or semiconductor

Let us introduce lattice translation vector L. A nanotube can be 
constructed in such a way that the hexagon at a position L can be rolled 
onto a hexagon at the origin. L is called the chiral vector and becomes 
the circumference of the nanotube. Th e directional angle η of L is called 
the chiral angle (Figure 1). Because each translation vector is written as 
L = naa + nbb with a and b being the primitive translation vectors, the 
structure of a nanotube is specifi ed by the set of integers na and nb. Th e 
axis is perpendicular to L, which typically results in a nanotube with a 
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helical structure. Th ere are some exceptions to this, including nonhelical 
nanotubes, zigzag nanotubes with η = 0 and armchair tubes with η = π/6. 
Other helical tubes are called chiral nanotubes. Because the stability is 
mainly determined by their thickness or circumference, the direction of 
L for grown nanotubes is distributed almost uniformly.

The wave function satisfies the periodic boundary condition 
ψ(r + L) = ψ(r) in a carbon nanotube. This shows that the wave vector 
k satisfying the condition exp[ik⋅(r + L)] = exp(ik⋅r) is allowed in 
the first Brillouin zone of graphene. The condition can be rewritten 
as exp(ik⋅L) = 1, which gives straight lines perpendicular to L with 
neighboring distances 2π/L (Figure 3). When these lines pass through 
the K and K' points, that is, exp(iK⋅L) = 1 or exp(iK '⋅L) = 1 with K 
and K ' being the wave vector of the K and K' point, respectively, there 
is no gap at the Fermi level and the nanotube becomes metallic. In 
other cases, the nanotube becomes a semiconductor with a gap near 
the Fermi level.

Explicit calculations show that exp(iK⋅L) = exp(2πiν/3) and 
exp(iK '⋅L) = exp(–2πiν/3), where the integer ν is 0 or ±1 depending 
on na and nb. As a result, metallic (ν = 0) and semiconducting (ν = ±1) 
nanotubes appear at a ratio of one to two with varying L. In a 
semiconducting nanotube, the straight line closest to the K or K' point 
gives the conduction and valence bands. Because the spacing between 
neighboring lines is 2π/L and the energy is a linear function of the 
wave vector near the K and K' points, the energy gap is proportional 
to the inverse of the diameter d = L/π. The important feature is that 
there can be both metallic and semiconducting nanotubes with similar 
diameter and therefore one of the tough challenges lies in achieving 
the selective growth of semiconducting and metallic nanotubes or their 
separation after growth. 

Graphene as a metal 

Graphene has often been called a zero-gap semiconductor because 
the density of states is given by D(E) = |E|/2πħ2v2, which vanishes 
at E = 0 (Figure 2). This naming is quite inappropriate, however. 
A more appropriate name becomes clear when we consider the 
conductivity of graphene. 

The conductivity is usually given by the Einstein relation 
σ0 = gvgse2D*D(EF) in terms of the diffusion coefficient D*, where gv = 2 
is the valley degeneracy corresponding to the presence of the K and 
K' points and gs = 2 is the spin degeneracy. Let τ be the relaxation time 
due to impurity scattering. Then, the diffusion coefficient is given by 
D* ≈ v2τ. We have τ–1 ≈ (2π/ħ)ni⟨ui

2⟩EFD(EF), where ni is the impurity 
density, ui is the matrix element of the impurity potential between 
initial and final states, and ⟨...⟩EF denotes the average at the Fermi 

level. As a result, independent of the density of states, the conductivity 
becomes σ0 = gvgse2/2π2ħW, where W = ni⟨ui

2⟩EF/4π2ħ2v2 is a dimensionless 
parameter characterizing the strength of impurity scattering. Strictly 
speaking, the relaxation time determining the conductivity is 
different from the simple scattering time, but the difference is not so 
important here. 

Th e above shows that the conductivity is independent of the Fermi 
energy and the carrier concentration as long as the possible dependence 
of scattering strength W on EF or ns is neglected. Therefore, graphene 
should strictly be regarded as a metal rather than a semiconductor.

At EF = 0, where D(EF) = 0, however, this description can become 
inappropriate. In fact, potential fl uctuations due to impurities make the 
density of states at EF = 0 nonzero. Th eoretical calculations including this 
level-broadening eff ect performed prior to experiments showed that the 
conductivity takes a universal value of σmin = gvgse2/2π2ħ at EF = 0 [31]. 
Figure 4 shows examples of calculated density of states and conductivity. 
In graphene with weak disorder, that is, W ≪ 1, the conductivity drops 
to σmin from σ0 in a very narrow energy range close to E = 0. Similar 
calculations performed for the conductivity in magnetic fi elds predicted 
that the Hall conductivity, in particular, is quantized into (4e2/h)(j + 1/2) 
with integer j, corresponding to the half-integer quantum Hall eff ect [8].

Experimentally, the minimum conductivity has been shown to be 
nearly independent of samples [6], although the absolute value seems 
to be 3–4 times larger than the theoretical predictions. In the vicinity 
of zero energy, because of the weak screening effect due to the small 
density of states and the small kinetic energy of electrons, the eff ective 
scattering strength can be substantial and system inhomogeneity can also 
be signifi cant. Some reports have shown that the minimum conductivity 
varies from sample to sample [32]. Th is problem regarding the minimum 
conductivity remains an important subject to be understood in the future. 

Another important difference lies in the dependence of the 
conductivity on electron concentration. The theory predicts that 
the conductivity in pure graphene should be independent of the 
electron concentration, dropping to σmin in the extreme vicinity of zero 
energy over a singularly narrow region. Experimentally, however, the 
conductivity is nearly proportional to the electron concentration, as if 
there is an eff ective mobility independent of the electron concentration. 
Part of the reason for this lies in the fact that the scattering strength W is 
large at EF ≈ 0 (typically W ≈ 0.1), as mentioned above. Another reason is 
that the eff ective strength of dominant scatterers depends on the electron 
concentration according to W ∝ |ns|–1, and the Boltzmann conductivity 
becomes proportional to the electron concentration. 

Typical examples of such scatterers causing ns dependence are 
charged impurities. Charged centers localized in SiO2 are known to 
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play important roles in silicon MOSFETs [33]. Explicit calculations 
for charged-impurity scattering with the screening effect properly 
included give W ∝ |n s|–1, that is, σ ≈ e|n s|μ with mobility μ ∝ n 
independent of ns [34,35]. Th e typical mobility in graphene on an SiO2 
substrate is μ ≈ 104 cm2/V s, and the required impurity concentration is 
ni ≈ 5×1011 cm–2, comparable to that in a MOSFET. 

Singular behavior also appears in the dynamical conductivity, 
which consists of the Drude conductivity (determined by states in the 
vicinity of the Fermi level) and the interband conductivity (dominant 
for ħω > 2|EF|). The interband conductivity, corresponding to optical 
transitions from valence to conduction band states, is given by a universal 
value of gvgse2/16ħ. Explicit calculations show that the frequency 
dependence is completely scaled by the Fermi energy if level-broadening 
effects are completely neglected, that is, σ(ω,EF) = σ(ħω/|EF|) (Figure 
5). This shows that at EF = 0, σ(ω) = σ0 for ω = 0 and σ(ω) = gvgse2/16ħ 
for ω = 0. It has been shown that this singularity present at EF = 0 can 
be removed by level-broadening eff ects (Figure 5) [36]. Quite recently, 
dynamical conductivity was actually observed, demonstrating the 
universality of interband conductivity [37,38]. 

Opening the band gap in graphene 

One of the most important challenges toward achieving graphene-
based transistor applications arises from the fact that graphene is not 
a semiconductor but a metal. Because of the dependence of W on ns, 
the conductivity changes as a function of the electron concentration 
proportional to the gate voltage. In fact, the conductivity in graphene 
fabricated on an SiO2 substrate changes from σmin at EF = 0 to values 
20–30 times larger by the gate. This amount of change is certainly 
not sufficient for transistors, and further the gate-voltage range 
corresponding to σmin is too narrow. There have been various attempts 
to introduce a band gap for the purpose of converting graphene 
into a semiconductor. 

Let us consider a fi ctitious case in which the A and B sublattice atoms 
have diff erent energies: +δ for A atoms and –δ for B atoms. In this case, 
the energy bands are defi ned by 

   (3)

instead of ε±(k) = ±ħv|k|. Th is shows that a gap of 2|δ| opens up at k = 0. 
Such a diff erence in the energy of the A and B atoms can be realized by 
growing graphene on an appropriately chosen substrate giving rise to 
asymmetry between two sublattices. 

In usual semiconductors, the band gap is enhanced by the increase in 
kinetic energy of conduction electrons and valence holes when spatially 

confi ned to quantum wells or quantum wires. Given eff ective masses of 
electrons and holes me and mh, the eff ective gap increases by (ħπ2/2d 2)
(me

–1 + mh
–1), where d is the well width. Figure 6 shows a schematic 

illustration of this enhancement. In graphene also, a gap can be formed 
when electrons and holes are confi ned to a narrow region. 

It should be noted that spatial confinement cannot be achieved 
by applying an external potential. In fact, an electron incident 
perpendicularly on a barrier potential transmits through the barrier 
with a probability of unity because of the absence of backscattering as 
mentioned above. The confinement can be achieved only by cutting 
graphene into a ribbon with narrow width. 

In usual semiconductors, the electron motion is described by an 
eff ective-mass approximation characterized by a second-order diff erential 
equation. In this case, the wave function has vanishingly small amplitude at 
the boundary (Figure 6) and therefore electrons are only weakly aff ected 
by disorder present at the boundary, such as weak boundary roughness 
scattering. In graphene, however, the Schrödinger equation is given by 
a set of first-order differential equations and therefore the condition 
that the wave functions vanish there cannot be imposed. As a result, the 
amplitudes of the wave functions are almost the same at the edges as on 
the inside of a graphene ribbon, demonstrating that the electronic states 
in graphene ribbon are quite sensitive to the edge structure. 

The sensitivity to edges has previously been demonstrated through 
explicit calculations of the electronic states in ribbons [39,40]. In fact, in 
zigzag ribbons having an edge with a zigzag form, there exist edge states 
without dispersion, localized in the vicinity of edges. Armchair ribbons 
having an edge with an armchair form, on the other hand, alternate 
periodically with width between metallic and semiconducting behaviors, 
quite analogous to the behavior in carbon nanotubes. Th e edges of ribbons 
fabricated by conventional lithography techniques are extensively damaged 
and therefore far from ideal. Measurements of the conductance of narrow 
ribbons at various temperatures have indicated that the gap is roughly 
proportional to the reciprocal of the width [41,42]. It has also been found 
that the gap is independent of the ribbon direction, and that the conductance 
decreases considerably with decreasing ribbon width, suggesting that the 
gap is likely to be a mobility gap related to edge disorder rather than a 
band gap. The presence of a band gap has been suggested in chemically 
derived ribbons [43]. 

Multi-layer graphene, such as bilayer and trilayer forms, have also 
been fabricated. In bilayer graphene in particular, the electronic states 
become quite diff erent from those in monolayer graphene due to strong 
interlayer interactions. Th e dispersion in the vicinity of the Fermi level 
changes from ε±(k) = ±ħν|k| in the monolayer to ε±(k) = ±ħ2k2/2m* in the 
bilayer, where m is the eff ective mass [44]. In multi-layer graphene, the 
Hamiltonian has been shown to be generally decomposable into that 
of monolayer graphene and those of bilayer graphene when only the 
dominant terms in interlayer interactions are considered [45,46]. 

When a strong electric field is applied perpendicular to bilayer 
graphene (Figure 7), the induced potential diff erence between the two 
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layers gives rise to a band gap of the order of the potential difference. 
Th e actual diff erence is determined in a self-consistent manner because it 
also leads to asymmetry in the electron density distribution [47,48]. Th is 
corresponds to the screening of external potential and tends to reduce 
the gap by roughly half [47,49]. Some examples of calculated potential 
difference are shown in Figure 7(b) [49]. Several experiments have 
been reported, including some giving a small band gap [50] and others 
suggesting the opening of a huge gap. 

Summary

Th e characteristic features of the electronic and transport properties of 
graphene and carbon nanotubes were discussed from a theoretical point 
of view. An electron in graphene is equivalent to a massless neutrino 
in two dimensions, and graphene therefore eff ectively realizes a system 
of relativistic particles moving with light velocity. The actual velocity 
is equivalent to about 1/300 of the light velocity. Th is leads to unique 
electronic and transport properties in graphene and carbon nanotubes, 
such as the absence of backscattering, which causes metallic carbon 
nanotubes to behave as perfect conductors even in the presence of 
scatterers. Graphene and nanotubes will continue to attract attention 
because of their considerable potential for device applications as well as 
their purely scientifi c interest. 
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Figure 7. (a) Schematic illustration of bilayer graphene with a bottom gate 

controlling the carrier concentration and an extra top gate. The distance between 

layers 1 and 2 is d ≈ 0.334 nm, and the potential diff erence is determined from eFd. 

Fext represents the field due to the top gate. (b) Calculated energy difference eFd 

as a function of electron concentration with respect to eFextd. The static dielectric 

constant of the environment is κ = 2. Here, ns = gvgsΔ
2/2πħ2v2 ≈ 2.5×1013 cm–2 for 

interlayer coupling of Δ ≈ 0.4 eV. Figure modifi ed after Ref. 49. 
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